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Heavy Ion Collisions

s QuarkGluon Plasma Heavy Ion collisions are
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Parton Showers in a Coloured Medium

* Hard partons radiate until the
hadronisation scale —
Cascades provide a multi-scale

object
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Parton Showers in a Coloured Medium

* Hard partons radiate until the
hadronisation scale —
Cascades provide a multi-scale

object
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Parton Showers in a Coloured Medium

* Hard partons radiate until the
hadronisation scale —
Cascades provide a multi-scale
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Is jet quenching sensitive to the
ordering of vacuum-like
splittings?



First, a look at vacuum
(proton-proton) showers



QCD Vacuum Splittings

Estimate some scales:
o 1 E E

e Formation time: fform X — —
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QCD Vacuum Splittings

Estimate some scales:
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QCD Vacuum Splittings

Estimate some scales:

o 1 E E 1
* Formation time: tform X — — ~ —& ~ —5
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* Larger Ar

- Gluon cannot resolve the antenna legs
- Emission by the antenna as a whole

- Singlets cannot radiate



QCD Vacuum Splittings

Estimate some scales:

_ _ 1 E E 1
* Formation time: tform X — — ~ ~
m m
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* Transverse size: \| ~ — ~ — = teormb
K wo

Ab| ~ trorm ©

* Antennasize: Ab| ~ tiom©

tform

2

Foranantenna: )\ | < Ab, <— 06< 0B

* Larger Ar oo .
- Gluon cannot resolve the antenna legs This is the angular ordering property of

— Emission by the antenna as a whole vacuum splittings - Showers are collimated
- Singlets cannot radiate
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*Can be generalised

QCD Vacuum Splittings to non-singlets &

mutiple emissions

Estimate some scales:

o 1 E E 1
* Formation time: tform X — — ~ —& ~ —5
m p w6
, 1 1
 Transverse size: \| ~ PRl trormO Aby ~ tiom ©

* Antennasize: Ab| ~ tiom©

tform
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Foranantenna: )\ | < Ab, <— 06< 0B

* Larger Ar
- Gluon cannot resolve the antenna legs This is the angular ordering property of

— Emission by the antenna as a whole vacuum splittings - Showers are collimated
- Singlets cannot radiate
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How to build a parton shower

1)
¢0
\
¢0

9
9
Q9
\"‘
9
Q9

Splittings with decreasing scale 1



How to build a parton shower

Building blocks: QCD splittings
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How to build a parton shower

Splitting probability given by pQCD:
Building blocks: QCD splittings P Ip Y9 7 yP
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How to build a parton shower

Splitting probability given by pQCD:

Z
~~~~~~~~ ‘ ﬂﬁﬁﬁﬁﬁﬁﬁ o Cr du dz
\\ m™ U Z

[ >
L w+du

Building blocks: QCD splittings

Probability of not emitting until some scale S :

C Sprev d
A(Sprew 5) — exp{ “ —FR / 'LL / }
Zcut(ll') Z

> Yields the next emission scale s, given
Splittings with decreasing scale the previous scale Sprev
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Building differently ordered cascades

C v d
No-emission probability: A(Sprev. S) = exp{ . / " / z }
Zeut (1)

Splitting variables:

zE
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Building differently ordered cascades

C Sprev d
No-emission probability: A(Sprev. S) = exp{ . / " / z }
Zcut(u')

Interpretations for the scale: Splitting variables:

2 el | i
S—p° = ——
. P Z(l o Z) E M
(Virtuality) >
t. ,D2 L |preI’2 S\\
T form_f_ Ez(1—2z) (1-2)E

(Formation time)

2 2
P |prel| )
S— (= =
(Anglg EQZ(].—Z) (EZ(]_—Z)




Building differently ordered cascades

aCr [ d
No-emission probability: A(Sprev, S) = exp { R / Bl / }
Zcut(l-l') z
Interpretations for the scale: To generate a splitting:
2 ) zE
S N p2 — ‘preI’ p /
) ) Z(]. — Z) E —
(Virtuality) > Tprel — (1 o Z)k —Zq
2 2 p=k+gq
P . |preI’ \\
5—>tform—f— Ez(1—2) o (1-2)E
(Formation time)
o P2 _ Dol 2 1.Sample a scale from A(Sprey, S)
angle)  E2z(1— 2) Ez(1—2) 2. Sample a fraction from P(z) x 1/z

Ensure that |p.o|° > A\° 6



Building differently ordered cascades

L . aCg [ d
No-emission probability: A(Sprev, S) = exp { / s / }
Zcut(l-l') z
Interpretations for the scale: To generate a splitting:
2 |prel|2 K zE A
s — p? = / 1. Sample a scale from A(Sprev, S)
(Virtuality) Z(l _Z) p 2> Sample a fraction -
irtuali E — . ple a fraction from P(z) o 1/z
p2 1Dret|? < Tprel =(1-2)k-za  Ensure that |p,|* > N>
* 2 tam = E = E2(1 - 2) PR \\\
(Formation time) ) q (1-2)E
s— (= P

(Angle) E22(1 — Z)

a1 Py 2 Pz 34884 p,o 5 This results in the strong
ordering of scales
> > > >

S1 > S > S3 .- 7




Parton Shower Details T e

° ° L] L] C d
No-emission probability: A(Sprev, S) = eXp{ —~ / M/ z }
Zeut (W)




Parton Shower Details vl

° ° oge C e d
No-emission probability: A(Sprev, S) = eXp{ oK / M/ z }
Zcut(/J')

« Splittings must happen above an hadronisation scale: |pe|? > A

- This provides a soft cutoff: z > Z.u:(s)

/\2
e.g.: Formation time ordering |p.|* > A° <= z(1 — 2) > T
form
+ Initialisation condition for the shower: tiom < E Q A«M
————l tform,l

TS ~ 1/Ejet
8



Parton Shower Details vl

° ° oge C e d
No-emission probability: A(Sprev, S) = eXp{ oK / M/ z }
Zcut(/J')

» Splittings must happen above an hadronisation scale:  |p|* > A?

- This provides a soft cutoff: z > Z.u:(s)
/\2

e.g.: Formation time ordering |p.|* > A° <= z(1 — 2) > E

tform

* Initialisation condition for the shower: tfgrlm < E

P M
. > :
- For consistency (<4 = |pu| < £
between orderings: “ 2 q\A

(Enforced via retrials)  passless Limit: ¢ ~2(1 — cos) :




Results (Work in Progress)



Differences in Ordering Choices

Splittings along the quark branch

10°
—— tom
1O e F 5 ; } Z
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E —4 | o<t > tform
= 107 2
O | » D
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0012345678 9101112131415 The strictly decreasing scale is

Quark Branch Splittings

different for the three algorithms

Different orderings — Different

phase-space for allowed splittings 0



Differences in Ordering Choices ="« """ |

. Relative transverse momentum
Splittings along the quark branch

(15t splitting)
10° 10!
tf—l Eiee = 1000 GeV tf_orlm
10_1‘ 9 0 1 GQV/C < |prel| 2
I B R S p _ 10 - C<4 -------- p
S [ e S i1 Splitting 1~~~ q
2 Ejo = 1000 GeV £ 107
= 107 L GeV/e <pul =
z ' (<4 z2 1072
= 1074 =
o 1 @)
@) ' . (@) _3
10774 i 1079
1
100 - 107
012345678 9101112131415 0 100 200 300 400 500
Quark Branch Splittings Pyl [GeV/(]
Different Orderings — Different Transverse momentum distributions
L dp?
phase-space for allowed splittings follow B

prel 11



Lund Plane Densities
Consider the shower evolution along the quark branch:

|pr 1|
10810 Ge\/e/c
(\) wo W~

o =

*Exaggerated scale

= =
Counts / Total Events

H
3
W

12



Lund Plane Densities

. _ .
Consider the shower evolution along the quark branch: =~ “@99erated scale

—_
T
(N

Lund Plane Boundaries:

- Hadronisation: |Pre|| > 1GeV/c
