Exotic Hadrons at LHCb

Sanqiang Qu

on behalf of the LHCb collaboration

Tsinghua University

Excited QCD 2024, Benasque, Spain, Jan 14 - Jan 20, 2024

Exotic hadrons

2 LHCb experiment

3 Selected LHCb results

- Evidence of a $J/\psi K_s^0$ structure in $B^0 \to J/\psi \phi K_s^0$
- Observation of a $D_s^+ D_s^-$ resonance in $B^+ o D_s^+ D_s^- K^+$
- Observation of a doubly charged tetraquark and its neutral partner

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Observation of a $J/\psi\Lambda$ resonance in $B^- o J/\psi\Lambdaar{p}$
- Prompt pentaquarks in charm states

Prospects and summary

Exotic hadrons

The quark model was proposed to classify and describe hadrons in 1964

- Conventional hadrons: hadrons with minimal quark content $q\bar{q}$ and qqq
- Exotic hadrons: everything beyond $q\bar{q}$ -meson and qqq-baryon scheme
- Exotic hadrons can provide unique probe to QCD

Different properties expected depending on proposed binding mechanism

- Phenomenological approaches:
 - compact multiquark states
 - hadronic molecule states
 - hybrid
 - glueball

Nat Rev Phys 1, 480-494 (2019) = 0 0

LHCb detector and performance

LHCb detector before end of 2018 (Int. J. Mod. Phys. A30 (2015) 1530022)

- A single-arm forward spectrometer covering the pesudorapidity range 2 $<\eta<$ 5
- Particle identification: $\epsilon(K \to K) \sim 95\%$ with $\epsilon(\pi \to K) \sim 5\%$ $\epsilon(\mu \to \mu) \sim 97\%$ with $\epsilon(\pi \to \mu) \sim 1 - 3\%$
- Momentum resolution: $\Delta p/p = 0.5\%$ at low momentum to 1.0% at 200 GeV/c
- Spatial resolution: $\sigma_{\rm IP} \sim 20 \mu$ m, $\sigma_{\rm PV, \ x/y} \sim 10 \mu$ m, $\sigma_{\rm PV, \ z} \sim 60 \mu$ m
- LHCb detector designed for decays of hadrons with a b or c quarks

LHCb data taking

LHCb Integrated Recorded Luminosity in pp by years 2010-2023

- Run1 (2011 2012): 3 fb⁻¹ pp collision @ 7, 8 TeV
- Run2 (2015 2018): 6 fb⁻¹ pp collision @ 13 TeV
- Run3: Physics quality data starting 2023 @ 13.6 TeV

Exotic hadrons observed by LHCb in 2023 [new naming convention (arXiv:2205.15233)] • $T^{\theta}_{\psi \in 1}(4000)^0$: $J/\psi K^0_{\mathbb{S}}$ structure in $B^0 \to J/\psi \phi K^0_{\mathbb{S}}$ (PRL131, 131901(2023))

- $T^f_{\psi\phi}(3960)^0$: $D^+_s D^-_s$ resonance in $B^+ \to D^+_s D^-_s K^+$ (PRL131,071901(2023))
- $T^{a}_{c\bar{s}0}(2900)^{++(0)}$: $D^{+}_{s}\pi^{+}$ and $D^{+}_{s}\pi^{-}$ resonances in $B \to \overline{D}D_{s}\pi^{-}$ (PRL131, 041902(2023))
- $P^{\Lambda}_{\psi s}(4338)^0$: $J/\psi\Lambda$ resonance in $B^- \rightarrow J/\psi\Lambda\bar{p}$ (PRL131,031991(2023))

Evidence of a $J/\psi K_s^0$ structure in $B^0 \rightarrow J/\psi \phi K_s^0$

- $T^{\theta}_{\psi s1}(4000)^+$ [$c\bar{c}u\bar{s}$] are observed in $B^+ \rightarrow J/\psi\phi K^+$ with a significance of 15 σ (PRL127, 082001 (2021))
- *T*^θ_{ψs1}(4000)⁰ [ccds], the isospin partner of *T*^θ_{ψs1}(4000)⁺, is expected to exist based on isospin symmetry of the strong interaction
- Search for $T^{\theta}_{\psi s1}(4000)^0$ in $B^0 \to J/\psi \phi K^0_S$

