

Charmed meson resonances from Lattice QCD

Excited QCD 2024

Nicolas Lang 18/01/2024

Universidad de Valencia

Stable in iso-symmetric QCD:

- Mesons: qq states
 - Light: π , K, η
 - Heavy: D, D_s , B, B_s , B_c
- Baryons: qqq states
 - Light: N, Λ , Σ , Ξ , Ω
 - Heavy: Λ_c , ..., Ξ_{cc} , ..., Λ_b

Everything else are resonances!

[Kronfeld, 1203.1204]

We would like to understand hadron resonances within QCD, i.e. be as model-independent as possible.

Credit: LHCb/CERN

Even if the lattice does its job well it's still a different physical system!

Lattice:

- Finite volume
 - $\rightarrow \text{discrete spectrum}$
- Invariant under lattice translations and (subgroups of) the cubic group
- Euclidean field theory; no direct access to dynamics

Continuum:

- Infinite volume
 → continuous spectral density
 (branch cut singularities)
- Invariant under Poincare transformations
- Field theory in Minkowski space

- Lattice discretization of QCD
- "Realistic operators"
 - Quantum numbers
 - Subduction
 - Spatial smearing
- Computing spectrum in finite box
- Relating the spectrum to amplitudes
- Parametrising amplitudes
- Fitting and finding poles

Computing observables on the lattice

(

Observables defined through euclidean path integral:

$$\langle \mathcal{O}
angle = rac{1}{Z} \int \mathcal{D}[q, \bar{q}] \mathcal{D}[U] e^{-S_F[q, \bar{q}, U] - S_G[U]} \mathcal{O}[q, \bar{q}, U] \; .$$

Fermionic part: analytic solution by Grassmann integration

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] e^{-S_G[U]} \det D[U] \underbrace{\mathcal{O}_F[U, G[U]]}_{\langle \mathcal{O} \rangle_F} \, .$$

Gluonic part: numerical solution by importance sampling of gauge configurations

$$\langle \mathcal{O} \rangle = \langle \langle \mathcal{O}_F \rangle \rangle_G = \lim_{N_{\text{cfgs}} \to \infty} \frac{1}{N_{\text{cfgs}}} \sum_{i=1}^{N_{\text{cfgs}}} \mathcal{O}_F[U_i, G[U_i]] .$$

Here we are interested in correlation functions of meson-interpolating operators:

$$egin{aligned} &\mathcal{L}_{ij}(t) \equiv \langle 0 | \, \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \, | 0
angle \ &= \sum_{n=1}^{\infty} \langle 0 | \, e^{Ht} \mathcal{O}_i(0) e^{-Ht} \, | n
angle \, \langle n | \, \mathcal{O}_j^{\dagger}(0) \, | 0
angle \ &= \sum_{n=1}^{\infty} e^{-E_n t} Z_i^n Z_j^{n*} \; , \end{aligned}$$

Computing the spectrum: Variational Method

- Assume we have a basis of operators interpolating a given set of quantum numbers
- Correlator matrix:

$$\mathcal{C}_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0
angle \, ,$$

• Find "optimal" interpolators by solving *Generalised Eigenvalue* (GEV) problem

$$C_{ij}(t)v_j^{(\mathfrak{n})} = \lambda_{\mathfrak{n}}(t,t_0)C_{ij}(t_0)v_j^{(\mathfrak{n})},$$

• This defines variationally-optimal operators:

$$\Omega_n^{\dagger} \equiv \sum_{i=1}^N v_i^n \mathcal{O}_i^{\dagger}$$

• Fit Principal correlators (eigenvalues):

$$\lambda_{\mathfrak{n}}(t,t_{0}) = (1-A_{\mathfrak{n}})e^{-\mathcal{E}_{\mathfrak{n}}(t-t_{0})} + A_{\mathfrak{n}}e^{-\mathcal{E}_{\mathfrak{n}}'(t-t_{0})}$$

- Some freedom in choice of t_0 and fitting range
- Stability w.r.t. operator basis should be tested

• Quark bilinears:

$$\bar{q}(\vec{x},t)\mathbf{\Gamma}_{t}^{Jm}q(\vec{x},t)$$

• Single mesons with definite flavour and momentum:

$$\mathcal{O}^{\dagger Jm}_{F\nu}(\vec{p},t) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \sum_{\nu_{1},\nu_{2}} \mathcal{C}_{SU(3)} \begin{pmatrix} \bar{\mathbf{3}} & \mathbf{3} & F \\ \nu_{1} & \nu_{2} & \nu \end{pmatrix} \bar{q}_{\nu_{1}}(\vec{x},t) \mathbf{\Gamma}_{t}^{Jm} q_{\nu_{2}}(\vec{x},t)$$

Meson-meson:

$$\begin{split} \Omega^{\dagger}{}^{Jm}_{F\nu}(\vec{P},t;[p_{1},p_{2}]) &= \\ & \sum_{\substack{\nu_{1},\nu_{2} \\ m_{1},m_{2}}} \mathcal{C}_{\mathsf{SU}(3)} \begin{pmatrix} F_{1} & F_{2} & F \\ \nu_{1} & \nu_{2} & \nu \end{pmatrix} \mathcal{C} \begin{pmatrix} J_{1} & J_{2} & J \\ m_{1} & m_{2} & m \end{pmatrix} \\ & \times \sum_{\substack{\vec{p}_{i} \in \{\vec{p}_{i}\}^{*} \\ \vec{p}_{1} + \vec{p}_{2} = \vec{P}}} \Omega^{\dagger}_{1}{}^{J_{1}m_{1}}_{F_{1}\nu_{1}}(\vec{p}_{1},t)\Omega^{\dagger}_{2}{}^{J_{2}m_{2}}_{F_{2}\nu_{2}}(\vec{p}_{2},t) \end{split}$$

• Ω_i are variationally optimal operators

Lattice symmetries

- Continuum: Poincaré symmetry \rightarrow Lattice: lattice translations and (subgroups of) the cubic group
 - Irrep of continuum rotation group is reducible representation of *O_h* (and subgroups)
 - Can expand \mathcal{O}^{Jm} in irreps of O_h (or subgroups)
 - Inverting this expansion defines subduction to lattice irreps:

$$\mathcal{O}^{\dagger}_{\boldsymbol{F}\nu}^{\Lambda\mu;[J]}(\vec{p},t) = \sum_{m} \mathcal{S}^{J,m}_{\Lambda,\mu} \mathcal{O}^{\dagger}_{\boldsymbol{F}\nu}^{Jm}(\vec{p},t)$$

