Radiative decay of X_2 00000 Production of X_2 in e^+e^- collision 000000 Summary 000

Production of the spin-2 partner of X(3872)in e^+e^- collisions

Pan-Pan Shi (石盼盼)

IFIC, Universitat de València, CSIC

Excited QCD 2024 Workshop@Benasque 18, January, 2024

PPS, Jorgivan. M. Dias, F.-K. Guo, Phys.Lett.B 843(2023)137987

PPS, Vadim. Baru, Feng.-Kun. Guo, Christoph. Hanhart, Alexey. Nefediev, arXiv:2312.05389

Pan-Pan Shi

Excited QCD 2024 Workshop

Introduction	Radiative decay of X_2	Production of X_2 in e^+e^- collisions	Summary
000000	00000	000000	000

- **2** Radiative decay of X_2
- **3** Production of X_2 in e^+e^- collisions
- **4** Summary

Introduction ●00000		

- **2** Radiative decay of X_2
- **3** Production of X_2 in e^+e^- collisions

4 Summary

Pan-Par	ı Shi		
Excited	$_{\rm QCD}$	2024	Workshop

Introduction	Radiative decay of X_2	Production of X_2 in e^+e^- collisions	Summary
00000			

Exotic states in the hidden-charm sector

Pan-Pan Shi

Excited QCD 2024 Workshop

H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, Rep. Prog. Phys. 86(2023)026201

Pan-Pan Shi	IFIC
Excited QCD 2024 Workshop	5 / 22

Introduction 000000			
Predictions of	molecules in the hid	den-charm sector	

• in the hidden-charm sector, six S-wave isoscalar molecules are predicted in terms of HQSS

J^{PC}	ΗĦ	$^{2S+1}L_J$	V_C	$E \ (\Lambda = 0.5 \text{ GeV})$	$E \ (\Lambda = 1 \text{ GeV})$	Exp [7]
0++	$D\bar{D}$	$^{1}S_{0}$	C_{0a}	3706 ± 10	3712^{+13}_{-17}	—
1++	$D^*\bar{D}$	$^{3}S_{1}$	$C_{0a} + C_{0b}$	Input	Input	3872
1+-	$D^*\bar{D}$	$^{3}S_{1}$	$C_{0a} - C_{0b}$	3814 ± 17	3819^{+24}_{-27}	_
0++	$D^* \bar{D}^*$	$^{1}S_{0}$	$C_{0a} - 2 C_{0b}$	Input	Input	3917
1+-	$D^*\bar{D}^*$	$^{3}S_{1}$	$C_{0a} - C_{0b}$	3953 ± 17	3956^{+25}_{-28}	3942
2^{++}	$D^*\bar{D}^*$	${}^{5}S_{2}$	$C_{0a} + C_{0b}$	4012 ± 3	4012_{-9}^{+4}	_

 $C_{0a} = -3.53(-1.06) \text{ fm}^2$ and $C_{0b} = 1.59(0.27) \text{ fm}^2$ for $\Lambda = 0.5(1.0) \text{ GeV}$

J. Nieves, et al., Phys.Rev.D 86(2012)056004

- at LO, $D^*\bar{D}$ (1⁺⁺) and $D^*\bar{D}^*$ (2⁺⁺) have same interaction
- the search for the spin-2 partner of X(3872), denoted as X_2 , can provide valuable insights into understanding the nature of X(3872)

Introduction 000000			
Experimental	signal for spin-2 part	cner of $X(3872)$	

In the process $\gamma \gamma \rightarrow \psi(2S)\gamma$, two structures are reported by Belle

X.-L. Wang, et al. [Belle], Phys. Rev. D 105(2022)112011

- first structure $M_1 = 3922.4 \pm 6.5 \pm 2.0$ MeV, $\Gamma_1 = 2 \pm 17 \pm 4$ MeV which is consistent with X(3915) or $\chi_{c2}(3930)$
- second structure
 - $M_2 = 4014.3 \pm 4.0 \pm 1.5 \text{ MeV}$
 - $\Gamma = 4 \pm 11 \pm 6 \text{ MeV}$
 - global significance 2.8σ
 - $\Gamma_{\gamma\gamma} \text{Br}[R_2 \rightarrow \psi(2S)\gamma]:$ $0^{++}: 6.2 \pm 2.2 \pm 0.8 \text{ eV};$ $2^{++}: 1.2 \pm 0.4 \pm 0.2 \text{ eV}$

