$D_{s0}^{*}(2317)^{+}$ and $D_{s0}^{*}(2317)^{-}$ in nuclear matter

V. Montesinos^{*} M. Albaladejo^{*} J. Nieves^{*} L. Tolos[†]

IFIC (Valencia, Spain)*

ICE (Barcelona, Spain), IEEC (Barcelona, Spain), FIAS (Frankfurt, Germany)⁺

Contact: vicmonte@ific.uv.es

HADRON SPECTROSCOPY: CONVENTIONAL AND EXOTIC

- · Conventional hadrons:
 - · Mesons: $q\bar{q}'$: $\pi^+ = u\bar{d}$, $D^0 = c\bar{u}$, ...
 - Baryons: $q_1q_2q_3$: p = uud, n = udd, ...
- Constituent quark models have successfully described most of (but not all!) the hadrons discovered so far.

• Only possibilities? No, the only requirement is to be color singlets. There can be tetraquarks $(q_1\bar{q}_2q_3\bar{q}_4)$, pentaquarks $(\bar{q}_1q_2q_3q_4q_5)$, hybrids (\bar{q}_1q_2g) , glueballs (gg), hadronic molecules (MM', MB, BB'), ...

- QCD cannot be used perturbatively at the low energies required in spectroscopy.
 Non perturbatively, some numerical calculations can be done with LQCD.
 However, there are problems at finite density.
- Use effective field theories together with non-perturbative methods.

· Quark model $c\bar{n}$ is still our baseline:

«In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework.» [Godfrey, Isgur, PR,D32,189('85)]

· Quark model $c\bar{n}$ is still our baseline:

• The discovery of $D_{s0}^{*}(2317)$ in 2003 (and $D_{s1}(2460)$ later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

BABAR, PRL,90,242001('03) CLEO, PR,D68,032002('03)

Generalities about the $D_{s0}^*(2317)^+$

- $\cdot\,$ First reported by BABAR in 2003.
- Very narrow state, close to the *DK* threshold.
 - · $m_D + m_K m_{D_{50}^{*+}} \simeq 45$ MeV. · $\Gamma_{D_{50}^{*+}} < 3.8$ MeV CL= 95%.
- $\cdot\,$ Well established as an isoscalar state.
- $J^P = 0^+$.
- · Quark content?

 $D_s^+ \pi^0$ mass distribution for the decay $D_s^+ \rightarrow K^+ K^- \pi^0$ showing the $D_{s0}^*(2317)^+$ signal from BABAR [BABAR, PRL,90,242001('03)].

$D_{s0}^{*}(2317)^{+}$ and $D_{s0}^{*}(2317)^{-}$ in nuclear matter: overview

1. The nuclear medium changes the properties of *D*, *K*, \overline{D} and \overline{K} mesons. They develop a self-energy.

- 2. The D_{s0}^{*+} couples to the *DK* pair, and the D_{s0}^{*-} to the $\overline{D}\overline{K}$ one.
- 3. The dressed DK and $\overline{D}\overline{K}$ mesons renormalize the D_{s0}^{*+} and D_{s0}^{*-} propagators.

$$D_{s0}^{*+} \longrightarrow (\overset{D}{\underset{K}{\longrightarrow}}) \overset{D}{\underset{s0}{\longrightarrow}} D_{s0}^{*+} \qquad D_{s0}^{*-} \longrightarrow (\overset{D}{\underset{K}{\longrightarrow}}) \overset{D}{\underset{K}{\longrightarrow}} D_{s0}^{*-}$$

4. Owing to the different *DN* and *KN* vs $\overline{D}N$ and \overline{KN} interactions, the D_{s0}^{*+} and D_{s0}^{*-} will behave very differently in the medium.