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Counts / Total Events
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Lund Plane Densities

Consider the shower evolution along the quark branch:

*Exaggerated scale

-]

1 10722
Lund Plane Boundaries: q§
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Lund Plane Densities e e

*Exaggerated scale

Consider the shower evolution along the quark branch:

4 1072 £
Lund Plane Boundaries: q§
L3 -
E ; - Hadronisation: ~ |Prell > 1GeV/c =
Q| o 2 +
= 1077
= . - Angular cutoff: 2> /( -

o0
= . E 1 £
0 - Energy constraint: — > Ez(1 — z) = |p,e| — =
* Vellpid

o 1 2 3 4

1
logy NG

Shower evolution: Both transverse momentum and angle decrease.
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Lund Plane Densities
Consider the shower evolution along the quark branch:

*Exaggerated scale

4 10—255
g
|3 -
Sl h e
&§2 10—35
g1 2
0 2
0 1 2 3 40 1 2 3 40 1 9 3 4 W00

1 1 1

logy \TC logy W logyg ﬁ

Shower evolution: Both transverse momentum and angle decrease.
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Lund Plane Trajectories

I |prel‘
810\ Gov /c

2.5
¢ tf?n}m
* ¢
1.5 22.
F 4
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S
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Differences between
phase-space trajectories

- Uncertainty at DLA
Accuracy
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Inversions in Kinematic Variables

(~ 30% Events with time inversions)

Counts / Integral
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Location of first ¢, inversion in quark branch
Formation Time Inversions:

Splittings with a formation time shorter

that their immediate predecessor.




Inversions in Kinematic Variables

(~ 30% Events with time inversions)

100——
i B
L tforlm
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Splittings with a formation time shorter

that their immediate predecessor.

Counts / Integral

(~ 20% Events with  inversions)
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Inversions in Kinematic Variables

(~ 30% Events with time inversions)

Counts / Integral

Splittings with a formation time shorter

10V

1071

that their immediate predecessor.

—————

_____

P

1
—_

1

Ejer = 1000 GeV
1 GGV/C < |p1‘61’
(<4

—————1
1

Formation Time Inv

9 10 11 12 13 14 15
Location of first ¢, inversion in quark branch

ersions:

(~ 20% Events with  inversions)

10°

10—1<

Counts / Integral

10—5<

10—6<

1072
10—&

10—4<

(g -

—_——r——

Ejet = 1000 GeV
1 GGV/C < |prcl‘
(<4

1 29345678 9101112131415

Location of first ¢ inversion in quark branch

Angular inversions

Can this discrepancy translate into

differences in quenching magnitude?
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Now, a simple jet quenching model!



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition ™™™

‘{\/\ ¢<k2> Medium parameters (for a simple model):
) - Medium length: L
(k%)

< > - Transport coefficient: g ~ —
L

16



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition =~ "

‘3)\/\ ¢<k2> Medium parameters (for a simple model):
) - Medium length: L
(kT)

< > - Transport coefficient:  § ~ —
L

GeV/c
o Lo

|prel|

logy

-

logyg ﬁ
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Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition =~ "

‘H\/\ ¢<k2> Medium parameters (for a simple model):
} - Medium length: L
(k1)

< > - Transport coefficient:  § ~ B
L
4
; Eliminate event if
o
F= - Splitting is inside the medium: tform < L
B8 2
5 1
=

-

logyg ﬁ

16



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition ™™™

Medium parameters (for a simple model):
3 ) ,
- Medium length: L (k2)
< > - Transport coefficient: g ~ TL
L
4 Splitting 1 Ejet = 1000 GeV . . .
G Eliminate event if
o 3 eV/e < |pral . _
3= ¢ <4 - Splitting is inside the medium: tform < L
& 8 21 tf;im ordering
2 et - Splitting transverse momentum is
o0 1 A .
&S below medium scale:
0 P 2 A ~\—1/3
: ‘ : : |prel| <dq tform < (QC) / < tform
o 1 2 3 /4 N——
1 2‘—'dec
log,y—= Medium resolves splittings on
\/Z the (de)coherence time scale
- Daughters Iose energy (Not resolved) (Resolved)

individually (cf. antenna) @ _@
tform < tdec tdec < tform 16



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition ™™™

