Parton cascades at DLA: the role of the evolution variable

André Cordeiro

In collaboration with:

Carlota Andrés, Liliana Apolinário, Nestor Armesto, Fabio Dominguez, Guilherme Milhano

Heavy Ion Collisions

The spacetime evolution of QCD matter covers a wide range of time/energy scales

Heavy Ion collisions are valuable as a laboratory to study the QCD phase diagram

Parton Showers in a Coloured Medium

 Hard partons radiate until the hadronisation scale → <u>Cascades provide a multi-scale</u> <u>object</u>

Parton Showers in a Coloured Medium

- Hard partons radiate until the hadronisation scale → <u>Cascades provide a multi-scale</u> <u>object</u>
- Time-ordered picture needed for medium interface with the cascade

Parton Showers in a Coloured Medium

- Hard partons radiate until the hadronisation scale → <u>Cascades provide a multi-scale</u> <u>object</u>
- Time-ordered picture needed for medium interface with the cascade

Is jet quenching sensitive to the ordering of vacuum-like splittings?

First, a look at vacuum (proton-proton) showers

Estimate some scales:

• Formation time: $t_{\rm form} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^2} \sim \frac{1}{\omega \theta^2}$

Estimate some scales:

- Formation time: $t_{\rm form} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^2} \sim \frac{1}{\omega \theta^2}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta} = t_{\mathsf{form}} \theta$

Estimate some scales:

- Formation time: $t_{\rm form} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^2} \sim \frac{1}{\omega \theta^2}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta} = t_{\mathsf{form}} \theta$
- Antenna size: $\Delta b_{\perp} \sim t_{\rm form} \Theta$

Estimate some scales:

- Formation time: $t_{\rm form} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^2} \sim \frac{1}{\omega \theta^2}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta} = t_{\mathsf{form}} \theta$
- Antenna size: $\Delta b_{\perp} \sim t_{\rm form} \Theta$

For an antenna: $\lambda_{\perp} < \Delta b_{\perp} \iff \theta < \Theta$

- * Larger λ_T
- → Gluon cannot resolve the antenna legs
- → Emission by the antenna as a whole
- → Singlets cannot radiate

Estimate some scales:

- Formation time: $t_{\rm form} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^2} \sim \frac{1}{\omega \theta^2}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta} = t_{\mathsf{form}} \theta$
- Antenna size: $\Delta b_{\perp} \sim t_{\rm form} \Theta$

For an antenna:
$$\lambda_{\perp} < \Delta b_{\perp} \iff \theta < \Theta$$

- * Larger λ_™
- → Gluon cannot resolve the antenna legs
- → Emission by the antenna as a whole
- → Singlets cannot radiate

This is the <u>angular ordering</u> property of vacuum splittings → Showers are collimated

*Can be generalised to non-singlets & mutiple emissions

Estimate some scales:

- Formation time: $t_{\rm form} \propto \frac{1}{m} \frac{E}{m} \sim \frac{E}{p^2} \sim \frac{1}{\omega \theta^2}$
- Transverse size: $\lambda_{\perp} \sim \frac{1}{k_{\perp}} \sim \frac{1}{\omega \theta} = t_{\rm form} \theta$
- Antenna size: $\Delta b_{\perp} \sim t_{\rm form} \Theta$

For an antenna:
$$\lambda_{\perp} < \Delta b_{\perp} \iff \theta < \Theta$$

- * Larger λ_™
- → Gluon cannot resolve the antenna legs
- → Emission by the antenna as a whole
- → Singlets cannot radiate

This is the <u>angular ordering</u> property of vacuum splittings → Showers are collimated

Splittings with decreasing scale μ

Building blocks: QCD splittings

Building blocks: QCD splittings

Splitting probability given by pQCD:

Building blocks: QCD splittings

Splittings with decreasing scale μ

Splitting probability given by pQCD:

Probability of not emitting until some scale S:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Yields the next emission scale s, given the previous scale s_{prev}

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_{s}^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^{1} \frac{\mathrm{d}z}{z}\right\}$$