Introduction 00000●			
Properties of	the second structure		

- the second structure is the perfect candidate of $2^{++} D^* \overline{D}^*$ molecule
 - production in the $\gamma\gamma$ process: the quantum number can be 0^{++} or 2^{++}
 - $D^* \overline{D}^*$ threshold: this structure is close to $D^* \overline{D}^*$ threshold
 - OBE: more strong coupling for 2⁺⁺ molecule than 0⁺⁺ molecule R. Molina, E. Oset, Phys.Rev.D 80(2009)114013
 - mass: its mass is identical to the prediction of the HQSS; at heavy quark limit, the same potentials for the scattering of $D\bar{D}^*$ (1⁺⁺) and $D^*\bar{D}^*(2^{++})$ are consistent with the mass split $M_{X_2} - M_{X(3872)} \sim M_{D^*} - M_D \sim 140 \text{ MeV}$

J. Nieves, et al., Phys.Rev.D 86(2012)056004

• decay width: based on the HQSS, $X_2 \to D\bar{D}, \ D\bar{D}^* \ (\mathcal{O}(1 \text{ MeV})), X_2 \to D\bar{D}^*\gamma \ (\mathcal{O}(1 \text{ keV}))$

M. Albaladejo, et al., Eur.Phys.J.C 75(2015)547

• beside, this state is explored as a $0^{++} D^* \overline{D}^*$ molecule

M.-Y. Duan, et al., Eur.Phys.J.C 82(2022)968; Z.-L. Yue, et al., Phys.Rev.D 106(2022)054008

Radiative decay of X_2 •0000	

2 Radiative decay of X_2

3 Production of X_2 in e^+e^- collisions

4 Summary

Pan-Par	ı Shi		
Excited	$_{\rm QCD}$	2024	Workshop

Introduction	Radiative decay of X_2	Production of X_2 in e^+e^- collisions	Summary
000000	0000	000000	000
Lagrangian			

• interacrion between ψ and charmed mesons

$$\begin{aligned} \mathcal{L}_{\psi} &= g_2 \psi_{\mu} \left(\bar{D}^{*\dagger\nu} \overleftrightarrow{\partial}_{\nu} D^{*\dagger\mu} + \bar{D}^{*\dagger\mu} \overleftrightarrow{\partial}_{\nu} D^{*\dagger\nu} - \bar{D}^{*\dagger\nu} \overleftrightarrow{\partial}^{\mu} D^{*\dagger}_{\nu} \right) - g_2 \psi_{\mu} \bar{D}^{\dagger} \overleftrightarrow{\partial}^{\mu} D^{\dagger} \\ &- i g_2 \epsilon^{\mu\nu\alpha\beta} \psi_{\mu} v_{\alpha} \left(\bar{D}^{*\dagger}_{\nu} \overleftrightarrow{\partial}_{\beta} D^{\dagger} - \bar{D}^{\dagger} \overleftrightarrow{\partial}_{\beta} D^{*\dagger}_{\nu} \right) + \text{h.c.} \end{aligned}$$

• magnetic interaction J. Hu and T. Mehen, Phys. Rev. D 73(2006)054003

$$\mathcal{L}_{m} = -ieF^{\mu\nu} \left(D_{\mu}^{*\dagger} D_{\nu}^{*} - D_{\nu}^{*\dagger} D_{\mu}^{*} \right) \left(\frac{Q\beta'}{2} - \frac{Q'}{2m_{c}} \right) + e\epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} v_{\alpha} \left(D^{\dagger} D_{\beta}^{*} + D_{\beta}^{*\dagger} D \right) + ieF^{\mu\nu} \left(\bar{D}_{\mu}^{*\dagger} \bar{D}_{\nu}^{*} - \bar{D}_{\nu}^{*\dagger} \bar{D}_{\mu}^{*} \right) \left(\frac{Q\beta'}{2} - \frac{Q'}{2m_{c}} \right) + e\epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} v_{\alpha} \left(\bar{D}^{\dagger} \bar{D}_{\beta}^{*} + \bar{D}_{\beta}^{*\dagger} \bar{D} \right)$$

• electric interaction

$$\begin{aligned} \mathcal{L}_{e} &= -\frac{1}{2} D_{\mu\nu}^{*\dagger} D^{*\mu\nu} + m_{D^{*}}^{2} D_{\mu}^{*\dagger} D^{*\mu} \\ &+ i e \mathcal{Q}_{D^{*}} A_{\mu} \left(D_{\nu}^{*\dagger} \overleftarrow{\partial^{\mu}} D^{*\nu} + \partial_{\nu} D^{*\dagger\mu} D^{*\nu} - D^{*\dagger\nu} \partial_{\nu} D^{*\mu} \right) \\ &- e^{2} \mathcal{Q}_{D^{*}}^{2} \left(A_{\mu} A^{\mu} D_{\nu}^{*\dagger} D^{*\nu} - A_{\mu} A_{\nu} D^{*\dagger\nu} D^{*\mu} \right), \end{aligned}$$