Medium parameters (for a simple model):
3 ) ,
- Medium length: L (k2)
< > - Transport coefficient: g ~ TL
L
4 Splitting 1 Ejet = 1000 GeV . . .
Eliminate event if
o 3] 1 GeV/e < |pyl
3= (<4 - Splitting is inside the medium: torm < L
& 8 21 tf;im ordering
S et - Splitting transverse momentum is
& 1 below medium scale:
0- 7 v 2 A t A _1/3 t
: - - - |prel| < (g lform <~— (QC) < Tlform
o 1 2 3 4 N——
1 tdec
logy —= Medium resolves splittings on
o \/Z the (de)coherence time scale
Eliminate events within this area: - paughters lose energy (Not resolved) (Resolved)

_ individually (cf. antenna : @ : @
PquenCh o @(L > thI’I’T'I > tdec) Y( ) trorm < Tdec tdec < tform 16



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition e sy e

Eliminate events within this area:

Pauench = O(L > tform > tdec) fdec = (@C)_l/g)

] ’prel|
©610 GeV/c
O W

o =

17



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition e sy e

Eliminate events within this area:

Pauench = O(L > tform > tdec) fdec = (@C)_l/g)

I ’prel|
810 Gev /c
DO w

S =

Two implementations:

gl T T

* Option 1: Apply only to first splitting

17



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition e sy e

Eliminate events within this area:

Pauench = O(L > tform > tdec) fdec = (@C)_l/g)

I ’prel|
810 Gev /c
DO w

S =

Two implementations:

LA

* Option 1: Apply only to first splitting
* Option 2: Apply to whole quark branch

17



Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)

Choosing a quenching condition e sy e

Eliminate events within this area:

7unench — @(L > tform > tdec) tdec — (@C)_l/s

Two implementations:

}g@g@:&

100y P
E _______ C . . . .
g 1oR > Be-tmGe * Option 1: Apply only to first splitting
= = 1 GeV/e < |prall .
g 0T e * Option 2: Apply to whole quark branch
S 10-2| Consider .

differently sized

1074 medium ‘bricks’
0 5 10

orm |/ €
tomn [fm/c] 18




(Not resolved) (Resolved)

Fraction of Quenched Events s

. . . . . Pquench - @(L > tform > tdec)
Percentage of events eliminated by the quenching condition

| Fie, = 1000 GeV
L - 4fm ] | 1 GQV/C < ‘prel‘
G = 1.5CeV?/fm S | (<4
7unench - (—)(L > Jfform > tdec)
All events
L =2fm | |
. 2
q = 25 GeV /frn N | tf;rlm
777 1
I — 1fm :
[ 1 Full shower
0 10 20 30
Increasing N quenched/ Neacuum (%)

quenching effects

19



Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

Ejer, = 1000 GeV
1 Ge\’F/C < ‘prel‘
(<4

Pqueuch - (_)(L > Jfform > tdec)

All events

—1
form

777 1
= ¢

[ 1 Full shower

L =4fm

G = 1.5CeV?/fm S

L =2fm

G = 2.5 GeV~/fm Y
L=1fm
) , A
q — 3.0 GeV“/fIn w-

0
Increasing

quenching effects

10

20

Nquenched/Nvacuum (%)

30

(Not resolved) (Resolved)

Pquench - e(L > tform > tdec)

Applying conditon to the first
splitting — Significant differences
in quenching between algorithms

Differences are seem to remain
(for larger L) when applying the
condition to the full quark branch.
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(Not resolved) (Resolved)

Fraction of Quenched Events s, Ml

. . . . . Pquench — e(L > tform > tdec)
Percentage of events eliminated by the quenching condition

Ejer = 1000 GeV . . .
. | || LV e < o Applying conditon to the first
§ = 1.5GeV /i | ¢ <4 splitting — Significant differences
Pasenen = O(L > trorm > Tac) in quenching between algorithms
All events
L =21im ||
q =25 Gevz/ fm SRR o . .
= | S Homn Differences are seem to remain
e P (for larger L) when applying the
. 2 e ¢ condition to the full quark branch.
[ 1 Full shower
0 10 20 30 . . .
Increasing Nt/ Nescunm (%) What role do time-inversions play

quenching effects

in these quenching differences?
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(Not resolved) (Resolved)

Fraction of Quenched Events s

Discarding time-inverted events from the samples: Pauencn = O(L > tiom > tiec)
(Ad-hoc ‘cut’) .
A **% All events with at least one
| Ejo, = 1000 GeV time-inverted splitting are
L =4fm 1 GeV/e < |pyal i
i = 15GV /i | | C<d removed before applying the
o N |

7D(uench = (—)(L > tiorm > tdec) quenChing mOdEI

Time inversions excluded

L =2fm l
G = 2.5GeV*/fm

o 41
3 thrm

77 v
g ] p

L=1fm
1 ;| ¢

[ 1 Full shower

0 10 20 30
Increasing N, quenched/ Nyacuum (%)
quenching effects

20



Fraction of Quenched Events