D MESONS IN NUCLEAR MATTER

More details on the DN interaction: L. Tolos, C. Garcia-Recio, J. Nieves, PRC 80, 065202 ('09)

 $\Delta_{D}(q; \rho) = \frac{1}{q^{2} - m_{D}^{2} - \Pi_{D}(q; \rho)}$

- \cdot Self-consistent procedure for computing the D and \bar{D} self-energies
- \cdot In the isospin limit, $\Pi_{D^0}=\Pi_{D^+}\equiv\Pi_D$
- · However $\Pi_D \neq \Pi_{\overline{D}}$

D and \bar{D} spectral functions

L. Tolos, C. Garcia-Recio, J. Nieves, PRC 80, 065202 ('09)

C. Garcia-Recio, J. Nieves, L.L. Salcedo, L. Tolos, PRC 85, 025203 ('12)

K and \overline{K} mesons in nuclear matter

L. Tolos, D. Cabrera, A. Ramos, PRC 78, 045205 ('08)

- K and \overline{K} self-energies are computed analogously to the D and \overline{D} ones.
- *KN* and *KN* interactions radically different!
 - KN interaction is very weak → K spectral function almost a Dirac delta.
 - In \overline{KN} the two-pole $\Lambda(1405)$ state appears.

$D_{s0}^{*}(2317)^{+}$ Self-energy in nuclear matter

$$D_{s0}^{*+} = D_{s0}^{*+} = D_{s0}^{*+} (D_{s0}^{*+} + D_{s0}^{*+}) (D_{s0}^{*+} + D$$

· Renormalized D_{s0}^{*+} propagator in terms of the bare mass (\hat{m}) and coupling (\hat{g}):

$$\Delta_{D_{50}^{*+}}^{-1}(p;\,\rho) = p^2 - \hat{m}^2 - \hat{g}^2 \Sigma(p;\,\rho) \quad \leftarrow \quad \Sigma(p;\,\rho) = i \int \frac{d^4q}{(2\pi)^4} \underbrace{\Delta_D(p-q;\,\rho) \Delta_K(q;\,\rho)}_{\Delta_D \text{ and } \Delta_K \text{ in nuclear medium}}$$

- We introduce a sharp cutoff Λ in the d^3q integral to regularize $\Sigma(p; \rho)$.
- · The D_{s0}^{*+} mass for finite density in terms of the vacuum mass (m_0) and coupling (g_0) is

$$m^{2}(\rho) = m_{0}^{2} + \frac{g_{0}^{2}}{1 + g_{0}^{2}\Sigma'(m_{0}; 0)} \{\Sigma[m(\rho); \rho] - \Sigma(m_{0}; 0)\}$$

 $\cdot \Sigma(p; \rho)$ develops an imaginary part, and so does $m^2(\rho)$.

DK SCATTERING IN NUCLEAR MATTER

· We solve the Bethe-Salpeter Equation in the on-shell approximation to obtain the I = 0 *DK T*-matrix.

$$T^{-1}(s; \rho) = V^{-1}(s) - \Sigma(s; \rho)$$

 $\cdot\,$ We consider two families of potentials.

$$\begin{cases} V_A(s) = C_1 + C_2 s \\ V_B(s) = (C'_1 + C'_2 s)^{-1} \end{cases}$$

 $\cdot C_1^{(\prime)}$ and $C_2^{(\prime)}$ constants fixed by imposing

$$\begin{cases} T^{-1}(m_0^2; 0) = 0\\ \frac{dT^{-1}(s; 0)}{ds}\Big|_{s=m_0^2} = \frac{1}{g_0^2} \end{cases}$$

- The loop function contains the medium effects.
- · Weinberg compositeness condition:

$$P_0 = -g_0^2 \Sigma'(m_0; 0).$$

S. Weinberg, Phys.Rev. 137, B672 ('65) D. Gamermann, J. Nieves, E. Oset, E. Ruiz Arriola, PRD 81, 014029 ('10)

• P_0 is interpreted as the *DK* molecular component in the D_{50}^{*+} wavefunction.

PRELIMINARY RESULTS: IN-MEDIUM DK LOOP FUNCTION

Figure: *DK* loop function for different values of ρ .

- The sharp threshold is smoothed out at finite density.
- Σ develops some imaginary part below threshold.
- · Ignoring the effects of the imaginary part, the shift in the real part of Σ can be naively related to a more repulsive interaction.

Preliminary results: $D_{s0}^{*}(2317)^{+}$ propagator

Figure: $D_{s0}^*(2317)^+$ renormalized propagator for different values of ρ .

- · Quasi-particle energy: Re $\Delta_{D_{e^n}^{++}}^{-1}(E_{qp}, |\vec{q}|; \rho) = 0.$
- $\cdot E_{\rm qp}$ shifts towards higher energies for growing ρ .

· Imaginary part below threshold.