$B^0 \rightarrow J/\psi \phi K_S^0$ dataset

- Decay channel: $B^0 \rightarrow J/\psi \phi K_S^0$, $J/\psi \rightarrow \mu^+ \mu^-$, $\phi \rightarrow K^+ K^-$, $K_S^0 \rightarrow \pi^+ \pi^-$
- Dataset: LHCb Run1 and Run2 data (\sim 9 fb $^{-1}$)
- Fit to the $m_{J/\psi\phi K_S^0}$ distribution: • $N_{sig} = 1866 \pm 47$, Purity: 94% (signal region: ± 15 MeV around B^0)

PRL131, 131901 (2023)

Amplitude analysis of $B^0 o J/\psi \phi K_S^{0^0}$

- A simultaneous fit is performed to $B^0 \rightarrow J/\psi \phi K_S^0$ and $B^+ \rightarrow J/\psi \phi K^+$ samples.
- The default model is taken from $B^+ \rightarrow J/\psi \phi K^+$ analysis (PRL127, 082001 (2021))
- Isospin symmetry: fit parameters for all the components except for the $T^{\theta}_{\psi s1}(4000)^{+(0)}$ are constrained by $B^+ \rightarrow J/\psi \phi K^+$
- Fit results from default model:
 - Line shape: BW function
 - $M(T^{\theta}_{\psi s1}(4000)^0) = (3999^{+12}_{-10} {}^{+9}_{-17}) \text{ MeV}, \ \Gamma(T^{\theta}_{\psi s1}(4000)^0) = (105^{+29}_{-25} {}^{+17}_{-23}) \text{ MeV}$
 - Significance: 4.0σ (5.4 σ when isospin symmetry is assumed)

•
$$\Delta M \equiv M_{T^{\theta}_{\psi s1}(4000)^0} - M_{T^{\theta}_{\psi s1}(4000)^+} = -12^{+11}_{-10} {}^{+6}_{-4}$$
 MeV (isospin partner)

Observation of a $D_s^+ D_s^-$ resonance in $B^+ \to D_s^+ D_s^- K^+$

- Decay channel: $B^+ \to D_s^+ D_s^- K^+, \ D_s^\pm \to K^+ K^- \pi^\pm$
- Dataset: LHCb Run1 and Run2 data (\sim 9 fb $^{-1}$)
- Fit to the $m_{D_c^+ D_c^- K^+}$ distribution:

• $N_{\rm sig} = 360 \pm 22$, Purity: 84% (signal region: ± 20 MeV around B^+)

PRL131, 071901 (2023)

Amplitude analysis of $B^+ ightarrow D_s^+ D_s^- K^+$

- The default model: $T^f_{\psi\phi0}(3960) + X_0(4140) + \psi(4260) + \psi(4660) + NR$
- Only $R \to D_s^+ D_s^-$ chain is considered in default model
 - $T^{f}_{\psi\phi0}(3960)$: describe $D^{+}_{s}D^{-}_{s}$ threshold enhancement
 - X₀(4140) : describe the dip around 4140 MeV
- Fit results from default model: $(T(3960) = T^{f}_{\psi\phi0}(3960))$
 - Line shape: Flatte model
 - $M_{T(3960)} = (3956 \pm 5 \pm 10) \text{ MeV}, \ \Gamma_{(T(3960))} = (43 \pm 13 \pm 8) \text{ MeV}, \ S(\sigma): 12.6$
 - $M_{X_0(4140)} = (4133 \pm 6 \pm 6) \text{ MeV}, \ \Gamma_{(X_0(4140))} = (67 \pm 17 \pm 7) \text{ MeV}, \ S(\sigma): 3.8$
 - $J^P = 0^+$ for T(3960) and $X_0(4140)$

Discussion on $B^+ \rightarrow D_s^+ D_s^- K^+$ decay

Are $T^f_{\psi\phi}(3960)$ and $\chi_{c0}(3930)$ the same state?