Discarding time-inverted events from the samples:

(Ad-hoc ‘cut’)

‘ | Fier = 1000 GeV
L = 4hn ) | 1 Ge\’F/C < ‘prel‘
. 2 y
¢ =15GeV7/fm y (<4
P( uench — (_)(L > Jfform > tdec)
Time inversions excluded
L =2fm
G =25GeV/fim g o
777 1
L =1fm i
G = 3.0 GeV?/fm ¢
N
[ 1 Full shower
0 10 20 30
Increasing Nquenched/Nvacuum (%)

quenching effects

(Not resolved) (Resolved)

Pquench - e(L > tform > tdec)

*** All events with at least one
time-inverted splitting are
removed before applying the

quenching model

For angular ordered showers:
—> ( strictly decreasing
=> Tdec strictly increasing
—> No time inversions - less quenched
phase-space
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Fraction of Quenched Events

Discarding time-inverted events from the samples:

(Ad-hoc ‘cut’)

‘ | Fier = 1000 GeV
L = 4hn ) | 1 Ge\’F/C < ‘prel‘
A 4 E 2 <4
¢ =15GeV7/fm y | ¢
P( uench — (_)(L > Jfform > tdec)
Time inversions excluded
L =2fm ||
~ 2 . B
¢ =25GeV*/fm o
777 1
L=1fm
G = 3.0 GeV?/fm ¢
N
[ 1 Full shower
0 10 20 30
Increasing Nquenched/Nvacuum (%)

quenching effects

(Not resolved) (Resolved)

Pquench - e(L > tform > tdec)

*** All events with at least one
time-inverted splitting are
removed before applying the

quenching model

For angular ordered showers:
—> ( strictly decreasing
=> Tdec strictly increasing
—> No time inversions - less quenched
phase-space

This is only one way of preventing inversions!
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(Not resolved) (Resolved)

Fraction of Quenched Events e Ml et

Vetoing the time-inversions by retrial: Pavench = O(L > torm > toec)
(Phase-space is adjusted splitting by splitting)
A *** Time-inverted splittings are
| Ejer = 1000 GeV re-tried while generating the
L:4fm ] | 1G€v/c<‘prel‘ Shower
qg= 1.5Ge\/2/fm S | <4

7unench - (—)(L > Jfform > tdec)

Time inversions vetoed
L =2fm | All events

A 9 ]
g = 2.5GeV*/fm Y

| 2 i
777 1°
L =1fm i P
7 1 ;| ¢

ull snower

0 10 20 30
Increasing N, quenched/ Nyacuum (%)
quenching effects
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(Not resolved) (Resolved)

Fraction of Quenched Events s

Vetoing the time-inversions by retrial: Pavench = O(L > torm > toec)
(Phase-space is adjusted splitting by splitting)
A *** Time-inverted splittings are
| Ejer = 1000 GeV re-tried while generating the
L:4fm ] | 1G€v/c<‘prel‘ Shower
QzlSGeVZ/me | <4

7unench - (—)(L > Jfform > tdec)

Time inversions vetoed

| , Fraction of quenched events
L =2fm All events ]

remains levelled across
algorithms for the ‘Full Branch'’

. 2 /¢ ] -
G = 2.5GeV*=/fm N tforlm

P’ .
L=1fm i condition
i = 3.0 GeV?/i — ¢
4=tV M . _
[ 1 Full shower Warnlnlg' Pha:)e Splace altered
- - splitting-by-splittin
Increasing Nquenched/ Nyacuum (%)

quenching effects

21



Fraction of Quenched Events

Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)

| Fie, = 1000 GeV
L - 4hn | 1 Ge\’F/C < ‘prel‘
G = 1.5GeV? /fm | ¢<4
Pqueuch - (_)(L > Jfform > tdec)
Time inversions vetoed
L =2fm || All events
G = 2.5GeV*/fm | e L
777 1
L =1fm i
Y /I ] ¢
q — o.L (& / 1m :l
[ 1 Full shower
0 10 20 30
Increasing Nquenched/Nvacuum (%)

quenching effects

(Not resolved) (Resolved)

Pquench - e(L > tform > tdec)

*** Time-inverted splittings are
re-tried while generating the
shower

Fraction of quenched events
remains levelled across
algorithms for the ‘Full Branch'’
condition

Warning: Phase-space altered
splitting-by-splitting

The implementation details of the jet interface with a time-evolving medium are crucial!
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Summary
* A toy Monte Carlo parton shower was developed:

* To explore differences between ordering algorithms.

* Aiming at a framework for time-ordered in-medium emissions.
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Summary
* A toy Monte Carlo parton shower was developed:

* To explore differences between ordering algorithms.
* Aiming at a framework for time-ordered in-medium emissions.

* The details of how jets interface with a time-evolving medium impact
guenching magnitude.

* These models do not incorporate medium dilution, differential energy
loss. Only vacuum-like emissions are incorporated.

* Quenching differences are large for the 1stsplitting -