PRELIMINARY RESULTS: IN-MEDIUM DK AMPLITUDE

- What was a bound state is now a resonance with some width.
- Its width increases with growing ρ and P_0 .
- The position of its maximum shifts to the right with growing ρ .

Figure: *DK* scattering *T*-matrix for different values of P_0 and ρ .

Preliminary results: $\overline{D}\overline{K}$ vs DK, loop functions

Figure: $\overline{D}\overline{K}$ and *DK* scattering loop functions for different values of ρ .

· Very different density pattern! · Shift in $\operatorname{Re}(\Sigma)$ now points to more attraction.

PRELIMINARY RESULTS: $D_{s0}^{*}(2317)^{-}$ propagator

Figure: $D_{s0}^{*}(2317)^{-}$ renormalized propagator for different values of ρ .

• Notable imaginary part growth below threshold.

 $\cdot\,\, E_{\rm qp}$ shifts to lower energies (not so clear).

Preliminary results: $\overline{D}\overline{K}$ vs DK, amplitudes

Figure: $\overline{D}\overline{K}$ and *DK* amplitudes for different values of P_0 and ρ .

- $\cdot D_{s0}^{*-}$ wider than D_{s0}^{*+} .
- $\cdot D_{s0}^{*-}$ peak shifts to lower energies.

 \cdot More notable effects for a large value of P_0 .

- The nuclear medium induces modifications on the properties of the $D_{s0}^{*}(2317)^{+}$ and $D_{s0}^{*}(2317)^{-}$.
- Due to the different interactions of \overline{K} and K in nuclear matter, the $D_{s0}^*(2317)^-$ and the $D_{s0}^*(2317)^+$ behave very differently in a dense medium.
- The changes in nuclear matter of $D_{s0}^*(2317)^+$ and $D_{s0}^*(2317)^-$ depend strongly on the molecular probability. Hence, the medium modifications could help us to disentagle the nature of these two states.

Backup slides

Some details on the calculation of Σ (part 1)

· The *DK* (or $\overline{D}\overline{K}$) loop function, Σ , is the object that encodes the nuclear medium effects.

·
$$\Delta_{D_{s0}^*}(p;\rho) = p^2 - \hat{m}^2 - \hat{g}^2 \Sigma(p;\rho)$$

- $T^{-1}(s; \rho) = V^{-1}(s) \Sigma(s; \rho)$
- $\cdot\,$ In a previous slide we have shown

$$\Sigma_{MN}(p; \rho) = i \int \frac{d^4q}{(2\pi)^4} \Delta_M(p-q; \rho) \Delta_N(q; \rho)$$

1. We use the Källen-Lehmann representation for the meson propagators

$$\Delta_{M}(q;\rho) = \int_{0}^{\infty} d\omega \left(\frac{S_{M}(\omega, |\vec{q}|; \rho)}{q^{0} - \omega + i\varepsilon} - \frac{S_{\bar{M}}(\omega, |\vec{q}|; \rho)}{q^{0} + \omega - i\varepsilon} \right)$$

2. We define the auxiliary function

$$f_{MN}(\Omega; \rho) = \int_0^{\Lambda} dq \, q^2 \int_0^{\Omega} d\omega \, S_M\left(\omega, \, |\vec{q}|; \, \rho\right) S_N\left(\Omega - \omega, \, |\vec{q}|; \, \rho\right)$$

Some details on the calculation of Σ (part 2)

3. One can show that the loop function can be written as

$$\Sigma_{MN}(E; \rho) = \frac{1}{2\pi^2} \left\{ \int_0^\infty d\Omega \left(\frac{f_{MN}(\Omega; \rho)}{E - \Omega + i\varepsilon} - \frac{f_{\bar{M}\bar{N}}(\Omega; \rho)}{E + \Omega - i\varepsilon} \right) - i\pi f_{MN}(E; \rho) \right\}$$

• When computing f_{DK} we make a simplification:

$$S_{K}(\omega, q; \rho) \approx \frac{\delta (\omega - E_{\rm qp})}{2E_{\rm qp}}$$

 \cdot The quasi-particle energy ($E_{\rm qp}$) is defined from the condition

$$\operatorname{Re} \Delta_{K}^{-1}(E_{\mathrm{qp}}, \, |\vec{q}|; \, \rho) = 0$$

Figure: E_{qp} as a function of the magnitude of threemomentum *q* for different densities.