Subduced meson-meson operator:

$$\mathcal{O}^{\dagger}{}^{\wedge\mu}_{F\nu}(\vec{P},t;[p_1,p_2]) = \sum_{\substack{\nu_1,\nu_2\\\mu_1,\mu_2}} \mathcal{C}_{SU(3)} \left(\begin{array}{cc} F_1 & F_2 & F\\ \nu_1 & \nu_2 & \nu \end{array} \right) \mathbb{C} \left(\begin{array}{c} \Lambda_1^{\vec{p}_1} & \Lambda_2^{\vec{p}_2} & \Lambda^{\vec{P}}\\ \mu_1 & \mu_2 & \mu \end{array} \right) \\ \times \sum_{\substack{\vec{p}_i \in \{\vec{P}_i\}^*\\\vec{p}_1 + \vec{p}_2 = \vec{P}}} \mathcal{O}_1^{\dagger} \Lambda_1^{\mu_1}(\vec{p}_1,t) \mathcal{O}_2^{\dagger} \Lambda_2^{\mu_2}(\vec{p}_2,t)$$

Subduction Table

-

\vec{d}	G	٨	$egin{array}{ll} J^P & (ec{P}=ec{0}) \ \lambda ^{(ilde{\eta})} & (ec{P} eqec{0}) \end{array}$	¹ ℓ _J	³ ℓ J
[000]	O _h	$\begin{array}{c} A_1^+ \\ A_2^+ \\ E^+ \\ T_1^+ \\ T_2^+ \\ A_1^- \\ A_2^- \\ E^- \\ T_1^- \\ T_2^- \end{array}$	$\begin{array}{c} 0^+, \ \dots \\ 3^+, \ \dots \\ 2^+, \ \dots \\ 1^+, \ 3^+, \ \dots \\ 2^+, \ \dots \\ 0^-, \ \dots \\ 3^-, \ \dots \\ 2^-, \ \dots \\ 1^-, \ 3^-, \ \dots \\ 2^-, \ \dots \\ 2^-, \ \dots \end{array}$	${}^{1}S_{0}$ ${}^{1}D_{2}$ ${}^{1}D_{2}$ ${}^{1}P_{1}$	${}^{3}D_{3}$ ${}^{3}D_{2}$ $({}^{3}S_{1}, {}^{3}D_{1}), {}^{3}D_{3}$ ${}^{3}D_{2}, {}^{3}D_{3}$ ${}^{3}P_{0}$ ${}^{3}P_{2}$ ${}^{3}P_{1}$ ${}^{3}P_{2}$

 O_h : Lattice symmetry group at rest

- \bullet Lattice discretization of QCD \checkmark
- "Realistic operators" 🗸
 - \bullet Quantum numbers \checkmark
 - Subduction \checkmark
 - \bullet Spatial smearing \checkmark
- Computing spectrum in finite box \checkmark
- Relating the spectrum to amplitudes
- Parametrising amplitudes
- Fitting and finding poles

In a generic QFT we have:

$$det \left[\mathbf{1} + i\boldsymbol{\rho}(s) \cdot \boldsymbol{t}(s) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(s, L))\right] = 0$$

[Original derivation: M. Lüscher; many extensions e.g. Sharpe, Briceño...]

- $\rho(s)=2k(s)/\sqrt{s}$ with k(s) the COM-momentum function and $s=E_{\rm CM}^2$
- **t**(s) = infinite volume t-matrix
- $\mathcal{M}(s, L)$) encodes finite-volume effects
- t(s) is diagonal in total angular momentum J
- $\mathcal{M}(s, L)$) is dense in J

When is this applicable?

- \bullet Arbitrary 2 \rightarrow 2 scattering processes
- Box needs to be big enough: L > 2R with $R \sim 1/m_{\pi}$ Corrections exponentially suppressed: $\sim e^{-m_{\pi}L}$

- \bullet Lattice discretization of QCD \checkmark
- "Realistic operators" 🗸
 - Quantum numbers \checkmark
 - Subduction \checkmark
 - \bullet Spatial smearing \checkmark
- Computing spectrum in finite box \checkmark
- \bullet Relating the spectrum to amplitudes \checkmark
- Parametrising amplitudes
- Fitting and finding poles

s-channel unitarity: K matrix formalism

$$\boldsymbol{t} = \boldsymbol{K}(1 - i\boldsymbol{\rho}\boldsymbol{K})^{-1} \; .$$

Rotational symmetry: partial-wave expansion

$$t_{ab}^{l}(s) = \frac{1}{2} \int_{-1}^{1} d(\cos\theta) P_{l}(\cos\theta) t_{ab}(s,t) .$$

Threshold behaviour:

$$(\mathbf{t}^{-1})_{alS,bl'S'}(\mathbf{s}) = (2k_{\rm cm}^{(a)})^{-l} (\mathbf{K}^{-1})_{alS,bl'S'} (2k_{\rm cm}^{(b)})^{-l'} - i\rho_a \delta_{ll'} \delta_{SS'}$$

Analyticity: Chew-Mandelstam phase space

$$\rightarrow t^{-1} = (2k_{\rm cm})^{-l} \mathcal{K}^{-1} (2k_{\rm cm})^{-l'} + l(s)$$

$$I(s) = I(s_{\rm thr}) + \frac{\rho}{\pi} \log \left[\frac{\xi + \rho(s)}{\xi(s) - \rho(s)} \right] - \frac{\xi(s)}{\pi} \frac{m_1 - m_2}{m_1 + m_2} \log \frac{m_2}{m_1}$$
with $\xi(s) = 1 - \frac{(m_1 + m_2)^2}{s}$; subtracted at threshold

Procedure:

- Parameterise the amplitude
- Determine the finite-volume spectrum from the determinant condition
- Compare the spectrum to the lattice result
- Change parameters and iterate to minimize the χ^2 (using favourite numerical minimisation procedure)

Finally: analytically continue the result to the entire complex plane; determine pole singularities in constrained amplitudes; The location of the pole in the complex plane determines its physical significance, for example:

- Poles below threshold at real $s \leftrightarrow$ bound states
- \bullet Poles on the second sheet above threshold: \sim resonances

• ...

- \bullet Lattice discretization of QCD \checkmark
- "Realistic operators" 🗸
 - Quantum numbers \checkmark
 - Subduction \checkmark
 - \bullet Spatial smearing \checkmark
- Computing spectrum in finite box \checkmark
- \bullet Relating the spectrum to amplitudes \checkmark
- \bullet Parametrising amplitudes \checkmark
- \bullet Fitting and finding poles \checkmark

- $m_{D_0^*} \gtrsim m_{D_{s_0}^*}$??
- What about the large width?