Resonance	JP	M_0 (MeV)	Γ ₀ (MeV)	Decay	Ref
$T^{f}_{\psi\phi0}(3960)$	0+	$3956\pm5\pm10$	$43\pm13\pm8$	$D_s^+ D_s^-$	PRL131, 071901 (2023)
$\chi_{c0}(3930)$	0+	$3923.8 \pm 1.5 \pm 0.4$	$17.4\pm5.1\pm0.8$	D^+D^-	PRD102, 112003 (2020)

• $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \cdot FF(X \to D^+ D^-)}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \cdot FF(X \to D_s^+ D_s^-)} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08 \ (< 1.0)$

- **PHSP** of $X \to D_s^+ D_s^-$ is much smaller than $X \to D^+ D^-$
- It is harder to excite an $s\bar{s}$ pair from vacuum compared with $u\bar{u}(d\bar{d})$
- This T state seems not to be a pure charmonium

No definitive conclusion on existence of $X_0(4140)$

• Dip around 4140 MeV can also be described by $J/\psi\phi - D_s^+D_s^-$ rescattering

First observation of a double charged tetraquark and its neutral partner in $B \rightarrow \bar{D}D_s\pi$

• Decay channel:
$$B^0 \to \overline{D}{}^0 D_s^+ \pi^- / B^+ \to D^- D_s^+ \pi^+, \ \overline{D}{}^0 \to K^+ \pi^- / K^+ \pi^- \pi^+ \pi^-$$

 $D^- \to K^+ \pi^- \pi^-$
 $D_s^+ \to K^+ K^- \pi^+$

- Dataset: LHCb Run1 and Run2 data (\sim 9 fb $^{-1}$)
- Fit to the $m_{\bar{D}^0 D_s^+ \pi^-} / m_{D^- D_s^+ \pi^+}$ distributions: • $N_{sig}^{B^0 \to \bar{D}D_s \pi} = 4009 \pm 70$, Purity: 90.7% (signal region: ± 20 MeV around B^0) • $N_{sig}^{B^+ \to \bar{D}D_s \pi} = 3750 \pm 64$, Purity: 95.2% (signal region: ± 20 MeV around B^+)

Amplitude analysis of $B^0 o \overline{D}{}^0 D_s^+ \pi^- / B^+ o D^- D_s^+ \pi^+$

- A combined amplitude analysis of the $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \rightarrow D^- D_s^+ \pi^+$ is performed.
- Isospin symmetry: all parameter are shared except for $\overline{D}^*(2007)^0$ and $D^*(2010)^-$
- Only the possible excited D
 ^{*} resonances decaying to D
 ⁰π⁻ / D⁻π⁺ are considered before considering the possible existence of exotic states.

The model (only \bar{D}^*) cannot describe the peaking structure near 2900 MeV/ in $m_{D_s\pi}$?

Amplitude analysis of $B^0 o \bar{D}^0 D_s^+ \pi^- / B^+ o D^- D_s^+ \pi^+$

- To describe the peaking structures near 2900 MeV, two new $D_{5\pi}$ exotic resonances $(T_{c50}^{a}(2900)^{0} [c\overline{s}\overline{u}d] \text{ and } T_{c\overline{s}0}^{a}(2900)^{++} [c\overline{s}\overline{u}\overline{d}])$ are included in the fit model (PRL131, 041902 (2023), PRD108, 012017 (2023))
- With isospin triplet assumption:
 - Line shape: BW function
 - $M(T^a_{c\bar{s}0}(2900)) = (2908 \pm 11 \pm 20) \text{ MeV}$
 - $\Gamma(T^a_{c\bar{s}0}(2900)) = (136 \pm 11 \pm 20) \text{ MeV} / J^P = 0^+ / \text{Significance:} > 9.0\sigma$
- Without isospin triplet assumption: $(T^0 = T^a_{c\bar{s}0}(2900)^0 / T^{++} = T^a_{c\bar{s}0}(2900)^{++})$ • Line shape: BW function
 - $M(T^0) = (2892 \pm 14 \pm 15) \text{ MeV} / \Gamma(T^0) = (119 \pm 26 \pm 13) \text{ MeV}$
 - $M(T^{++}) = (2921 \pm 17 \pm 20) \text{ MeV} / \Gamma(T^{++}) = (137 \pm 32 \pm 17) \text{ MeV}$
 - $\Delta M = (28 \pm 20 \pm 12)$ MeV / $\Delta \Gamma = (15 \pm 39 \pm 16)$ MeV (isospin triplet \checkmark)