Splitting variables:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_{s}^{s_{\text{prev}}} \frac{d\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^{1} \frac{dz}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow p^2 = \frac{|\boldsymbol{p}_{\rm rel}|^2}{z(1-z)}$$
(Virtuality)

$$s \to t_{\text{form}}^{-1} = \frac{p^2}{E} = \frac{|\boldsymbol{p}_{\text{rel}}|^2}{Ez(1-z)}$$
(Formation time)

$$s \rightarrow \zeta = \frac{p^2}{E^2 z (1-z)} = \left(\frac{|\boldsymbol{p}_{\text{rel}}|}{E z (1-z)}\right)^2$$

Splitting variables:

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{d\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow p^2 = \frac{|\boldsymbol{p}_{\rm rel}|^2}{z(1-z)}$$
(Virtuality)

$$s \to t_{\text{form}}^{-1} = \frac{p^2}{E} = \frac{|\mathbf{p}_{\text{rel}}|^2}{Ez(1-z)}$$

$$F \rightarrow U_{\text{form}} = \frac{1}{E} = \frac{1}{EZ(1-Z)}$$
(Formation time)

$$E \longrightarrow p \longrightarrow p_{rel} = (1-z)k - zq$$

$$q \longrightarrow (1-z)E$$

 $s \to \zeta = \frac{p^2}{E^2 z (1-z)} = \left(\frac{|\boldsymbol{p}_{\text{rel}}|}{E z (1-z)}\right)^2$ 1. Sample a scale from $\Delta(s_{\text{prev}}, s)$ 2. Sample a fraction from $\hat{P}(z) \propto 1/z$ Ensure that $|\boldsymbol{p}_{\rm rel}|^2 > \Lambda^2$

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{d\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

Interpretations for the scale:

To generate a splitting:

$$E \xrightarrow{p} | \mathbf{p}_{rel} | \mathbf{p}_{r$$

This results in the strong ordering of scales

Parton Shower Details

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{d\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

Parton Shower Details

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_{s}^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^{1} \frac{\mathrm{d}z}{z}\right\}$$

- Splittings must happen above an hadronisation scale: $|p_{rel}|^2 > \Lambda^2$
 - This provides a **soft cutoff:** $z > z_{\text{cut}}(s)$
 - e.g.: Formation time ordering $|\boldsymbol{p}_{\rm rel}|^2 > \Lambda^2 \Longleftrightarrow z(1-z) > \frac{\Lambda^2}{t_{\rm form}^{-1}E}$
- Initialisation condition for the shower: $t_{\text{form}}^{-1} < E$

Parton Shower Details

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{d\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

• Splittings must happen above an hadronisation scale: $|{\bf p}_{\rm rel}|^2 > \Lambda^2$

(Enforced via retrials)

- This provides a **soft cutoff**: $z > z_{\text{cut}}(s)$
 - e.g.: Formation time ordering $|\boldsymbol{p}_{\rm rel}|^2 > \Lambda^2 \Longleftrightarrow z(1-z) > \frac{\Lambda^2}{t_{\rm form}^{-1}E}$

• Initialisation condition for the shower: $t_{\text{form}}^{-1} < E$ between orderings: $\zeta < 4 \Longrightarrow |\mathbf{p}_{\rm rel}| < \frac{E}{2}$

 $\zeta \simeq 2(1-\cos\theta)$ Massless Limit:

Results (Work in Progress)

Differences in Ordering Choices

Splittings along the quark branch

Different orderings → Different phase-space for allowed splittings

Differences in Ordering Choices

$\begin{array}{c|c} z_1 & z_2 \\ \hline \\ & & \\$

Splittings along the quark branch

Different orderings → Different phase-space for allowed splittings

Relative transverse momentum (1st splitting)

Transverse momentum distributions follow $\frac{d\mathbf{p}_{rel}^2}{\mathbf{p}^2}$.