[Masses from PDG]

BELLE Collaboration [arXiv:hep-ex/0307021]

- Energies extracted from fit of sum of exponentials to principal correlators
- Irreps labelled $[\vec{d}]\Lambda^{(P)}$ (overall momentum $\vec{P} = 2\pi \vec{d}/L$)
- At $\vec{P} = \vec{0}$:
 - $A_1^+ \leftrightarrow S$ -wave
 - $T_1^- \leftrightarrow P$ -wave
- Threshold suppression $\propto k^{2l}$: higher partial waves may be neglected
- Non-zero momentum
 → more mixing of partial waves

$D\pi$ at $m_{\pi} = 239$ MeV: Operator basis variations

ightarrow A stable spectrum requires both $qar{q}$ - and meson-meson-like operators!

	$\ell=0$ parameterisation	$\ell=1$ parameterisation	Npars	$\chi^2/N_{ m dof}$
K-m	atrix with Chew-Mandelstam $I(s)$ i	n both partial waves		
ref.	$K = \frac{q^2}{m^2 - s} + \gamma^{(0)}$	$K = \frac{g_1^2}{m^2 - s}$	5	0.90
(a)	$K = \frac{g^2}{m^2 - s}$	$K = \frac{g_1^2}{m^2 - s}$	4	0.90
(b)	$K = \frac{g^2}{m^2 - s} + \gamma^{(1)}\hat{s}$	$K = \frac{\dot{g}_{1}^{2}}{m^{2}-s}$	5	0.90
(c)	$K = \frac{(g+g^{(1)}s)^2}{m^2-s}$	$K = \frac{\frac{1}{g_1^2}}{m_1^2 - s}$	5	0.90
(d)	$K^{-1} = c^{(0)} + c^{(1)} \hat{s}$	$K = \frac{\dot{g}_{1}^{2}}{m^{2}-s}$	4	0.90
(e)	$K^{-1} = \frac{c^{(0)} + c^{(1)}\hat{s}}{c^{(2)}\hat{s}}$	$K = \frac{\dot{g}_{1}^{2}}{m_{1}^{2}-s}$	5	0.90
(f)	$K = \frac{g^2}{m^2 - s} + \gamma^{(0)} + \gamma^{(1)} \hat{s}$	$K = \frac{\dot{g}_{1}^{2}}{m_{1}^{2}-s}$	6	0.94*
K-m	atrix with $I(s) = -i\rho(s)$ in both ps	rtial waves		
(g)	$K = \frac{g^2}{m^2 - s} + \gamma^{(0)}$	$K = \frac{g_1^2}{m^2 - s}$	5	0.90
(h)	$K = \frac{g^2}{m^2 - s}$	$K = \frac{g_1^2}{m_1^2 - s}$	4	0.91
(i)	$K = \frac{(g+g^{(1)}s)^2}{m^2-s}$	$K = \frac{g_1^2}{m_1^2 - s}$	5	0.90
(j)	$K^{-1} = c^{(0)} + c^{(1)} \hat{s}$	$K = \frac{\dot{g}_{1}^{2}}{m^{2}-s}$	4	0.91
(k)	$K^{-1} = \frac{c^{(0)} + c^{(1)}\hat{s}}{c^{(2)}\hat{s}}$	$K = \frac{g_1^2}{m_1^2 - s}$	5	0.90
K-m	atrix with Chew-Mandelstam $I(s)$ i	n S-wave, Effective range	in P-wa	ave
(1)	$K = \frac{g^2}{m^2 - s} + \gamma^{(0)}$	$k\cot\delta_1=1/a_1+\frac{1}{2}r_1^2k^2$	5	0.93
Effec	tive range in S wave, K-matrix wit	h Chew-Mandelstam $I(s)$	in P-wa	ive
(m)	$k \cot \delta_0 = 1/a_0 + \frac{1}{2}r_0^2k^2$	$K = \frac{g_1^2}{m_{-s}^2}$	4	0.93
(n)	$k\cot\delta_0 = 1/a_0 + \tfrac{1}{2}r_0^2k^2 + P_{2,0}k^4$	$K = \frac{g_1^2}{m_1^2 - s}$	5	0.88^{\dagger}
Effec	tive range in both partial waves			
(o)	$k \cot \delta_0 = 1/a_0 + \frac{1}{2}r_0^2k^2$	$k \cot \delta_1 = 1/a_1 + \frac{1}{2}r_1^2k^2$	4	0.93
(p)	$k \cot \delta_0 = 1/a_0 + \frac{1}{2}r_0^2k^2 + P_{2,0}k^4$	$k \cot \delta_1 = 1/a_1 + \frac{1}{2}r_1^2k^2$	5	0.91^{\dagger}
Breit	-Wigner in S-wave, K-matrix with	Chew-Mandelstam $I(s)$ in	P-wav	e
(q)	$t = \frac{1}{\rho} \frac{m_R \Gamma_0}{m_R^2 - s - im_R \Gamma_0}$	$K = \frac{g_1^2}{m_1^2 - s}$	4	0.91
First	-order unitarised χ_{PT}			
(s)	$t^{-1} = \big(- \frac{1}{16\pi} \mathcal{V}_{J=0} \big)^{-1} + 16\pi G_{\rm DR}$	$K = \frac{g_1^2}{m_1^2 - s}$	4	0.86

$D\pi$ at $m_{\pi} = 239$ MeV and $m_{\pi} = 391$ MeV

- $t \sim rac{c^2}{s_{
 m pole}-s}$ $\sqrt{s} = m \pm rac{i}{2} \Gamma$
- $@m_{\pi} = 391$ MeV: shallow bound-state $\approx 2 \pm 1$ MeV below threshold
- $@m_{\pi} = 239$ MeV: resonance $\approx 77 \pm 64$ MeV above threshold; below PDG value $\Gamma = 425 \pm 224$ MeV
- Strong coupling to $D\pi$ channel in both studies

$$\begin{split} &\sqrt{s_0}/{\rm MeV} = (2196\pm 64) - \frac{i}{2}(425\pm 224) \\ &c/{\rm MeV} = (1916\pm 776)\exp{i\pi(-0.59\pm 0.41)} \end{split}$$

[L. Gayer, N. Lang et al (HadSpec), arXiv:2102.04973]
 [G. Moir et al (HadSpec), JHEP 10 (2016) 011]

I=0~DK at $m_{\pi}=239~{
m MeV}$ and $m_{\pi}=391~{
m MeV}$

I=0~DK at $m_{\pi}=239~{ m MeV}$ and $m_{\pi}=391~{ m MeV}$

Bound states at both masses:

 $\begin{array}{l} m_{\pi}=239 \ {\rm MeV}: \ \sqrt{s}=2362(3) \ {\rm MeV}; \ |c|=1420(50) \ {\rm MeV} \\ m_{\pi}=391 \ {\rm MeV}: \ \sqrt{s}=2380(3) \ {\rm MeV}; \ |c|=1730(110) \ {\rm MeV} \\ \ \mbox{[G. Cheung et al (HadSpec), JHEP 02 (2021) 100 arXiv: 2008.06432]} \end{array}$

Quark mass dependence

- Natural mass ordering
- Uχ_{PT}: many predictions of two-pole structure
- mass evolution of poles: SU(3)_F
 → physical meson masses
- Poles in **3** roughly consistent with lattice
- Higher sextet pole? Needs coupled-channel analysis

[Albaladejo et al., Physics Letters B, 767:465-469]

Heavy-light mesons with spin: $D^*\pi \rightarrow D^*\pi$ (Spectra)

[N. Lang and D. Wilson (HadSpec) arXiv: 2205.05026]

$D^*\pi \rightarrow D^*\pi$ (Amplitudes)

 $m_{\pi}=391~{
m MeV}$

$$t_{J^{P}=1^{+}} = \begin{pmatrix} D^{*}\pi\{{}^{3}S_{1} \to {}^{3}S_{1}\} & D^{*}\pi\{{}^{3}S_{1} \to {}^{3}D_{1}\} \\ & D^{*}\pi\{{}^{3}D_{1} \to {}^{3}D_{1}\} \end{pmatrix}$$

$$\frac{a_{\mu\nu}^{2}}{\frac{b_{\mu\nu}^{2}}{2}} = 0.5$$
0.4
0.2
$$\frac{b_{\mu\nu}^{2}(b_{\mu}^{2} + b_{\mu})}{b_{\mu\nu}^{2}(b_{\mu}^{2} + b_{\mu})}$$

$$\frac{b_{\mu\nu}^{2}(b_{\mu\nu}^{2} + b_{\mu})}{b_{\mu\nu}^{2}(b_{\mu}^{2} + b_{\mu})}$$

$$\frac{b_{\mu\nu}^{2}(b_{\mu\nu}^{2} + b_{\mu})}{b_{\mu\nu}^{2}(b_{\mu}^{2} + b_{\mu})}$$

$$\frac{b_{\mu\nu}^{2}(b_{\mu\nu}^{2} + b_{\mu})}{b_{\mu\nu}^{2}(b_{\mu\nu}^{2} + b_{\mu})}$$

 $\rho_i \rho_j |t_{ij}|^2$

0.8

0.7

$$t_{J^{P}=2^{+}} = \begin{pmatrix} D\pi\{{}^{1}\!D_{2} \to {}^{1}\!D_{2}\} & D\pi\{{}^{1}\!D_{2}\} \to D^{*}\pi\{{}^{3}\!D_{2}\} \\ & D^{*}\pi\{{}^{3}\!D_{2} \to {}^{3}\!D_{2}\} \end{pmatrix}$$

[N. Lang and D. Wilson (HadSpec) arXiv: 2205.05026]

 $J^P = 1^+$

 $D^{*}\pi\{{}^{3}\!S_{1}\rightarrow{}^{3}\!S_{1}\}$

$D^*\pi \rightarrow D^*\pi$ (Poles)

 $m_{\pi} = 384 \text{ MeV}:$ $\sqrt{s_{D_1}} = 2397(2) \text{ MeV} - \sqrt{s_{D_1}} = (2475(3) - \frac{i}{2}5(3)) \text{ MeV} - \sqrt{s_{D_2}} = (2524(2) - \frac{i}{2}10(4)) \text{ MeV};$

Lattice QCD provides first principles approach to hadron spectroscopy

- Well-established method in $2 \rightarrow 2$ scattering
- D-mesons: nice playground (experimental results available, interesting phenomenology, EFT descriptions...)
- Formalism applicable to wide range of processes (coupled-channels, charmonium, baryons...)
- There are challenges:
 - Lighter masses: computationally expensive + more open hadron-hadron channels
 - \bullet (3+)-body thresholds: formalism under development

Thank you! Questions?

• Compute matrix of (euclidean) correlators:

$$C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0
angle \,,$$

- $\mathcal{O}_i(t)$ have quantum numbers of $I=1/2~D\pi$
- Find "optimal" interpolators by solving *Generalised Eigenvalue* (GEV) problem

$$C_{ij}(t)v_j^{(\mathfrak{n})} = \lambda_{\mathfrak{n}}(t,t_0)C_{ij}(t_0)v_j^{(\mathfrak{n})},$$

• Fit Principal correlators (eigenvalues):

$$\lambda_{\mathfrak{n}}(t,t_0) = (1-A_{\mathfrak{n}})e^{-\mathcal{E}_{\mathfrak{n}}(t-t_0)} + A_{\mathfrak{n}}e^{-\mathcal{E}_{\mathfrak{n}}'(t-t_0)}$$

Spatial smearing: Distillation

- Jacobi smearing: $J(t; \sigma, n_{\sigma}) = \left(1 + \frac{\sigma \nabla^{2}(t)}{n_{\sigma}}\right)^{n_{\sigma}}$ Laplace operator: $\nabla_{xy}^{2}(t) = -6\delta_{xy} + \sum_{j=1}^{3} \left(U_{j}(x, t)\delta_{x+\hat{j},y} + U_{j}^{\dagger}(x-\hat{j}, t)\delta_{x-\hat{j},y}\right)$ $\lim_{n_{\sigma} \to \infty} J(t; \sigma, n_{\sigma}) = Q(t) \exp\left[\sigma \Lambda(t)\right] Q^{\dagger}(t)$
- Distillation operator:

$$\left[\Box(t)\right]_{xy} = \left[V(t)V^{\dagger}(t)\right]_{xy} = \sum_{k=1}^{N} v_{x}^{(k)}(t)v_{y}^{(k)\dagger}(t)$$

V(t): first N column vectors of Q(t); $\sigma = 0$

Meson operator in distillation space:

 $C_{\mathcal{M}}(t',t) = \langle \bar{q}'(t') \Box(t) \Gamma^{\mathcal{B}}(t') \Box(t) q(t') \ \bar{q}(t) \Box(t) \Gamma^{\mathcal{A}}(t) \Box(t) q'(t) \rangle$ $\rightarrow C_{\mathcal{M}}^{\text{conn.}}(t',t) = \text{Tr} \left[\phi^{\mathcal{B}}(t') \tau(t',t) \phi^{\mathcal{A}}(t) \tau(t,t') \right] .$