Observation of a $J/\psi \Lambda$ resonance in $B^- \rightarrow J/\psi \Lambda \bar{p}$

- First penptaquark candidate, P_{ψ}^{N+} (*cc̄uud*), was observed in the $J/\psi p$ system in the $\Lambda_b^0 \rightarrow J/\psi p K^-$ decay (PRL115, 072001 (2015), PRL122, 222001 (2019))
- Recently, evidence for a P^{λ0}_{ψs} (cc̄uds) pentaquark candidate with s quark was found in the J/ψΛ system in the Ξ⁻_b → J/ψΛK⁻ decay (Science Bulletin 66 (2021) 1278-1287)
- The $B^- \rightarrow J/\psi \Lambda \bar{p}$ decay offers a opportunity to simultaneously search for \bar{P}_{ψ}^{N-} and $P_{\psi s}^{\Lambda 0}$ in the $J/\psi \bar{p}$ and $J/\psi \Lambda$ systems

$B^- ightarrow J/\psi \Lambda ar{p}$ dataset

- Decay channel: $B^- \to J/\psi \Lambda \bar{p}, \ J/\psi \to \mu^+ \mu^-, \ \Lambda \to p \pi^-$
- Dataset: LHCb Run1 and Run2 data (\sim 9 fb $^{-1}$)
- Fit to the $m(J/\psi \Lambda \bar{p})$ distribution:
 - $N_{\rm sig}=4620\pm70$
 - $N_{
 m sig} \sim$ 4400, Purity: 93.0% (signal region: ± 5 MeV around B^-)

Amplitude analysis of $B^- ightarrow J/\psi \Lambda \bar{p}$

PRL131, 031901 (2023)

Fit results for $P_{\psi s}^{\Lambda 0}(4338)$:

- Line shape: BW function
- $M_0 = (4338.2 \pm 0.7 \pm 0.4)$ MeV
- $\Gamma_0 = (7.0 \pm 1.2 \pm 1.3) \text{ MeV}$
- $FF = (12.5 \pm 0.7 \pm 1.9)\%$

(a)

High significance

• $J = \frac{1}{2}^{-}$ is preferred. $J^{P} = \frac{1}{2}^{\pm}/\frac{3}{2}^{\pm}$ are studied and $J^{P} = \frac{1}{2}^{+}$ is excluded at a 90% CL

Prompt pentaquarks in charm final states

[LHCb-PAPER-2023-018, in preparation]

- Search for pentaquark decays into a wide range of Σ_c , Λ_c and D combinations
- 42 different modes, 10 of which are too statistically limited, 32 modes tested
- Simultaneous fit to Σ_c/Λ_c and D^0 signal region and sideband region
- Scan of the mass in 4 MeV steps to search for peaks, calcualte p-value
- No clear signal observed, upper limits on all modes are set as function of mass

Summary and outlook

- LHCb has been continually producing interesting results in exotic hadrons:
 - Evidence of a $J/\psi K_s^0$ structure in $B^0 \to J/\psi \phi K_s^0$
 - Observation of a $D_s^+ D_s^-$ resonance in $B^+ o D_s^+ D_s^- K^+$
 - Observation of a doubly charged tetraquark and its neutral partner
 - Observation of a $J/\psi\Lambda$ resonance in $B^- o J/\psi\Lambdaar{p}$
- LHCb will continue to search for possible exotic hadrons in more decay channels and larger data samples
 - 50 fb^{-1} by the end of Run4
 - 300 fb^{-1} by the end of Run6

Thanks for your listening!!!