

Branching ratios of the pseudoscalar glueball and its first excited state

Walaa I. Eshraim

Excited QCD 2024 Workshop, Barcelona, Spain, January 15-19th , 2024

The QCD Lagrangian

- Contains 'colored' quarks and gluons but no'colored' states have been appeared
- if all quark massless then we have chiral symmetry

$$U(N_f)_r \times U(N_f)_l = SU(N_f)_r \times SU(N_f)_l \times U(1)_V \times U(1)_A$$

- Spontaneous breaking of chiral symmetry by quark condensates.
- Explicit breaking of global chiral symmetry by quark masses and chiral anomaly.
- Effective chiral models of (QCD).
- Linear Sigma Model
- Non-Linear Sigma Model

Decay of the pseudoscalar glueball

A globally chirally invariant for three flavours

Interaction Lagrangian for the pseudoscalar glueball with vector, axial-vector, scalar and pseudoscalar mesons

$$\mathcal{L}_{eLSM,\,\tilde{G}}^{int} = i c \,\tilde{G} \,\mathrm{Tr} \left[L_{\mu} \left(\partial^{\mu} \Phi \, \cdot \, \Phi^{\dagger} + \Phi \, \cdot \, \partial^{\mu} \Phi^{\dagger} \right) - R_{\mu} \left(\partial^{\mu} \Phi^{\dagger} \, \cdot \, \Phi + \Phi^{\dagger} \, \cdot \, \partial^{\mu} \Phi \right) \right] \;,$$

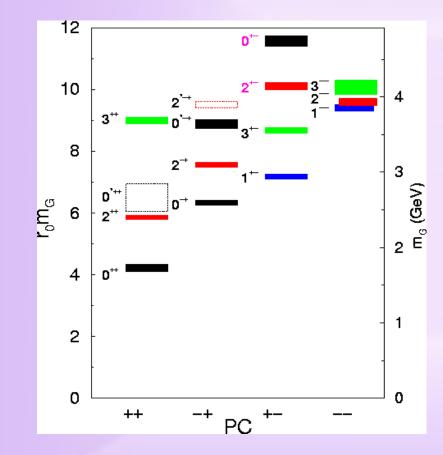
where c is a dimensionless coupling constant and Φ reads for three flavours, $N_f = 3$:

$$\Phi = (S^a + iP^a) t^a = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{(\sigma_N + a_0^0) + i(\eta_N + \pi^0)}{\sqrt{2}} & a_0^+ + i\pi^+ & K_S^+ + iK^+ \\ a_0^- + i\pi^- & \frac{(\sigma_N - a_0^0) + i(\eta_N - \pi^0)}{\sqrt{2}} & K_S^0 + iK^0 \\ K_S^- + iK^- & \bar{K}_S^0 + i\bar{K}^0 & \sigma_S + i\eta_S \end{pmatrix}$$

W. I. Eshraim, *Eur.Phys.J.C* 83 (2023) 3, 262 [arXiv: 2005.11321 [hep-ph]]

The vector V^a and axial-vector A^a , degree of freedom, are presented in the following liftand right handed matrices, L_{μ} and R_{μ}

$$L_{\mu} = (V^{a} + i A^{a})_{\mu} t^{a} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} + \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & \rho^{+} + a_{1}^{+} & K^{*+} + K_{1}^{+} \\ \rho^{-} + a_{1}^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} + \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K^{*0} + K_{1}^{0} \\ K^{*-} + K_{1}^{-} & \overline{K}^{*0} + \overline{K}_{1}^{0} & \omega_{S} + f_{1S} \end{pmatrix}_{\mu},$$


and

$$R_{\mu} = (V^{a} - i A^{a})_{\mu} t^{a} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} - \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & \rho^{+} - a_{1}^{+} & K^{*+} - K_{1}^{+} \\ \rho^{-} - a_{1}^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} - \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K^{*0} - K_{1}^{0} \\ K^{*-} - K_{1}^{-} & \overline{K}^{*0} - \overline{K}_{1}^{0} & \omega_{S} - f_{1S} \end{pmatrix}_{\mu}.$$

W. I. Eshraim, *Eur.Phys.J.C* 83 (2023) 3, 262 [arXiv: 2005.11321 [hep-ph]]

Glueballs

Lattice QCD calculation

The pseudoscalar glueball $\breve{G} \equiv |gg\rangle$ at the border within light and heavy

$$M_{\tilde{G}} = 2.6$$
 , $J^{PC} = 0^{-+}$, $I = 0$

The first excited pseudoscalar Glueball

$$M_{\tilde{G}} = 3.7$$
 , $J^{PC} = 0^{*-+}$.

