Quark mass dependence of the $D_{c}^{*}(2317)$ F. Gil-Domínguez and R. Molina

Excited QCD 2024 Workshop 18th January

Dmeson functions

 \bullet Heavy meson masses from χPT with HQSS at one loop order

$$\frac{1}{4}(D+3D^*) = m_H + \alpha_a - \sum_{X=\pi,K,\eta} \beta_a^{(X)} \frac{M_X^3}{16\pi f^2} + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)}\alpha_a\right) \frac{M_X^2}{16\pi^2 f^2} \log\left(M_X^2/\mu^2\right) + \left(D_X^* - D_X^* - D_X^$$

$$(D^* - D) = \Delta + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)} \Delta \right) \frac{M_X}{16\pi^2 f^2} \log\left(\frac{M_X^2}{\mu^2} + \delta c_a \right)$$

 $\frac{1}{4}(D+3D^*) = m_H + f(\sigma, a, b, c, d)$ $(D^* - D) = \Delta + g(\Delta^{(\sigma)}, \Delta^{(a)})$

* E. E. Jenkins, Nucl. Phys. B 412, 181 (1994), hep-ph/9212295

2 · 12 tree level parameters 7 parameters

31 parameters

160 points

70% of data $\chi_P^2(p, d_{train})$ $\chi_P^2(p,d) = \chi^2(p,d) + \lambda^4 \sum_{i=1}^{n} |p_i| \longrightarrow$ 30% of data $\chi_P^2(p, d_{test})$

*J. Landay, M. Döring, C. Fernández-Ramírez, B. Hu, and R. Molina, Phys. Rev. C 95, 015203 (2017), 1610.07547.

LASSO Regression Method

LASSO Regression Method

70% of data $\chi_P^2(p, d_{train})$ $\chi_P^2(p,d) = \chi^2(p,d) + \lambda^4 \sum_{i=1}^{n} |p_i| \longrightarrow$ 30% of data $\chi_P^2(p, d_{test})$

For ETMC data:

*J. Landay, M. Döring, C. Fernández-Ramírez, B. Hu, and R. Molina, Phys. Rev. C 95, 015203 (2017), 1610.07547.

ETMC continuum extrapolation

*F. Gil-Domínguez and R. Molina, Phys. Lett. B 843 (2023), 2302.12861

ETMC continuum extrapolation

*F. Gil-Domínguez and R. Molina, Phys. Lett. B 843 (2023), 2302.12861

D and D_s meson mass functions

*F. Gil-Domínguez and R. Molina, Phys. Lett. B 843 (2023), 2302.12861

Scattering amplitude for DK I=0

Lagrangian from Hidden gauge symmetry formalism

- $\mathcal{L}_{VPP} = ig < [\partial_{\mu}\Phi, \Phi]V^{\mu} >$

 $\frac{s - u}{2f_{\pi}^{2}}$

Coupling with a bare cs state

 $m_{c\overline{s}}$

 $V \rightarrow V + V_{ex}$ $V_{ex} = \frac{V_{c\bar{s}}^2}{s - m_{c\bar{s}}^2}$

 $V_{c\bar{s}}(s) = -\frac{c}{f}\sqrt{M_D m_{c\bar{s}}} \frac{s + m_K^2 - M_D^2}{\sqrt{s}},$

D

+2 parameters $c, m_{c\bar{s}}$

Parameters for the energy levels fit

Total amplitude from Bethe-Salpeter equation

 $T = \frac{V}{1 - \tilde{G}V}$

The subtraction constant is defined as

$$\alpha = \alpha_1 + \alpha_2 m_\pi^2$$

+2 parameters α_1, α_2

 $\tilde{G}(s,\alpha) = G^{DM}(s,\alpha) + \lim_{q_{\max} \to \infty} \Delta G(s,q_{\max})$

2 parameters: α_1, α_2 Fit I

4 parameters: $\alpha_1, \alpha_2, c, m_{c\bar{s}}$ Fit II

Finite volume energy levels

*G. K. C. Cheung, C. E. Thomas, D. J. Wilson, G. Moir, M. Peardon and S. M. Ryan (Hadron Spectrum), JHEP02, 100 (2021), 2008.06432.

Binding energy

11
11

Comparison with previous results

*L. Liu, K. Orginos, F.-K. Guo, C. Hanhart, and U.-G. Meissner, Phys. Rev. D 87, 014508 (2013), 1208.4535.

*M. Cleven, F.-K. Guo, C. Hanhart, and U.-G. Meissner, Eur. Phys. J. A 47, 19 (2011), 1009.3804.

Decay width of the $D^*_{s_0}(2317) \rightarrow D^+_s \pi^0$

 $t = \int \frac{d^4q}{(2\pi)^4} \frac{g_X g^2 c_1 (p - p_f + q)(p + p_f - q)}{\left[(p - q)^2 - m_2 + i\epsilon\right] \left[(q - p + p_f)^2 - M + i\epsilon\right] (q^2 - m_1 + i\epsilon)}$

Decay width of the $D^*_{s_0}(2317) \rightarrow D^+_s \pi^0$

$$t = \int \frac{d^4q}{(2\pi)^4} \frac{g_X g^2 c_1 (p - q)}{[(p - q)^2 - m_2 + i\epsilon]} \left[(q - q)^2 - m_2 + i\epsilon \right] \left[($$

 $-p_f + q)(p + p_f - q)$ $-p + p_f)^2 - M + i\epsilon \left[(q^2 - m_1 + i\epsilon) \right]$

 $\Gamma_{D_{s0}^*} = 128 \pm 40 \text{ KeV}$

- global fit.
- is predominantly molecular.
- our fit, could be a good test for this study.

The results of the HSC data analysis agree reasonably well with experiment, and with other previous LQCD studies on DK, suggesting the possibility of a

Our results suggest that the attractive DK interaction reduces with the charm quark mass, and becomes large for high pion masses. We obtain that this state

Future LQCD data analyses for different pion masses than the ones included in