Distillation space objects:

$$\begin{split} \phi_{\alpha\beta}^{X}(t) &= V^{\dagger}(t) \Gamma_{\alpha\beta}^{X}(t) V(t) \\ \tau_{\alpha\beta}(t',t) &= V^{\dagger}(t') M_{\alpha\beta}^{-1}(t',t) V(t) \end{split}$$

Amplitude constraints: Unitarity

Define S matrix:

$$S = 1 + 2i\rho t$$

Unitarity of S matrix:

 $1 = SS^{\dagger}$ $t - t^{\dagger} = 2it\rho t^{\dagger}$

For a single kinematically open channel:

$$t_a(s) = e^{i\delta_a}\sin\delta_a/\rho_a$$

Is there a parametrisation that automatically respects unitarity?

$$\left(\boldsymbol{t}^{\dagger} \right)^{-1} - \boldsymbol{t}^{-1} = 2i\boldsymbol{\rho}$$

$$\boldsymbol{t}^{-1} = \boldsymbol{K}^{-1} - i\boldsymbol{\rho} ,$$

$$\boldsymbol{t} = \boldsymbol{K}(1 - i\boldsymbol{\rho}\boldsymbol{K})^{-1} .$$

K is real and has no branch cut singularities For a single kinematically open channel:

$$K_a = \tan \delta_a$$

Spherically symmetric potential: V(x) = V(|x|) $\psi(r) \sim R(|x|)Y_{lm}(\hat{x})$

$$\rightarrow t_{ab}(s,t) = \sum_{l} (2l+1) P_l (\cos \theta(s,t)) t_{ab}^l(s)$$

with

$$t_{ab}^{\prime}(s)=rac{1}{2}\int_{-1}^{1}d(\cos heta)P_{\prime}(\cos heta)t_{ab}(s,t)\;.$$

In case of non-mixing channels:

$$t_{ab}^{\prime}(s) = e^{i\delta_{a}^{\prime}}\sin\delta/\rho_{a}\delta_{a,b}$$

For the K matrix:

$$(\boldsymbol{t}^{-1})_{alS,bl'S'}(\boldsymbol{s}) = (\boldsymbol{K}^{-1})_{alS,bl'S'} - i\rho_a\delta_{ll'}\delta_{SS'}$$

(*t* and *K* are block-diagonal in $\vec{J} = \vec{L} + \vec{S}$)

As
$$k_{
m cm}
ightarrow 0$$
: $\delta_I
ightarrow -a_I k_{
m cm}^{2I+1}$
 $K_I
ightarrow -a_I k_{
m cm}^{2I+1}$

We can build this into the K matrix definition:

$$(\mathbf{t}^{-1})_{alS,bl'S'}(s) = (2k_{\rm cm}^{(a)})^{-l} (\mathbf{K}^{-1})_{alS,bl'S'} (2k_{\rm cm}^{(b)})^{-l'} - i\rho_a \delta_{ll'} \delta_{SS'}$$

K even, analytic function of k_{cm} near threshold \rightarrow for single channel:

$$(k_{\rm cm})^{2l+1} \cot \delta_l = \frac{1}{a_l} + \frac{1}{2} r_{0,l} (k_{\rm cm})^2 + \mathcal{O}((k_{\rm cm})^4)$$

- Effective range expansion
- *a_l* is called scattering length
- $r_{0,l} \sim \text{range of potential (for } l = 0)$

The Chew-Mandelstam phase space

Can we make use of analyticity?

Cauchy's theorem:

$$f(s) = \frac{1}{2\pi i} \int_{(m_1+m_2)^2}^{\infty} ds' \frac{f(s'+i\epsilon) - f(s'-i\epsilon)}{s'-s}$$
$$= -\frac{1}{\pi} \int_{(m_1+m_2)^2}^{\infty} ds' \frac{\rho(s)}{s'-s} \equiv I(s)$$

Regularize through subtraction:

$$t^{-1} = I(s_0) + [I(s) - I(s_0)]$$

= $I(s_0) - \frac{(s - s_0)}{\pi} \int \frac{\rho(s)ds'}{(s' - s_0)(s' - s_0)}$
 $\rightarrow t^{-1} = (2k_{\rm cm})^{-l} K^{-1} (2k_{\rm cm})^{-l'} + I(s)$

Result: Chew-Mandelstam phase space

$$I(s) = I(s_{\text{thr}}) + \frac{\rho}{\pi} \log \left[\frac{\xi + \rho(s)}{\xi(s) - \rho(s)} \right] - \frac{\xi(s)}{\pi} \frac{m_1 - m_2}{m_1 + m_2} \log \frac{m_2}{m_1}$$

)

with $\xi(s) = 1 - \frac{(m_1 + m_2)^2}{s}$; subtracted at threshold

Principal correlators in [100]A1; Leading exponential divided out

- Typically fit of sum of two exponentials (excited state contamination)
- Chosen from a range of different fits
- Uncertainties across fits accounted for in spectrum

as	0.11 fm
a_t^{-1}	6.079 GeV
$(L/a_s)^3 imes (T/a_t)$	$32^3 \times 256$
m_{π}	239 MeV
N _f	2 + 1
N _{cfg}	484

as	0.12 fm
a_t^{-1}	5.667 GeV
$(L/a_s)^3 \times (T/a_t)$	$\set{16^3, 20^3, 24^3} \times 256$
m_{π}	391 MeV
N _f	2 + 1
N _{cfg}	$\set{479,603,552}$

$A_1^+[000]$	$A_1[100]$	$A_{1}[110]$	A ₁ [111]	A1 [200]
^D [000] ^π [000]	D _[000] π _[100]	$D_{[000]} \pi_{[110]}$	D _[000] π _[111]	D _[100] π _[100]
$D_{[100]} \pi_{[100]}$	D _[100] π _[000]	$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[110]}$	$D_{[110]} \pi_{[110]}$
$D_{[110]} \pi_{[110]}$	D _[100] π _[110]	$D_{[110]} \pi_{[000]}$	D _[110] π _[100]	D _[200] π _[000]
$D_{[111]} \pi_{[111]}$	D _[100] π _[200]	$D_{[110]} \pi_{[110]}$	$D_{[111]} \pi_{[000]}$	D _[210] π[100]
D[000] 7[000]	$D_{[110]} \pi_{[100]}$	$D_{[111]} \pi_{[100]}$	$D_{[211]} \pi_{[100]}$	D _[200] η _[000]
$D_{[100]} \eta_{[100]}$	$D_{[110]} \pi_{[111]}$	$D_{[210]} \pi_{[100]}$	$D^{*}[110] \pi[100]$	
$D_{s[000]} \vec{K}_{[000]}$	$D_{[111]} \pi_{[110]}$	$D^{*}[100] \pi[100]$	$D_{[111]} \eta_{[000]}$	
	D _[200] π _[100]	$D^{*}_{[111]}\pi_{[100]}$	$D_{s[111]} \bar{K}_{[000]}$	
	$D_{[210]} \pi_{[110]}$	$D_{[110]} \eta_{[000]}$		
	D[000] η[100]	$D_{s[110]} \bar{K}_{[000]}$		
	$D_{[100]} \eta_{[000]}$			
	D _{5[000]} K _[100]			
	Ds[100] K[000]			
$8 \times \bar{\psi} \Gamma \psi$	$18 \times \bar{\psi} \Gamma \psi$	$18 \times \bar{\psi} \Gamma \psi$	$9 \times \bar{\psi} \Gamma \psi$	$16 \times \bar{\psi} \Gamma \psi$

Operators used in the S-wave fits. Subscripts indicate momentum types. Γ represents some monomial of γ matrices and derivatives.