[C. Morningstar and M. J. Peardon, AIP Conf. Proc. 688, 220 (2004) [arXiv:nucl-th/0309068]]; **Two experiments related to our work:**

1. PANDA experiment at FAIR facility. It will be capable to scan the mass region above 2.5 GeV.

2. BESIII experiment. The resonance X(2370) could be a pseudoscalar glueball with a mass 2.37 GeV. Branching ratios for the two-body decays of the pseudoscalar glueball

Quantity	Case (i): $M_{\tilde{G}} = 2.6 \text{ GeV}$	Case (ii): $M_{\tilde{G}} = 2.37 \text{ GeV}$
$\Gamma_{\tilde{G}\to KK^*}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.00026	0.00031
$\Gamma_{\tilde{G}\to a_0\pi}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.1913	0.1858
$\Gamma_{\tilde{G}\to KK_S}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.1745	0.1595
$\left[\Gamma_{\tilde{G}\to f_0(1370)\eta}/\Gamma_{\tilde{G}\to\pi\pi\eta}\right]$	0.0374	0.0349
$\Gamma_{\tilde{G}\to f_0(1500)\eta}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.00399	0.00325
$\Gamma_{\tilde{G}\to f_0(1700)\eta}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.00265	0.00134
$\Gamma_{\tilde{G}\to f_0(1370)\eta'}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.00837	0.00343
$\Gamma_{\tilde{G}\to f_0(1500)\eta'}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.00999	0

W. I. Eshraim, *Eur.Phys.J.C* 83 (2023) 3, 262 [arXiv: <u>2005.11321</u> [hep-ph]]

Branching ratios for the three-body decays of the pseudoscalar glueball

Quantity	Case (i): $M_{\tilde{G}} = 2.6 \text{ GeV}$	Case (ii): $M_{\tilde{G}} = 2.37 \text{ GeV}$
$\Gamma_{\tilde{G}\to\pi\pi\eta'}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.4654	0.3986
$\Gamma_{\tilde{G}\to KK\pi}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.9126	0.8553
$\Gamma_{\tilde{G}\to KK\eta}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.0038	0.0031
$\Gamma_{\tilde{G}\to KK\eta'}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.13799	0.07157
$\Gamma_{\tilde{G}\to\eta\eta\eta}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.00012	0.000087
$\Gamma_{\tilde{G} \to \eta \eta \eta'} / \Gamma_{\tilde{G} \to \pi \pi \eta}$	0.0253	0.0102
$\Gamma_{\tilde{G}\to\eta\eta'\eta'}/\Gamma_{\tilde{G}\to\pi\pi\eta}$	0.0000012	0

W. I. Eshraim, *Eur.Phys.J.C* 83 (2023) 3, 262 [arXiv: 2005.11321 [hep-ph]]

Decay modes of the excited pseudoscalar glueball

Interaction Lagrangain for the excited pseudoscalar glueball

with a pseudoscalar glueball and the ordinary scalar and pseudoscalar mesons

$$\mathcal{L}_{\tilde{G}\tilde{G}'}^{int} = c_{\tilde{G}\tilde{G}'}\tilde{G}\tilde{G}'\,Tr\left(\Phi^{\dagger}\Phi\right)$$

with a scalar glueball and the pseudo(scalar) mesons

$$\mathcal{L}_{\tilde{G}G}^{int} = ic_{\tilde{G}G\Phi}\tilde{G}G\left(\det\Phi - \det\Phi^{\dagger}\right)$$

with scalar and pseudoscalar mesons

$$\mathcal{L}_{\tilde{G}\Phi}^{int} = ic_{\tilde{G}\Phi}\tilde{G}\left(\det\Phi - \det\Phi^{\dagger}\right)$$

where $C_{\tilde{G}\Phi}$ is a dimensionless coupling constant and Φ for three flavours, $N_f = 3$ Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Results

Branching ratios for the decay of the excited pseudoscalar glueball into the pseudoscalar glueball

Quantity	The theoretical result
$\Gamma_{\tilde{G}\to\tilde{G}'KK}/\Gamma_{\tilde{G}}^{tot}$	0.0277
$\Gamma_{\tilde{G}\to\tilde{G}'\pi\pi}/\Gamma_{\tilde{G}}^{tot}$	0.9697
$\Gamma_{\tilde{G}\to\tilde{G}'\eta\eta'}/\Gamma_{\tilde{G}}^{tot}$	0.0026
$\Gamma_{\tilde{G}\to\tilde{G}'\eta\eta}/\Gamma_{\tilde{G}}^{tot}$	0.000012