Pan-Pan Shi Excited QCD 2024 Workshop

	Radiative decay of X_2 00000	
T 11 (1)		

Radiative decay process $X_2 \to \gamma \psi$

$$i\mathcal{M} = ie\,\chi_{\mathrm{nr}}\,g_{2}\,\epsilon^{*\mu\nu}(X_{2})\epsilon^{\beta}(\gamma)\epsilon^{\sigma}(\psi)\,\sqrt{m_{X_{2}}m_{\psi}}\int\frac{d^{4}k}{(2\pi)^{4}}S^{\rho}_{\nu}(k)S^{\alpha}_{\mu}(k-p)\\ \left(J^{(a)m,e}_{\alpha\rho\beta\sigma}(k)+J^{(b)m}_{\alpha\rho\beta\sigma}(k)+J^{(c)m,e}_{\alpha\rho\beta\sigma}(k)+J^{(d)m}_{\alpha\rho\beta\sigma}(k)+J^{(e)e}_{\alpha\rho\beta\sigma}(k)\right).$$

PPS, J. M. Dias, F.-K. Guo, Phys.Lett.B 843(2023)137987

115, J. W. Dias, FR. Guo, Filys.Lett.D 645(2023)137967	
Pan-Pan Shi	IFIC
Excited QCD 2024 Workshop	11 / 22

- we use dimensional regularisation scheme with $\overline{\rm MS}$ subtraction scheme
- $g'_2(g_2)$ is the coupling constant for the interaction between $\psi(2S)$ (J/ψ) and charmed mesons
 - VMD $g_2'/g_2 = 1.67$ Y.-B. Dong, et al., J.Phys.G 38(2011)015001
 - taking the upper limit for the ratio of X(3872) reported by BESIII as input $(R_{X(3872)} \simeq 0.59), g'_2/g_2 = 2.34$

BESIII, Phys.Rev.Lett. 124(2020)242001, F.-K. Guo, et al., Phys.Lett.B 742(2015)394

Pan-Pan Shi	IFIC
Excited QCD 2024 Workshop	12 / 22

Introduction 000000	Radiative decay of X_2 0000•	Production of X_2 in e^+e^- collisions 000000	
Radiative d	ecay for X_2 and χ_{c2}	2 <i>P</i>)	

1

ratio for	the radiat	ive decay of	$\chi_{c2}(2P)$)					
	$\Gamma_{J/\psi}$ [keV]	$\Gamma_{\psi(2S)}$ [keV]	$R_{2^{3}P_{2}}$	[1]	т.	Barnes,	et	al.,	Phys.Rev.D
Ref. [1]	53	207	3.9	69(2	004)	054008			
Ref [2]	81	304	3.8	[2]	Т.	Barnes,	et	al.,	Phys.Rev.D
	01	001	0.0	72(2	005)	054026			

(0 D)

- $R_{X_2} < 1$ (molecular picture) , while $R_{\chi_{c2}} > 1$ (2P charmonium)
- given X(3872) is dominated by the hadronic molecular component, as its partner, the measurement of R_{X_2} can help us distinguish two kinds of pictures
- based on the signal yield of X_2 (19 ± 7) in the in $\psi(2S)\gamma$ invariant mass distribution, we predict at least 35 events can be produced in $J/\psi\gamma$ invariant mass distribution

X.-L. Wang, et al. [Belle], Phys. Rev. D 105(2022)112011

Introduction	Radiative decay of X_2	Production of X_2 in e^+e^- collisions	Summary
000000	00000	$\bullet 00000$	000

2 Radiative decay of X_2

3 Production of X_2 in e^+e^- collisions

Pan-Par	ı Shi		
Excited	$_{\rm QCD}$	2024	Workshop

	IF	$^{\rm IC}$	
4		22	

		Production of X_2 in e^+e^- collisions 00000	
Process for X	$f_2 \rightarrow e^+ e^-$		

The same amplitudes for $X_2 \to e^+e^-$ and $e^+e^- \to X_2$ due to time reversal and *P*-parity (the principle of detailed balance)

- decay process $X_2 \to \psi/V\gamma \to e^+e^$ with $\psi = J/\psi$, $\psi(2S)$ and $V = \rho$, ω
- based on the significantly small contribution for the process $X(3872) \rightarrow e^+e^-$ A. Denig, *et al.*, Phys.Lett.B 736(2014)221