$T_1^{-}[000]$	$E_2[100]$	$B_1[110]$	B ₂ [110]
$D_{[100]} \pi_{[100]}$	$D_{[100]} \pi_{[110]}$	$D_{[100]} \pi_{[100]}$	D _[100] π _[111]
$D_{[110]} \pi_{[110]}$	$D_{[110]} \pi_{[100]}$	$D_{[110]} \pi_{[110]}$	$D_{[110]} \pi_{[110]}$
$D^{*}[100] \pi[100]$	$D^{*}[000] \pi[100]$	$D_{[210]} \pi_{[100]}$	$D_{[111]} \pi_{[100]}$
	D^{*} [100] π [000]	$D^{*}[100] \pi[100]$	$D^{*}[000] \pi[110]$
		$D^{*}[110] \pi[000]$	$D^{*}[100] \pi[100] \{2\}$
			$D^{*}[110] \pi[000]$
_	_	_	$D^{*}[111]_{\pi}[100]$
$6 \times \overline{\psi} \Gamma \psi$	$18 \times \bar{\psi} \Gamma \psi$	$18 \times \bar{\psi} \Gamma \psi$	$20 \times \bar{\psi} \Gamma \psi$

Operators used in the P-wave fits. Subscripts indicate momentum types. Γ represents some monomial of γ matrices and derivatives. The number in curly parentheses indicates the number of operators of this momentum combination.

$[000]T_1^+$	$[000]E^+$	$[000]T_2^+$	[001]A ₂	$[001]E_2$	$[001]B_1$	$[001]B_2$
$\begin{array}{l} D_{[000]}\rho_{[000]}\left(1\right)\\ D_{[100]}\rho_{[100]}\left(1\right)\\ D^{*}_{[100]}\sigma_{[100]}\left(1\right)\\ D^{*}_{[100]}\sigma_{[100]}\left(1\right)\\ D^{*}_{[100]}\sigma_{[100]}\left(1\right)\\ D^{*}_{[100]}\sigma_{[100]}\left(1\right)\\ D^{*}_{[100]}\sigma_{[100]}\left(1\right)\\ D^{*}_{[100]}\sigma_{[100]}\left(1\right)\\ D^{*}_{[100]}\kappa_{[100]}\left(1\right)\\ D^{*}_{[100]}\left(1\right)\\ \sigma_{[100]}\sigma_{[100]}\left(1\right)\\ \overline{q}\Gamma q \left(44\right) \end{array}$	$\begin{array}{l} D_{[100]}\pi_{[100]}\left(1\right)\\ D_{[101]}\pi_{[110]}\left(1\right)\\ D_{[200]}\pi_{[200]}\left(1\right)\\ D_{[100]}\eta_{[100]}\left(1\right)\\ D_{[100]}\eta_{[100]}\left(1\right)\\ D_{a_{[100]}}K_{[100]}\left(1\right)\\ D_{a_{[100]}}K_{[110]}\left(1\right)\\ a_{F_{100}}K_{110}\left(1\right)\\ a_{F_{100}}a_{F_{100}}\left(1\right)\\ \end{array}$	$\begin{array}{l} D_{[110]}\pi_{[110]} \left(1\right) \\ D^*_{[100]}\pi_{[100]} \left(1\right) \\ D^*_{[000]}\rho_{[000]} \left(1\right) \\ q\Gamma q \left(29\right) \end{array}$	$\begin{array}{l} D_{[100]}\rho_{[000]}\left(1\right)\\ D_{[000]}\delta_{[100]}\left(1\right)\\ D^{-}_{[100]}\pi_{[100]}\left(1\right)\\ D^{+}_{[100]}\pi_{[100]}\left(1\right)\\ D^{+}_{[100]}\pi_{[100]}\left(2\right)\\ D^{+}_{[100]}\pi_{[100]}\left(1\right)\\ D^{+}_{[100]}K_{[000]}\left(1\right)\\ D^{+}_{[100]}\pi_{[000]}\left(1\right)\\ \overline{q}\Gamma q\left(32\right) \end{array}$	$\begin{array}{l} D_{[100]}\pi_{[110]} \left(1\right)\\ D_{[110]}\pi_{[100]} \left(1\right)\\ D_{[111]}\pi_{[110]} \left(1\right)\\ D_{[100]}\mu_{[100]} \left(1\right)\\ D_{[100]}\mu_{[100]} \left(1\right)\\ D_{[100]}\mu_{[100]} \left(1\right)\\ D_{\pi_{[100]}}\pi_{[100]} \left(1\right)\\ D^{\pi_{[100]}}\pi_{[100]} \left(1\right)\\ D^{\pi_{[100]}}\pi_{[100]} \left(1\right)\\ D^{\pi_{[100]}}\mu_{[100]} $	$\begin{array}{l} D_{[100]}\pi_{[110]} \left(1\right) \\ D_{[101]}\pi_{[100]} \left(1\right) \\ D_{[100]}\eta_{[101]} \left(1\right) \\ D_{[100]}\eta_{[100]} \left(1\right) \\ D_{z_{[100]}}\tilde{K}_{[110]} \left(1\right) \\ D_{z_{[100]}}\tilde{K}_{[100]} \left(1\right) \\ \bar{q}\Gamma q \left(12\right) \end{array}$	$\begin{array}{l} D_{[111]}\pi_{[110]} \ (1) \\ D_{[110]} \ \delta_{[100]} \ (1) \\ D^*_{[100]}\pi_{[110]} \ (2) \\ D^*_{[100]}\pi_{[100]} \ (2) \\ \bar{q}\Gamma q \ (20) \end{array}$