Important for initial stages
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Summary
* A toy Monte Carlo parton shower was developed:

* To explore differences between ordering algorithms.
* Aiming at a framework for time-ordered in-medium emissions.

* The details of how jets interface with a time-evolving medium impact
guenching magnitude.

* These models do not incorporate medium dilution, differential energy
loss. Only vacuum-like emissions are incorporated.

* Quenching differences are large for the 1stsplitting -
Important for initial stages
| - Thanks!
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Without the consistency condition

10° 10°
B = 1000 GeV  —— tp) B = 1000 GeV  —— to 1
10—1 1 GE‘V/C < |prcl| p2 1071_ 1 GGV/C < |prcll p2
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tol [GeV /hc] ¢

If the condition < 4 is used simply to initialise the angular shower, the time and
angle distributions do not behave consistently across algorithms
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With the consistency condition

10° 10°
B = 1000 GeV  —— tp) B = 1000 GeV  —— to 1
10—1_ 1 GEV/C < |prcl| p2 1071_ 1 GGV/C < |prc1| p2
(<4 — ¢ (<4 — ¢
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= 10 2 10
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0 200 400 600 800 1000 1200 1400 0.0 05 1.0 1.5 20 25 30 35 40 45 50 55 6.0
tol [GeV /hc] ¢

When the condition ( <4 is used as a veto for all emissions, the distributions
become consistent.



Excluding time inversions - 1D Distributions

Counts / Integral

10°

Ejee = 1000 GeV
1 GBV/C < |prel|
(<4

Time inversions excluded

....................

0123456789 1011121314151617181920
Quark Branch Splittings

Counts / Integral

101!

ot
-
=

r—l
S
L

—
=
8]

—_
=
[IV]

H
<
N

Eip = 1000 GeV
1 GeV/e < [pyal
(<4

Splitting 1

Time inversions excluded

100 200 300
|prel | [G@V/C]

400

500

27



Inclusive Sample - 1D Distributions

Counts / Integral

10"
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10794

Ejee = 1000 GeV
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Splitting 1~~~ ¢

0 100 200 300 400 500
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Vetoing time inversions - 1D Distributions

Counts / Integral
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Excluding time inversions - Lund Planes

*Ordered in angle

|prell

10810 GeV/c

b W =

1

-

R

log) —= \/— log ) —= \/— logyy—= \/—

102

—_
D
':.JJ

—_
D
,.p..

Counts / Total Events
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Inclusive Sample - Lund Planes

*Ordered in angle
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Vetoing time inversions - Lund Planes

*Ordered in angle

3 4 0 1

10%10 \/— 10810 \/— 10%10 \/—

1072 &

|pr ]l
10810 Ge\;/ C
N} () =

-

5
Counts / Total Events

—_
D
P|~_~..

32



Quenching Weights

Eiee = 1000 GeV, A = 1 GeV

Eje: = 500 GeV

Very Preliminary!

A=0.1GeV
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== N
L=1fm %
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77
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Ejoy = 1000 GeV
0.1 G(‘V/C < |pr('1|
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Pqul‘nch = (—)(L > tform > tdo()

All events
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Full shower
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100 0
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90 100 0

10

20

30 40 50 60 70 80 90
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An apparent dependence on the hadronisation cutoff and initial jet energy

100
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Very Preliminary!

Quenching Weights - Radius Cut

Ejec = 1000 GeV, A = 1 GeV Ejec = 500 GeV

A=0.1GeV

L=4fm

f_ V2 /g
¢ =15GeV"/im 'y
L =2fm
A 2 . -
G =2.5GeV*/fm N
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0 10
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30 40 50 60 70 80 90 100
N, qucnc-hcd/ N, vacuum (%)

Cut all events whose quark branch has a splitting wider than Rmax = 0.2
- This defines the new vacuum sample, and the quenching model is applied

on top of this cut

An aggressive cut, but it returns independence of Ej.: and A.
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