•
$$\Gamma[X(3872) \rightarrow V\gamma \rightarrow e^+e^-] \sim 10^{-7} \text{ eV}$$

•
$$\Gamma[X(3872) \to \psi \gamma \to e^+ e^-] \sim 10^{-3} - 10^{-2} \text{ eV}$$

• as the spin-2 partner of X(3872), we consider the process $X_2 \rightarrow \psi \gamma \rightarrow e^+ e^-$ with $\psi = J/\psi, \ \psi(2S)$

Pan-Pan Shi Excited QCD 2024 Workshop

	Production of X_2 in e^+e^- collisions 00000	
Parameters		

• interaction between X_2 and $\psi\gamma$ is

$$\mathcal{L}_{X_2\psi\gamma} = g_{X_2\psi\gamma} X_2^{\rho\sigma} F_{\sigma\beta} \psi_{\rho}^{\beta},$$

where the coupling is extracted from the partial width $X_2 \rightarrow \psi \gamma$

- estimation of the partial width for $X_2 \to \psi \gamma$
 - $\Gamma_{X_2}^{\gamma\gamma} \operatorname{Br}(X_2 \to \psi(2S)\gamma) = (1.2 \pm 0.4 \pm 0.2) \text{ eV}$ X.-L. Wang, *et al.* [Belle], Phys. Rev. D 105(2022)112011
 - $\Gamma_{X_2}^{\gamma\gamma} = 0.1$ keV to estimate the branch ratio for $X_2 \to \psi(2S)\gamma$ V. Baru, C. Hanhart, A. V. Nefediev, JHEP 06(2017)010
 - $\Gamma[X_2 \to \psi(2S)\gamma]/\Gamma[X_2 \to J/\psi\gamma] \sim 1$ PPS, J. M. Dias, F.-K. Guo, Phys.Lett.B 843(2023)137987
- VMD model is utilized to estimate the vertex $\psi \to \gamma^* \to e^+ e^-$

$$\mathcal{L}_{\psi\gamma} = -\frac{e}{2} \frac{f_{\psi} Q_c}{M_{\psi}} F^{\mu\nu} \psi_{\mu\nu}$$

	Production of X_2 in e^+e^- collisions 000000	
Decay width		

• branch ratio for $X_2 \rightarrow e^+e^-$ as the function of the energy scale μ PPS, V. Baru, F.-K. Guo, C. Hanhart, A. Nefediev, arXiv:2312.05389

μ [GeV]	2.0	4.0	6.0
$\operatorname{Br}_{\operatorname{loop}}[X_2 \to e^+ e^-] \times 10^9$	2	7	11

• branch ratios for X_2 and $\chi_{c2}(2P)$: $\Gamma_{\chi_{c2}(3930)}^{\gamma\gamma} = 1.0$ keV (quark model) and $\Gamma_{\chi_{c2}(1P)}^{ee} \sim \Gamma_{\chi_{c2}(2P)}^{ee} = 0.07$ eV (NRQCD) C. M. A., R. Dhir, (2023), arXiv:2311.05274; N. Kivel and M. Vanderhaeghen, JHEP 02(2016)032; E. J. Eichten, C. Quigg, Phys.Rev.D 52(1995)1726

Channel	$J/\psi\gamma$	$\psi(2S)\gamma$	$\gamma\gamma$	e^+e^-
$(D^*\bar{D}^*)_{J=2}$	10^{-2}	10^{-2}	$10^{-4}/10^{-5}$	10^{-9}
$\chi_{c2}(2P)$	10^{-3}	10^{-3}	10^{-4}	10^{-9}

- because of large uncertainty of X_2 width ($\Gamma_{X_2} = 4 \pm 11 \pm 6$ MeV), we consider different values of Γ_{X_2} :
 - $\Gamma[X_2 \to e^+ e^-] \sim \mathcal{O}(10^{-2})$ eV for $\Gamma_{X_2} \sim 10$ MeV
 - $\Gamma[X_2 \to e^+ e^-] \sim \mathcal{O}(10^{-3})$ eV for $\Gamma_{X_2} \sim 1$ MeV

		Production of X_2 in e^+e^- collisions 000000	
Directly prod	uction of X_2		

• based on the principle of detailed balance, the cross section for the directly production of X_2 is

PPS, et al., Phys.Rev.D 105(2022)034024

$$\sigma_C \simeq \frac{20\pi\Gamma_{X_2}^{ee}}{\Gamma_{X_2}M_{X_2}^2} = \frac{20\pi}{M_{X_2}^2} \text{Br}[X_2 \to e^+e^-] \simeq 7 \text{ pb},$$

