Parton cascades at DLA: the role of the evolution variable

André Cordeiro

In collaboration with:
Carlota Andrés, Liliana Apolinário, Nestor Armesto, Fabio Dominguez, Guilherme Milhano

Heavy Ion Collisions

The spacetime evolution of QCD matter covers a wide range of time/energy scales

Heavy Ion collisions are valuable as a laboratory to study the QCD phase diagram

Parton Showers in a Coloured Medium

- Hard partons radiate until the hadronisation scale \rightarrow Cascades provide a multi-scale object

Parton Showers in a Coloured Medium

- Hard partons radiate until the hadronisation scale \rightarrow Cascades provide a multi-scale object
- Time-ordered picture needed for medium interface with the cascade

Parton Showers in a Coloured Medium

- Hard partons radiate until the hadronisation scale \rightarrow Cascades provide a multi-scale object
- Time-ordered picture needed for medium interface with the cascade

Is jet quenching sensitive to the ordering of vacuum-like splittings?

First, a look at vacuum (proton-proton) showers

QCD Vacuum Splittings

Estimate some scales:

- Formation time: $t_{\text {form }} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^{2}} \sim \frac{1}{\omega \theta^{2}}$

QCD Vacuum Splittings

Estimate some scales:

- Formation time: $t_{\text {form }} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^{2}} \sim \frac{1}{\omega \theta^{2}}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}=t_{\text {form }} \theta$

$\stackrel{t_{\text {form }}}{\longrightarrow}$

QCD Vacuum Splittings

Estimate some scales:

- Formation time: $t_{\text {form }} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^{2}} \sim \frac{1}{\omega \theta^{2}}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}=t_{\text {form }} \theta$
- Antenna size: $\quad \Delta b_{\perp} \sim t_{\text {form }} \Theta$

$$
\stackrel{t_{\text {form }}}{\longmapsto}
$$

QCD Vacuum Splittings

Estimate some scales:

- Formation time: $t_{\text {form }} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^{2}} \sim \frac{1}{\omega \theta^{2}}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}=t_{\text {form }} \theta$
- Antenna size: $\quad \Delta b_{\perp} \sim t_{\text {form }} \Theta$

For an antenna: $\quad \lambda_{\perp}<\Delta b_{\perp} \Longleftrightarrow \theta<\Theta$

$$
\longmapsto \xrightarrow{t_{\text {form }}}
$$

* Larger λ_{T}
\rightarrow Gluon cannot resolve the antenna legs
\rightarrow Emission by the antenna as a whole
\rightarrow Singlets cannot radiate

QCD Vacuum Splittings

Estimate some scales:

- Formation time: $t_{\text {form }} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^{2}} \sim \frac{1}{\omega \theta^{2}}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}=t_{\text {form }} \theta$

- Antenna size: $\quad \Delta b_{\perp} \sim t_{\text {form }} \Theta$

For an antenna: $\quad \lambda_{\perp}<\Delta b_{\perp} \Longleftrightarrow \theta<\Theta$

* Larger λ_{T}
\rightarrow Gluon cannot resolve the antenna legs
\rightarrow Emission by the antenna as a whole
\rightarrow Singlets cannot radiate
This is the angular ordering property of vacuum splittings \rightarrow Showers are collimated
*Can be generalised to non-singlets \& mutiple emissions

Estimate some scales:

- Formation time: $t_{\text {form }} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^{2}} \sim \frac{1}{\omega \theta^{2}}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta}=t_{\text {form }} \theta$
- Antenna size: $\quad \Delta b_{\perp} \sim t_{\text {form }} \Theta$

For an antenna: $\quad \lambda_{\perp}<\Delta b_{\perp} \Longleftrightarrow \theta<\Theta$

$$
\stackrel{\text { toom }}{\text { tol }}
$$

* Larger $\boldsymbol{\lambda}_{\text {T }}$
\rightarrow Gluon cannot resolve the antenna legs
\rightarrow Emission by the antenna as a whole
\rightarrow Singlets cannot radiate