The branching ratio for the decay of the excited pseudoscalar glueball into charmonium state

$$\Gamma_{\tilde{G} \to \eta_C \pi \pi} / \Gamma_{\tilde{G}_3}^{tot} = 0.001$$

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Branching ratios for the decays of the excited pseudoscalar glueball into *PS* and scalar-isoscalar states as well as η and η'

Case (i): $\mathcal{L}_{\tilde{G}G}^{int}$	The theoretical result	Case (ii): $\mathcal{L}_{\tilde{G}\Phi}^{int}$	The theoretical result
$\Gamma_{\tilde{G} \to a_0 \pi} / \Gamma_{\tilde{G}_2}^{tot}$	0.0325	$\Gamma_{\tilde{G} o a_0 \pi} / \Gamma_{\tilde{G}_3}^{tot}$	0.0313
$\Gamma_{\tilde{G}\to KK_S}/\Gamma_{\tilde{G}_2}^{tot}$	0.032	$\Gamma_{\tilde{G} \to KK_S} / \Gamma_{\tilde{G}_3}^{tot}$	0.001
$\Gamma_{\tilde{G} \to \eta f_0(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.00004	$\Gamma_{\tilde{G} \to \eta f_0(1370)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0014
$\Gamma_{\tilde{G} \to \eta' f_0(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.048	$\Gamma_{\tilde{G} \to \eta' f_0(1370)} / \Gamma_{\tilde{G}_3}^{tot}$	0.001
$\Gamma_{\tilde{G} \to \eta f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0068	$\Gamma_{\tilde{G} \to \eta f_0(1500)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0067
$\Gamma_{\tilde{G} \to \eta' f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0219	$\Gamma_{\tilde{G} \to \eta' f_0(1500)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0214
$\frac{\Gamma_{\tilde{G} \to \eta f_0(1710)}}{\Gamma_{\tilde{G}_2}^{tot}} / \Gamma_{\tilde{G}_2}^{tot}$	0.0008	$\Gamma_{\tilde{G} \to \eta f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0007
$\Gamma_{\tilde{G} \to \eta' f_0(1710)} / \Gamma_{\tilde{G}_2}^{tot}$	0.001	$\Gamma_{\tilde{G} \to \eta' f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	0.001

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Branching ratios for the decays of the excited pseudoscalar glueball

