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Heavy Ion collisions are 
valuable as a laboratory to 

study the QCD phase diagram

The spacetime evolution of QCD 
matter covers a wide range of 

time/energy scales
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Parton Showers in a Coloured Medium
● Hard partons radiate until the 

hadronisation scale  →
Cascades provide a multi-scale 
object
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Parton Showers in a Coloured Medium
● Hard partons radiate until the 

hadronisation scale  →
Cascades provide a multi-scale 
object

● Time-ordered picture needed 
for medium interface with the 
cascade

Is jet quenching sensitive to the 
ordering of vacuum-like 

splittings?
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First, a look at vacuum 
(proton-proton) showers



  

QCD Vacuum Splittings
Estimate some scales:
● Formation time: 

B Θ

θ

tform

λ⊥ ∼
1

k⊥

∆b⊥ ∼ tformΘ● Transverse size:

● Antenna size:
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QCD Vacuum Splittings
Estimate some scales:
● Formation time: 

B Θ

θ

tform

λ⊥ ∼
1

k⊥

∆b⊥ ∼ tformΘ

For an antenna:

This is the angular ordering property of 
vacuum splittings  Showers are collimated→

● Transverse size:

● Antenna size:

* Larger λT 
 Gluon cannot resolve the antenna legs →
 Emission by the antenna as a whole→
 Singlets cannot radiate→

*Can be generalised 
to non-singlets & 
mutiple emissions
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How to build a parton shower

Splittings with decreasing scale
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How to build a parton shower
Building blocks: QCD splittings

Splitting probability given by pQCD:

Splittings with decreasing scale

Probability of not emitting until some scale      :

Yields the next emission scale     , given 
the previous scale 
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Splitting variables:

Building differently ordered cascades
No-emission probability:

s

E

zE

(1− z)E
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Splitting variables:

Building differently ordered cascades
No-emission probability:

Interpretations for the scale: To generate a splitting:

(Formation time)

(Angle)

(Virtuality)
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Splitting variables:

Building differently ordered cascades
No-emission probability:

Interpretations for the scale: 

(Formation time)

(Angle)

(Virtuality)

1. Sample a scale from 
2. Sample a fraction from
Ensure that 

E

zE

(1− z)E

p

q

k

To generate a splitting:

This results in the strong 
ordering of scales
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Parton Shower Details
No-emission probability:
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Parton Shower Details

● Splittings must happen above an hadronisation scale:

No-emission probability:

- This provides a soft cutoff:

e.g.: Formation time ordering

● Initialisation condition for the shower:
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p

q

k

Parton Shower Details

● Splittings must happen above an hadronisation scale:

No-emission probability:

- This provides a soft cutoff:

e.g.: Formation time ordering

● Initialisation condition for the shower:

- For consistency 
between orderings:

(Enforced via retrials)
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Results (Work in Progress)



  

Differences in Ordering Choices
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Inversions in Kinematic Variables

Formation Time Inversions: 
Splittings with a formation time shorter 

that their immediate predecessor.
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Can this discrepancy translate into 
differences in quenching magnitude?

Angular inversions

(~ 30% Events with time inversions) (~ 20% Events with ζ inversions)

14 / 
35



Now, a simple jet quenching model!



  

Choosing a quenching condition
Medium parameters (for a simple model):

– Medium length:
– Transport coefficient:

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)
Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015
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Medium parameters (for a simple model):
– Medium length:
– Transport coefficient:

Eliminate event if
– Splitting is inside the medium:
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Medium parameters (for a simple model):
– Medium length:
– Transport coefficient:

Eliminate event if
– Splitting is inside the medium:

– Splitting transverse momentum is 
below medium scale:

Medium resolves splittings on 
the (de)coherence time scale

 Daughters lose energy →
individually (cf. antenna)

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011)
Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

(Not resolved) (Resolved)
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Two implementations:
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● Option 1: Apply only to first splitting 
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Two implementations:
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differently sized 
medium ‘bricks’

L

Choosing a quenching condition

● Option 1: Apply only to first splitting 
● Option 2: Apply to whole quark branch

Two implementations:
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Fraction of Quenched Events
Percentage of events eliminated by the quenching condition

(Not resolved) (Resolved)

Increasing 
quenching effects

19 / 
35



  

Fraction of Quenched Events
Percentage of events eliminated by the quenching condition

Applying conditon to the first 
splitting  Significant differences →
in quenching between algorithms

Differences are seem to remain 
(for larger L) when applying the 

condition to the full quark branch.

(Not resolved) (Resolved)

Increasing 
quenching effects

19 / 
35



  

Fraction of Quenched Events
Percentage of events eliminated by the quenching condition

Applying conditon to the first 
splitting  Significant differences →
in quenching between algorithms

Differences are seem to remain 
(for larger L) when applying the 

condition to the full quark branch.

What role do time-inversions play 
in these quenching differences?
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Fraction of Quenched Events
Discarding time-inverted events from the samples:
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*** All events with at least one 

time-inverted splitting are 
removed before applying the 
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time-inverted splitting are 
removed before applying the 

quenching model

For angular ordered showers:
      → strictly decreasing 
             → strictly increasing
  → No time inversions  less quenched →

phase-space

Increasing 
quenching effects

This is only one way of preventing inversions!
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Fraction of Quenched Events
Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)
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Fraction of Quenched Events
Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)
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● These models do not incorporate medium dilution, differential energy 
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Without the consistency condition

If the condition ζ < 4 is used simply to initialise the angular shower, the time and 
angle distributions do not behave consistently across algorithms
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With the consistency condition

When the condition ζ < 4 is used  as a veto for all emissions, the distributions 
become consistent.
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Excluding time inversions – 1D Distributions
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Inclusive Sample – 1D Distributions
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Vetoing time inversions – 1D Distributions
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Excluding time inversions – Lund Planes
*Ordered in angle
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Inclusive Sample – Lund Planes
*Ordered in angle
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Vetoing time inversions – Lund Planes
*Ordered in angle
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Quenching Weights
Ejet = 1000 GeV, Λ = 1 GeV

An apparent dependence on the hadronisation cutoff and initial jet energy

Ejet = 500 GeV Λ = 0.1 GeV

Very Preliminary!
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Quenching Weights – Radius Cut
Ejet = 1000 GeV, Λ = 1 GeV

Cut all events whose quark branch has a splitting wider than Rmax = 0.2
- This defines the new vacuum sample, and the quenching model is applied 
on top of this cut

An aggressive cut, but it returns independence of Ejet and Λ.

Ejet = 500 GeV Λ = 0.1 GeV

Very Preliminary!
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