This is the angular ordering property of vacuum splittings \rightarrow Showers are collimated

How to build a parton shower

Splittings with decreasing scale μ

How to build a parton shower

Building blocks: QCD splittings

How to build a parton shower

Building blocks: QCD splittings

Splitting probability given by PQCD:

How to build a parton shower

Building blocks: QCD splittings

Splitting probability given by PQCD :

Probability of not emitting until some scale S :

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Yields the next emission scale s, given the previous scale $S_{\text {prev }}$

Building differently ordered cascades

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Splitting variables:

Building differently ordered cascades

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Interpretations for the scale:

$$
\begin{aligned}
& s \rightarrow p^{2}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{z(1-z)} \\
& \underset{\text { (Virtuality) }}{s \rightarrow t_{\text {form }}^{-1}}=\frac{p^{2}}{E}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{E z(1-z)}
\end{aligned}
$$

Splitting variables:

$$
\underset{\text { (Angle) }}{\rightarrow \rightarrow}=\frac{p^{2}}{E^{2} z(1-z)}=\left(\frac{\left|\boldsymbol{p}_{\text {rel }}\right|}{E z(1-z)}\right)^{2}
$$

Building differently ordered cascades

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Interpretations for the scale:

$$
\begin{aligned}
& \underset{\text { (Virtuality) }}{s \rightarrow p^{2}}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{z(1-z)} \\
& s \rightarrow t_{\text {form }}^{-1}=\frac{p^{2}}{E}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{E z(1-z)}
\end{aligned}
$$

To generate a splitting:

$$
\underset{\text { (Angle) }}{s \rightarrow}=\frac{p^{2}}{E^{2} z(1-z)}=\left(\frac{\left|p_{\mathrm{ree}}\right|}{E z(1-z)}\right)^{2}
$$

1. Sample a scale from $\Delta\left(s_{\text {prev }}, s\right)$
2. Sample a fraction from $\hat{P}(z) \propto 1 / z$ Ensure that $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$

Building differently ordered cascades

$$
\text { No-emission probability: } \quad \Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\mathrm{prev}}} \frac{\mathrm{~d} \mu}{\mu} \int_{z_{\mathrm{cut}}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Interpretations for the scale:
To generate a splitting:

$$
\begin{aligned}
& \underset{\text { (Virtuality) }}{s \rightarrow p^{2}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{z(1-z)}} \begin{array}{l}
s \rightarrow t_{\text {form }}^{-1}=\frac{p^{2}}{E}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{E z(1-z)}
\end{array} . \begin{array}{l}
\text { (Formation time) }
\end{array} n^{2}
\end{aligned}
$$

$$
\underset{\text { (Angle) }}{s \rightarrow} \zeta=\frac{p^{2}}{E^{2} z(1-z)}
$$

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

- Splittings must happen above an hadronisation scale: $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$
- This provides a soft cutoff: $\quad z>z_{\text {cut }}(s)$
e.g.: Formation time ordering $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2} \Longleftrightarrow z(1-z)>\frac{\Lambda^{2}}{t_{\text {form }}^{-1} E}$
- Initialisation condition for the shower: $t_{\text {form }}^{-1}<E$

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\mathrm{cut}}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

- Splittings must happen above an hadronisation scale: $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$
- This provides a soft cutoff: $\quad z>z_{\text {cut }}(s)$
e.g.: Formation time ordering $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2} \Longleftrightarrow z(1-z)>\frac{\Lambda^{2}}{t_{\text {form }}^{-1} E}$
- Initialisation condition for the shower: $t_{\text {form }}^{-1}<E$
- For consistency between orderings:

$$
\zeta<4 \Longrightarrow\left|p_{\text {rel }}\right|<\frac{E}{2}
$$

(Enforced via retrials)

Results (Work in Progress)

Differences in Ordering Choices

Splittings along the quark branch

The strictly decreasing scale is different for the three algorithms

Different orderings \rightarrow Different phase-space for allowed splittings

Differences in Ordering Choices

Splittings along the quark branch

Different orderings \rightarrow Different phase-space for allowed splittings

Relative transverse momentum (1 ${ }^{\text {st }}$ splitting)