 $I=1/2~D^{*}\pi$ -, $D^{*}\eta$ - and $D_{s}^{*}ar{K}$ -like operators

$[000]T_1^-$	[011]A ₂	$[011]B_1$	$[011]B_2$	[111]A ₂	$[111]E_2$	[002]A ₂
$\begin{array}{l} D_{[100]}\pi_{[100]} \ (1) \\ D_{[100]}\eta_{[100]} \ (1) \\ D^*_{[100]}\pi_{[100]} \ (1) \\ q\Gamma_q \ (20) \end{array}$	$\begin{array}{l} D_{[110]}\pi_{[110]}\left(1\right)\\ D_{[110]}\rho_{[000]}\left(1\right)\\ D_{[110]}\rho_{[000]}\left(1\right)\\ D^{+}_{[100]}\pi_{[100]}\left(2\right)\\ D^{+}_{[110]}\pi_{[100]}\left(2\right)\\ D^{+}_{[111]}\pi_{[100]}\left(2\right)\\ D^{+}_{[110]}\mu_{[000]}\left(1\right)\\ D^{+}_{[10]}\mu_{[000]}\left(1\right)\\ D^{+}_{[10]}\mu_{[000]}\left(1\right)\\ a_{\Gamma}q\left(52\right) \end{array}$	$\begin{array}{l} D_{[100]}\pi_{[100]}\left(1\right)\\ D_{[110]}\pi_{[110]}\left(1\right)\\ D_{[210]}\pi_{[100]}\left(1\right)\\ D_{[100]}\eta_{[100]}\left(1\right)\\ D_{[100]}\rho_{[000]}\left(1\right)\\ D^{*}_{[100]}\kappa_{[100]}\left(1\right)\\ D^{*}_{[100]}\pi_{[100]}\left(1\right)\\ D^{*}_{[100]}\pi_{[100]}\left(1\right)\\ D^{*}_{[111]}\pi_{[100]}\left(2\right)\\ D^{*}_{[110]}\eta_{[100]}\left(1\right)\\ D^{*}_{[110]}\eta_{[100]}\left(1\right)\\ D^{*}_{[110]}\eta_{[000]}\left(1\right)\\ D^{*}_{[110]}\eta_{[000]}\left(1\right)\\ D^{*}_{[110]}\eta_{[000]}\left(1\right)\\ d^{*}_{1}\pi_{1}\left(q,q\right)\\ d^{*}\pi_{1}\left(q,q\right)\\ d^{*}\pi_{1}\left(q,q,q\right)\\ d^{*}\pi_{1}\left(q,q,q\right)\\ d^{*}\pi_{1}\left(q,q,q,q\right)\\ d^{*}\pi_{1}\left(q,q,q,q,q\right)\\ d^{*}\pi_{1}\left(q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,$	$\begin{array}{l} D_{[110]}\pi_{[110]}\left(1\right)\\ D_{[111]}\pi_{[100]}\left(1\right)\\ D_{[110]}\rho_{[000]}\left(1\right)\\ D_{[100]}\rho_{[100]}\left(1\right)\\ D^*_{[100]}\pi_{[110]}\left(1\right)\\ D^*_{[100]}\pi_{[100]}\left(2\right)\\ D^*_{[111]}\pi_{[100]}\left(1\right)\\ D^*_{[111]}\pi_{[100]}\left(1\right)\\ D^*_{[111]}\pi_{[100]}\left(1\right)\\ p_{s}^*_{[110]}K_{[000]}\left(1\right)\\ q\Gamma_{q}\left(52\right) \end{array}$	$\begin{array}{l} D_{[111]}\rho_{[000]}\left(1\right)\\ D_{[111]}\delta_{[000]}\left(1\right)\\ D^{*}_{[110]}\pi_{[100]}\left(2\right)\\ D^{*}_{[111]}\eta_{[000]}\left(1\right)\\ D^{*}_{[111]}\eta_{[000]}\left(1\right)\\ D^{*}_{[111]}K_{[000]}\left(1\right)\\ D^{*}_{[111]}K_{[000]}\left(1\right)\\ \overline{q}\Gamma q\left(36\right) \end{array}$	$\begin{array}{l} D_{[100]}\pi_{[110]} \left(1\right)\\ D_{[101]}\pi_{[100]} \left(1\right)\\ D_{[211]}\pi_{[100]} \left(1\right)\\ D_{[101]}\eta_{[100]} \left(1\right)\\ D_{[101]}\eta_{[100]} \left(1\right)\\ D_{[110]}\eta_{[100]} \left(1\right)\\ D_{[100]}\bar{K}_{[110]} \left(1\right)\\ D_{s}_{[100]}\bar{K}_{[110]} \left(1\right)\\ D^{*}_{[100]}\pi_{[110]} \left(3\right)\\ D^{*}_{[101]}\pi_{[000]} \left(1\right)\\ D^{*}_{[111]}\pi_{[000]} \left(1\right)\\ D^{*}_{[111]}\pi_{[000]} \left(1\right)\\ D^{*}_{[111]}\pi_{[000]} \left(1\right)\\ q^{*}_{1}\pi_{11} \left(\bar{K}_{[000]} \left(1\right)\right)\\ q^{*}T_{100} \left(1\right)\\ q^{*}T_{10}$	$\begin{array}{l} D_{[100]}\rho_{[100]}\left(1\right)\\ D_{[100]}\bar{\kappa}_{[100]}\left(1\right)\\ D_{[200]}\bar{\kappa}_{[000]}\left(1\right)\\ D^{+}_{[100]}\pi_{[100]}\left(1\right)\\ D^{+}_{[200]}\pi_{[000]}\left(1\right)\\ D^{+}_{[200]}\pi_{[100]}\left(2\right)\\ D^{+}_{[200]}\pi_{[100]}\left(1\right)\\ D^{+}_{[200]}\pi_{[000]}\left(1\right)\\ D^{+}_{[200]}\bar{\kappa}_{[000]}\left(1\right)\\ \bar{q}\Gamma q\left(32\right) \end{array}$

I=1/2 $D^{*}\pi$ -, $D^{*}\eta$ - and $D_{s}^{*}\bar{K}$ -like operators

Subduction Table (1)

Ď	Irrep	$J^P \ (\vec{P} = \vec{0})$	$D\pi J^P_{[N]}$	$D^*\pi J^P_{[N]}$
	٨	$ \lambda ^{(\tilde{\eta})} \ (\vec{P} \neq \vec{0})$		
	A_1^+	0+, 4+	0+,	
[000]	T_1^-	1-, 3-	1-,	
	E^+	2+, 4+	2+,	
[]	A_1	0 ⁽⁺⁾ , 4	0+, 1-, 2+,	
[//00]	E_2	1, 3	$1^{-}, 2^{+},$	1+,
[nn0]	A_1	0 ⁽⁺⁾ , 2, 4	0 ⁺ , 1 ⁻ , 2 ⁺ _[2] ,	
[////0]	$B_2,\ B_2$	1, 3	1 ⁻ , 2 ⁺ ,	1+,
[nnn]	A_1	0 ⁽⁺⁾ , 3	0+, 1-, 2+,	