• search for X_2 in the $\psi\gamma$ invariant mass distribution

$$Br[\psi(2S) \to \pi^+ \pi^- J/\psi] \simeq (34.68 \pm 0.30)\%,$$

$$Br[J/\psi \to \ell^+ \ell^-] \simeq (11.93 \pm 0.07)\% \quad (\ell = e, \ \mu),$$

		Production of X_2 in e^+e^- collisions 00000		
Search for X_2 in the e^+e^- collisions				

Search for X_2 in BESIII and STCF:

- BESIII: During the period from 2011 to 2014, BESIII accumulated an integrated luminosity of around 53 pb⁻¹ at the centre-of-mass energy $\sqrt{s} = 4090$ MeV and we expect that $\mathcal{O}(10^2)$ events can be produced
- STCF: considering the integrated luminosity of a year is 1 ab⁻¹, at $\sqrt{s} \simeq 4014$ MeV, the number of events constructed in $\psi\gamma$ final state can be
 - $\mathcal{O}(10^2)$ for $\chi_{c2}(2P)$
 - $\mathcal{O}(10^3)$ for X_2 as a molecule

The STCF is expected to search for X_2 in the $\psi(2S)\gamma$ and $J/\psi\gamma$ invariant mass distribution

Introduction	Radiative decay of X_2	Production of X_2 in e^+e^- collisions	Summary
000000	00000	000000	●00

- **2** Radiative decay of X_2
- **3** Production of X_2 in e^+e^- collisions

4 Summary

Pan-Par	ı Shi		
Excited	$_{\rm QCD}$	2024	Workshop

		Summary 0●0
Summary		

- $X_2 \rightarrow \psi \gamma$: considering the structure observed by Belle as a S-wave $D^* \bar{D}^*$ molecule with $I(J^{PC}) = 0(2^{++})$, we estimate the ratio $R_{X_2} < 1$, which is significantly different with that of $\chi_{c2}(2P)$;
- production of X_2 in e^+e^- collision (principle of detailed balance):
 - the partial width for $X_2 \to e^+ e^-$ is at $\mathcal{O}(10^{-3}) \mathcal{O}(10^{-2})$ eV level in terms of the value of Γ_{X_2}
 - STCF can be used to search for X_2 in the $\psi\gamma$ invariant mass distribution

Thank you for your attention!

		Summary 000
Backup		

The independent and gauge invariant structure coupled with the tensor polarization is

$$\begin{split} \mathcal{S}^{(1)}_{\rho\sigma} &= g_{\rho\sigma}(\partial_{\alpha}F_{\mu\nu})(\partial^{\alpha}\psi^{\mu\nu}),\\ \mathcal{S}^{(2)}_{\rho\sigma} &= (\partial_{\rho}F_{\mu\nu})(\partial_{\sigma}\psi^{\mu\nu}) + (\partial_{\sigma}F_{\mu\nu})(\partial_{\rho}\psi^{\mu\nu}) - \frac{1}{2}g_{\rho\sigma}(\partial_{\alpha}F_{\mu\nu})(\partial^{\alpha}\psi^{\mu\nu}),\\ \mathcal{S}^{(3)}_{\rho\sigma} &= (\partial_{\rho}\partial_{\sigma}F_{\mu\nu})\psi^{\mu\nu} + F_{\mu\nu}(\partial_{\rho}\partial_{\sigma}\psi^{\mu\nu}),\\ \mathcal{S}^{(4)}_{\rho\sigma} &= F_{\rho\beta}\psi^{\beta}_{\sigma} + F_{\sigma\beta}\psi^{\beta}_{\rho} - \frac{1}{2}g_{\rho\sigma}F_{\mu\nu}\psi^{\mu\nu}, \end{split}$$

with $\psi^{\mu\nu} \equiv \partial^{\mu}\psi^{\nu} - \partial^{\nu}\psi^{\mu}$. Since $\mathcal{S}_{\rho\sigma}^{(1)}$, $\mathcal{S}_{\rho\sigma}^{(2)}$ and $\mathcal{S}_{\rho\sigma}^{(3)}$ are suppressed by the third power of momentum at heavy quark limit, and the the last term of $\mathcal{S}_{\rho\sigma}^{(4)}$ vanishes due to the traceless tensor polarization. Then the Lagrangian is

$$\mathcal{L}_{X_2\psi\gamma} = g_{X_2\psi\gamma} X_2^{\rho\sigma} F_{\sigma\beta} \psi_{\rho}^{\beta}.$$

Pan-Par	ı Shi			
Excited	QCD	2024	Workshop	