Transverse momentum distributions follow $\frac{\mathrm{d} p_{\text {rel }}^{2}}{p_{\text {rel }}^{2}}$

Lund Plane Densities

Consider the shower evolution along the quark branch:
*Exaggerated scale

Lund Plane Densities

Consider the shower evolution along the quark branch:

Lund Plane Densities

Consider the shower evolution along the quark branch:

Lund Plane Densities

Consider the shower evolution along the quark branch:

Shower evolution: Both transverse momentum and angle decrease.

Lund Plane Densities

Consider the shower evolution along the quark branch:

Shower evolution: Both transverse momentum and angle decrease.

Lund Plane Trajectories

Differences between phase-space trajectories
 \rightarrow Uncertainty at DLA Accuracy

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their immediate predecessor.

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their immediate predecessor.

Angular inversions

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their immediate predecessor.

Angular inversions

Can this discrepancy translate into differences in quenching magnitude?

Now, a simple jet quenching model!

Choosing a quenching condition

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient: $\quad \hat{q} \sim \frac{\left\langle k_{\perp}^{2}\right\rangle}{\lambda}$

Choosing a quenching condition

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient: $\quad \hat{q} \sim \frac{\left\langle k_{\perp}^{2}\right\rangle}{\lambda}$

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient: $\quad \hat{q} \sim \frac{\left\langle k_{\perp}^{2}\right\rangle}{\lambda}$

Eliminate event if

- Splitting is inside the medium: $t_{\text {form }}<L$

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient:

$$
\hat{q} \sim \frac{\left\langle k_{\perp}^{2}\right\rangle}{\lambda}
$$

Eliminate event if

- Splitting is inside the medium: $t_{\text {form }}<L$
- Splitting transverse momentum is
below medium scale:

$$
\left|\boldsymbol{p}_{\text {rel }}\right|^{2}<\hat{q} t_{\text {form }} \Longleftrightarrow \underbrace{(\hat{q} \zeta)^{-1 / 3}}_{t_{\text {dec }}}<t_{\text {form }}
$$

Medium resolves splittings on
the (de)coherence time scale
\rightarrow Daughters lose energy
individually (cf. antenna)

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient:

$$
\hat{q} \sim \frac{\left\langle k_{\perp}^{2}\right\rangle}{\lambda}
$$

Eliminate event if

- Splitting is inside the medium: $t_{\text {form }}<L$
- Splitting transverse momentum is
below medium scale:

$$
\left|\boldsymbol{p}_{\text {rel }}\right|^{2}<\hat{q} t_{\text {form }} \Longleftrightarrow \underbrace{(\hat{q} \zeta)^{-1 / 3}}_{t_{\text {dec }}}<t_{\text {form }}
$$

Medium resolves splittings on
the (de)coherence time scale
\rightarrow Daughters lose energy
individually (cf. antenna)

Choosing a quenching condition

Eliminate events within this area:

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\mathrm{dec}}\right) \quad t_{\mathrm{dec}}=(\hat{q} \zeta)^{-1 / 3}
$$

Choosing a quenching condition

Eliminate events within this area:

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\mathrm{dec}}\right) \quad t_{\mathrm{dec}}=(\hat{q} \zeta)^{-1 / 3}
$$

Two implementations:

- Option 1: Apply only to first splitting

Choosing a quenching condition

Eliminate events within this area:

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\mathrm{dec}}\right) \quad t_{\mathrm{dec}}=(\hat{q} \zeta)^{-1 / 3}
$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Choosing a quenching condition

Eliminate events within this area:

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\mathrm{dec}}\right) \quad t_{\mathrm{dec}}=(\hat{q} \zeta)^{-1 / 3}
$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

quenching effects

Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Applying conditon to the first splitting \rightarrow Significant differences in quenching between algorithms

Differences are seem to remain (for larger L) when applying the condition to the full quark branch.

Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Applying conditon to the first splitting \rightarrow Significant differences in quenching between algorithms

Differences are seem to remain (for larger L) when applying the condition to the full quark branch.

What role do time-inversions play in these quenching differences?

Fraction of Quenched Events

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

Fraction of Quenched Events

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Discarding time-inverted events from the samples:
(Ad-hoc 'cut')

*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers: $\Rightarrow \zeta$ strictly decreasing
$\Rightarrow \mathrm{t}_{\text {dec }}$ strictly increasing
\Rightarrow No time inversions \rightarrow less quenched phase-space

Fraction of Quenched Events

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Discarding time-inverted events from the samples:
(Ad-hoc 'cut')

*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers: $\Rightarrow \zeta$ strictly decreasing
$\Rightarrow \mathrm{t}_{\text {dec }}$ strictly increasing
\Rightarrow No time inversions \rightarrow less quenched phase-space

Increasing quenching effects

Fraction of Quenched Events

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Vetoing the time-inversions by retrial:
(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Fraction of Quenched Events

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Vetoing the time-inversions by retrial:
(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Fraction of quenched events remains levelled across algorithms for the 'Full Branch' condition

Warning: Phase-space altered splitting-by-splitting

Fraction of Quenched Events

$$
\mathcal{P}_{\text {quench }}=\Theta\left(L>t_{\text {form }}>t_{\text {dec }}\right)
$$

Vetoing the time-inversions by retrial:
(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Fraction of quenched events remains levelled across algorithms for the 'Full Branch' condition

Warning: Phase-space altered splitting-by-splitting
quenching effects
The implementation details of the jet interface with a time-evolving medium are crucial!

Summary

Summary

- A toy Monte Carlo parton shower was developed:
- To explore differences between ordering algorithms.
- Aiming at a framework for time-ordered in-medium emissions.

Summary

- A toy Monte Carlo parton shower was developed:
- To explore differences between ordering algorithms.
- Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
- These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
- Quenching differences are large for the $1^{\text {st }}$ splitting \rightarrow Important for initial stages

Summary

- A toy Monte Carlo parton shower was developed:
- To explore differences between ordering algorithms.
- Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
- These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
- Quenching differences are large for the $1^{\text {st }}$ splitting \rightarrow Important for initial stages

Acknowledgements

Fundação para a Ciência e a Tecnologia

Backup Slides

Without the consistency condition

If the condition $\zeta<4$ is used simply to initialise the angular shower, the time and angle distributions do not behave consistently across algorithms

With the consistency condition

When the condition $\zeta<4$ is used as a veto for all emissions, the distributions become consistent.

Excluding time inversions - 1D Distributions

Inclusive Sample - 1D Distributions

Vetoing time inversions - 1D Distributions

Excluding time inversions - Lund Planes

*Ordered in angle

Inclusive Sample - Lund Planes

*Ordered in angle

Vetoing time inversions - Lund Planes

*Ordered in angle

Quenching Weights

Very Preliminary!
$\mathrm{E}_{\text {jet }}=1000 \mathrm{GeV}, \Lambda=1 \mathrm{GeV}$

$\mathrm{E}_{\text {jet }}=\mathbf{5 0 0} \mathbf{~ G e V}$

$$
\Lambda=0.1 \mathrm{GeV}
$$

An apparent dependence on the hadronisation cutoff and initial jet energy

Quenching Weights - Radius Cut

Very Preliminary!

$$
\mathrm{E}_{\mathrm{jet}}=1000 \mathrm{GeV}, \Lambda=1 \mathrm{GeV}
$$

$$
\mathrm{E}_{\mathrm{jet}}=500 \mathrm{GeV}
$$

$\Lambda=0.1 \mathrm{GeV}$

Cut all events whose quark branch has a splitting wider than $\mathbf{R}_{\max }=0.2$

- This defines the new vacuum sample, and the quenching model is applied on top of this cut

An aggressive cut, but it returns independence of $\mathrm{E}_{\mathrm{jet}}$ and Λ.