Lowest $D\pi$ and $D^{*}\pi$ continuum J^{P} and helicity λ subductions by irrep

Subduction Table (2)

\vec{d}	G	٨	$egin{array}{ll} J^P & (ec{P}=ec{0}) \ \lambda ^{(ilde{\eta})} & (ec{P} eqec{0}) \end{array}$	${}^{1}\ell_{J}$	³ ℓJ
		A_1^+	0+,	${}^{1}S_{0}$	
		A_2^+	3+,		³ D ₃
		E^+	2 ⁺ ,	$^{1}D_{2}$	³ D ₂
		T_1^+	1+, 3+,		$({}^{3}S_{1}, {}^{3}D_{1}), {}^{3}D_{3}$
[000]	0.	T_2^+	2+,	$^{1}D_{2}$	³ D ₂ , ³ D ₃
[000]	O_h	A_1^-	0-,		³ P ₀
		A_2^-	3-,		
		E^{-}	2-,		³ P ₂
		T_1^-	1-, 3-,	${}^{1}P_{1}$	${}^{3}P_{1}$
		T_2^-	2-,		³ P ₂
		A ₂	0(-), 1(+), 2(-), 3(+)		${}^{3}P_{0}$, $({}^{3}S_{1}, {}^{3}D_{1})$, ${}^{3}P_{2}, {}^{3}D_{3}$
[<i>n</i> 00]	C_{4v}	B_1, B_2	2, 3	$^{1}D_{2}$	³ D ₂ , ³ P ₂ , ³ D ₂
		E_2	1, 2, 3	¹ P ₁ , ¹ D ₂	$({}^{3}S_{1}, {}^{3}D_{1}), {}^{3}P_{1}, {}^{3}D_{2}, {}^{3}P_{2}, {}^{3}D_{3}$
[000]	C	A ₂	0 ⁽⁻⁾ , 1 ⁽⁺⁾ , 2, 3	$^{1}D_{2}$	${}^{3}P_{0}$, $({}^{3}S_{1}, {}^{3}D_{1})$, ${}^{3}D_{2}, {}^{3}P_{2}, {}^{3}D_{3}$
[////0]	C_{2v}	B_1, B_2	1, 2, 3	${}^{1}P_{1}, {}^{1}D_{2}$	$({}^{3}S_{1}, {}^{3}D_{1}), {}^{3}P_{1}, {}^{3}D_{2}, {}^{3}P_{2}, {}^{3}D_{3}$
[nnn]	С.	A ₂	0 ⁽⁻⁾ , 1 ⁽⁺⁾ , 2 ⁻ , 3		${}^{3}P_{0}$, $({}^{3}S_{1}, {}^{3}D_{1})$, ${}^{3}P_{2}$, ${}^{3}D_{3}$
[/////]	C ₃	E_2	1, 2, 3	${}^{1}P_{1}, {}^{1}D_{2}$	$({}^{3}S_{1}, {}^{3}D_{1}), {}^{3}D_{2}, {}^{3}P_{2}, {}^{3}D_{3}$

Lattice symmetry groups and partial-wave subductions for vector-pseudoscalar scattering

	a _t m		2. E
π	0.03028(18)		at L threshold
7	0.03320(10)	$D\pi$	0.34851(21)
K	0.08344(7)	2 //	0.0.001(21)
		$D\pi\pi$	0.38779(27)
η	0.09299(56)	D	
	0.20022(11)	$D\eta$	0.40222(57)
D	0.30923(11)	DĀ	0.40700(14)
D.	0 32356(12)	$D_{S}N$	0.40700(14)
D_{S}	0.52550(12)	$D^*\pi\pi$	0.40914(35)
D^*	0.33058(24)		0.10511(00)

Left: Stable hadron masses. Right: kinematic thresholds.

	a _t m		2. E	E., /MeV/
π	0.06906(13)		at Lthreshold	Lthreshold/ We v
K		$D\pi$	0.40209(34)	2278.6 ± 1.9
~	0.05050(5)	$D^*\pi$	0.4240(5)	2402.8 ± 2.7
η	0.10364(19)	D^*n	0 4586(5)	2598.8 ± 2.8
D	0.33303(31)		0.1500(3)	2630.0 ± 2.0
De	0.34441(29)	$D_s^r \kappa$	0.4629(4)	2023.0 ± 2.0
D*	0.01112(20)	$D\pi\pi$	0.4711(4)	2670.0 ± 2.3
D^{*}	0.35494(40)	$D^*\pi\pi$	0.4931(5)	2794.2 ± 3.0
D_s^*	0.36587(35)			

Left: Stable hadron masses. Right: kinematic thresholds.

- Varying the basis affects the spectrum
- I = 1/2 allows both meson-meson and $q\bar{q}$ -like operator constructions
- Interpolating the complete spectrum requires both types of operator
- Other meson-meson operators do not play a significant role below coupled-channel threshold

Consider $SU(3)_F$ symmetric theory $(m_{\mu} = m_d = m_s)$:

- meson-meson system transforms like $\mathbf{\bar{3}}\otimes \mathbf{8} = \mathbf{\bar{3}}\oplus \mathbf{6}\oplus \mathbf{\bar{15}}$ under flavour rotations
- For broken flavour symmetry these representations mix: $D^{(*)}\pi / D^{(*)}\eta / D^{(*)}_s \bar{K}$ receive contributions from all three

https://en.wikipedia.org/wiki/Quark_model - Public Domain

- $m_c = m_Q \rightarrow \infty$ $\Rightarrow -igT^a\gamma^{\mu} \rightarrow -igT^av^{\mu} + \mathcal{O}(1/m_Q)$ (heavy-quark spin symmetry) $\Rightarrow U(N_h)_F$ (heavy-flavour symmetry)
- Spins decoupled; define: $\vec{j_l} \equiv \vec{J} - \vec{S_Q} = \vec{L} + \vec{S_q}$
- For L = 1 we get: $j_l = 1/2$ and $j_l = 3/2$
- This gives:

 $\mathbf{2}\otimes\mathbf{2}=\mathbf{1}\oplus\mathbf{3}$ and $\mathbf{2}\otimes\mathbf{4}=\mathbf{3}\oplus\mathbf{5}$

 $\bullet \ \Rightarrow \ Two \ positive \ parity \ spin \ doublets: (0^+,1^+) \ and \ (1^+,2^+)$