*Exaggerated scale

Consider the shower evolution <u>along the quark branch</u>:

*Exaggerated scale

Consider the shower evolution <u>along the quark branch</u>:

Lund Plane Boundaries:

 $|\zeta| < 4$ - Hadronisation: $|oldsymbol{p}_{\mathsf{rel}}| > 1 \mathsf{GeV/c}$

Consider the shower evolution <u>along the quark branch</u>:

*Exaggerated scale

Lund Plane Boundaries:

 $|\zeta < 4|$ - Hadronisation: $|oldsymbol{p}_{\mathsf{rel}}| > 1 \mathsf{GeV/c}|$

- Angular cutoff: $2 > \sqrt{\zeta}$

Consider the shower evolution <u>along the quark branch</u>:

*Exaggerated scale

Shower evolution: Both transverse momentum and angle <u>decrease</u>.

Consider the shower evolution <u>along the quark branch</u>:

*Exaggerated scale

Shower evolution: Both transverse momentum and angle <u>decrease.</u>

Lund Plane Trajectories

Differences between phase-space trajectories

→ Uncertainty at DLA Accuracy

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Angular inversions

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Angular inversions

<u>Can this discrepancy translate into</u> <u>differences in quenching magnitude?</u>

Now, a simple jet quenching model!

Choosing a quenching condition

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient: $\hat{q} \sim \frac{\langle k_{\perp}^2 \rangle}{\lambda}$

Choosing a quenching condition

Medium parameters (for a simple model):

- Medium length: *L*

– Transport coefficient: $\hat{q} \sim \frac{\langle \kappa_{\perp} \rangle}{\lambda}$

Choosing a quenching condition

Medium parameters (for a simple model):

- Medium length: L

– Transport coefficient: $\hat{q} \sim \frac{\langle \kappa_{\perp}}{\lambda}$

Eliminate event if

– Splitting is inside the medium: $t_{\rm form} < L$

Choosing a quenching condition

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient: $\hat{q} \sim \frac{\langle k_{\perp}^2 \rangle}{\lambda}$

Eliminate event if

- Splitting is inside the medium: $t_{\rm form} < L$
- Splitting transverse momentum is below medium scale:

$$|\boldsymbol{p}_{\rm rel}|^2 < \hat{q} t_{\rm form} \Longleftrightarrow (\hat{q}\zeta)^{-1/3} < t_{\rm form}$$

Medium resolves splittings on the (de)coherence time scale

→ Daughters lose energy individually (cf. antenna)

Choosing a quenching condition

Choosing a quenchii

Eliminate events within this area:

$$\mathcal{P}_{\text{quench}} = \Theta(L > t_{\text{form}} > t_{\text{dec}})$$

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient: $\hat{q} \sim \frac{\langle k_{\perp}^2 \rangle}{\gamma}$

Eliminate event if

- Splitting is inside the medium: $t_{\rm form} < L$
- Splitting transverse momentum is below medium scale:

$$|\boldsymbol{p}_{\rm rel}|^2 < \hat{q} t_{\rm form} \Longleftrightarrow (\hat{q}\zeta)^{-1/3} < t_{\rm form}$$

Medium resolves splittings on the (de)coherence time scale

→ Daughters lose energy individually (cf. antenna)

(Resolved) $t_{\text{dec}} < t_{\text{form}}$

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{\text{quench}} = \Theta(L > t_{\text{form}} > t_{\text{dec}}) \qquad t_{\text{dec}} = (\hat{q}\zeta)^{-1/3}$$

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{\text{quench}} = \Theta(L > t_{\text{form}} > t_{\text{dec}}) \qquad t_{\text{dec}} = (\hat{q}\zeta)^{-1/3}$$

Two implementations:

Option 1: Apply only to first splitting

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{\text{quench}} = \Theta(L > t_{\text{form}} > t_{\text{dec}}) \qquad t_{\text{dec}} = (\hat{q}\zeta)^{-1/3}$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{\text{quench}} = \Theta(L > t_{\text{form}} > t_{\text{dec}}) \qquad t_{\text{dec}} = (\hat{q}\zeta)^{-1/3}$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Percentage of events eliminated by the quenching condition

Percentage of events eliminated by the quenching condition

Applying conditon to the first splitting → Significant differences in quenching between algorithms

Differences are **seem to remain** (**for larger L**) when applying the condition to the full quark branch.

Percentage of events eliminated by the quenching condition

Applying conditon to the first splitting → Significant differences in quenching between algorithms

Differences are **seem to remain** (**for larger L**) when applying the condition to the full quark branch.

What role do time-inversions play in these quenching differences?

(Not resolved) (Resolved) $t_{\rm form} < t_{\rm dec} \qquad t_{\rm dec} < t_{\rm form}$ $\mathcal{P}_{\rm guench} = \Theta(L > t_{\rm form} > t_{\rm dec})$

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

(Not resolved) (Resolved) $t_{\rm form} < t_{\rm dec} \qquad t_{\rm dec} < t_{\rm form}$ $\mathcal{P}_{\rm guench} = \Theta(L > t_{\rm form} > t_{\rm dec})$

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers:

- \Rightarrow ζ strictly decreasing
- \Rightarrow t_{dec} strictly increasing
- ⇒ No time inversions → less quenched phase-space

(Not resolved) (Resolved) $t_{\rm form} < t_{\rm dec} \qquad t_{\rm dec} < t_{\rm form}$ $\mathcal{P}_{\rm guench} = \Theta(L > t_{\rm form} > t_{\rm dec})$

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers:

- \Rightarrow ζ strictly decreasing
- \Rightarrow t_{dec} strictly increasing
- ⇒ No time inversions → less quenched

phase-space

This is only one way of preventing inversions!

(Not resolved) (Resolved) $t_{\rm form} < t_{\rm dec} \qquad t_{\rm dec} < t_{\rm form} > t_{\rm dec}$

Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

(Not resolved) (Resolved) $t_{\rm form} < t_{\rm dec} \qquad t_{\rm dec} < t_{\rm form}$ $\mathcal{P}_{\rm quench} = \Theta(L > t_{\rm form} > t_{\rm dec})$

Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Fraction of quenched events remains levelled across algorithms for the 'Full Branch' condition

Warning: Phase-space altered splitting-by-splitting

(Not resolved) (Resolved) $t_{\rm form} < t_{\rm dec} \qquad t_{\rm dec} < t_{\rm form}$ $\mathcal{P}_{\rm quench} = \Theta(L > t_{\rm form} > t_{\rm dec})$

Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Fraction of quenched events remains levelled across algorithms for the 'Full Branch' condition

Warning: Phase-space altered splitting-by-splitting

The implementation details of the jet interface with a time-evolving medium are crucial!

- A toy Monte Carlo parton shower was developed:
 - To explore differences between ordering algorithms.
 - Aiming at a framework for time-ordered in-medium emissions.

- A toy Monte Carlo parton shower was developed:
 - To explore differences between ordering algorithms.
 - Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
 - These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
 - Quenching differences are large for the 1st splitting →
 Important for initial stages

- A toy Monte Carlo parton shower was developed:
 - To explore differences between ordering algorithms.
 - Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
 - These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
 - Quenching differences are large for the 1st splitting →
 Important for initial stages

Acknowledgements

Fundação para a Ciência e a Tecnologia

Backup Slides

Without the consistency condition

If the condition ζ < 4 is used simply to initialise the angular shower, the time and angle distributions do not behave consistently across algorithms

With the consistency condition

When the condition ζ < 4 is used as a veto for all emissions, the distributions become consistent.

Excluding time inversions – 1D Distributions

Inclusive Sample – 1D Distributions

Vetoing time inversions – 1D Distributions

Excluding time inversions – Lund Planes

***Ordered in angle**

Inclusive Sample - Lund Planes

*Ordered in angle

Vetoing time inversions – Lund Planes

***Ordered in angle**

Quenching Weights

An apparent dependence on the hadronisation cutoff and initial jet energy

Quenching Weights - Radius Cut

 E_{iet} = 1000 GeV, Λ = 1 GeV

 $E_{jet} = 500 \text{ GeV}$

 $\Lambda = 0.1 \text{ GeV}$

Cut all events whose quark branch has a splitting wider than $R_{max} = 0.2$

- This defines the new vacuum sample, and the quenching model is applied on top of this cut

An aggressive cut, but it returns independence of E_{jet} and Λ .