into scalar-isoscalar states and (pseudo)scalar mesons

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

•	-		
Case (i): $\mathcal{L}_{\tilde{G}G}^{int}$	The theoretical result	Case (ii): $\mathcal{L}_{\tilde{G}\Phi}^{int}$	The theoretical result
$\Gamma_{\tilde{G}\to\eta\pi\pi}/\Gamma_{\tilde{G}_2}^{tot}$	0.095	$\Gamma_{ ilde{G} ightarrow\eta\pi\pi}/\Gamma_{ ilde{G}_2}^{tot}$	0.1376
$\Gamma_{\tilde{G}\to\eta'\pi\pi}/\Gamma_{\tilde{G}_2}^{ioi}$	0.111	1 / 1000	0.1069
$\Gamma_{\tilde{G} \to a_0 K K_S} / \Gamma_{\tilde{G}_2}^{\tilde{tot}}$	0.0026	$\frac{\Gamma_{\tilde{G} \to \eta' \pi \pi} / \Gamma_{\tilde{G}_3}}{\Gamma_{\tilde{G} \to a_0 K K_S} / \Gamma_{\tilde{G}_3}^{tot}}$	0.0025
$\frac{\Gamma_{\tilde{G} \to \eta a_0 a_0}}{\Gamma_{\tilde{G}_2}^{tot}} / \Gamma_{\tilde{G}_2}^{tot}$	0.0001	$\Gamma_{\tilde{G} \rightarrow na_0 a_0} / \Gamma_{\tilde{G}_0}^{tot}$	0.0001
$\frac{\Gamma_{\tilde{G} \to a_0 \pi f_0(1370)} / \Gamma_{\tilde{G}_2}^{tot}}{(\pi^{tot})^{T_{\tilde{G}_2}}}$	0.0003	$\Gamma_{\tilde{G} \to a_0 \pi f_0(1370)} / \Gamma_{\tilde{G}_0}^{ioi}$	0.0003
$\Gamma_{\tilde{G} \to a_0 \pi f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0034	$\Gamma_{\tilde{G} \to q_0 \pi f_0(1500)} / \Gamma_{\tilde{G}_1}^{tot}$	0.0032
$ \Gamma_{\tilde{G} \to a_0 \pi f_0(1710)} / \Gamma_{\tilde{G}_2}^{ioi} $	0.0001	$\Gamma_{\tilde{G} \to a_0 \pi f_0(1710)} / \Gamma_{\tilde{G}_3}^{lol}$	0.0001
$\Gamma_{\tilde{G} \to \eta f_0^2(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0003	$\Gamma_{\tilde{G} \to \eta f_0^2(1370)} / \Gamma_{\tilde{G}_3}^{ioi}$	0.001
$\Gamma_{\tilde{G} \to \eta' f_0^2(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.03×10^{-6}	$\Gamma_{\tilde{G} \to \eta' f_0^2(1370)} / \Gamma_{\tilde{G}_3}^{tot}$	0.006×10^{-6}
$ \Gamma_{\tilde{G} \to \eta f_0^2(1500)} / \Gamma_{\tilde{G}_2}^{ioi} $	0.00004	$\Gamma_{\tilde{G} ightarrow \eta f_0^2(1500)} / \Gamma_{\tilde{G}_3}^{ioi}$	0.00001
$ \Gamma_{\tilde{G} \to n f_0(1370) f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot} $	0.00003	$ \Gamma_{\tilde{G} \to n f_0(1370) f_0(1500)} / \Gamma_{\tilde{G}_0}^{tot} $	0.0001
$ \Gamma_{\tilde{G} \to n f_0(1370) f_0(1710)} / \Gamma_{\tilde{G}_2}^{tot} $	3.798×10^{-6}	$ \Gamma_{\tilde{G} \to n f_0(1370) f_0(1710)} / \Gamma_{\tilde{G}_2}^{tot} $	7.25×10^{-6}
$ \Gamma_{\tilde{G} \rightarrow KK_{G}f_{0}(1370)}/\Gamma_{\tilde{C}_{1}}^{tot} $	0.0025	$\Gamma_{\tilde{G} \to KK_S f_0(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0025
$\Gamma_{\tilde{G} \to KK_S f_0(1500)} / \Gamma_{\tilde{G}_2}^{ioi}$	0.00013	$\Gamma_{\tilde{G} \to KK_S f_0(1500)} / \Gamma_{\tilde{G}_3}^{ioi}$	0.00013
$\Gamma_{\tilde{G} \to KK_S f_0(1710)} / \Gamma_{\tilde{G}_2}^{ioi}$	6.2×10^{-6}	$\Gamma_{\tilde{G} \to KK_S f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	4.75×10^{-6}
$\Gamma_{\tilde{G} \to KK\eta} / \Gamma_{\tilde{G}_2}^{ioi}$	0.0668	$\Gamma_{\tilde{G} \to KK\eta} / \Gamma_{\tilde{G}_2}^{tot}$	0.0643
$\Gamma_{\tilde{G}\to KK\eta'}/\Gamma_{\tilde{G}_2}^{tot}$	0.045	$\Gamma_{\tilde{G} \to K K \eta'} / \Gamma_{\tilde{G}_3}^{tot}$	0.044
$\Gamma_{\tilde{G}\to K_S K_S \eta} / \Gamma_{\tilde{G}_2}^{tot}$	0.0002	$\Gamma_{\tilde{G} \to K_S K_S \eta} / \Gamma_{\tilde{G}_3}^{tot}$	0.0002
$\Gamma_{\tilde{G} \to \eta^3} / \Gamma_{\tilde{G}_2}^{tot}$	0.024	$\Gamma_{\tilde{G} \to \eta^3} / \Gamma_{\tilde{G}_3}^{oot}$	0.0233
$\Gamma_{\tilde{G} \to \eta'^3} / \Gamma_{\tilde{G}_2}^{tot}$	0.0048	$\Gamma_{ ilde{G} ightarrow \eta'^3}/\Gamma^{tot}_{ ilde{G}_3}$	0.0046
$\Gamma_{\tilde{G} \to \eta' \eta^2} / \Gamma_{\tilde{G}_2}^{tot}$	0.005	$\Gamma_{ ilde{G} ightarrow \eta^2}/\Gamma^{tot}_{ ilde{G}_3}$	0.0048
$\Gamma_{\tilde{G} \to n^{\prime 2} n} / \Gamma_{\tilde{G}_{2}}^{lot}$	0.0035	$\Gamma_{\tilde{G} \to n'^2 n} / \Gamma_{\tilde{G}_2}^{tot}$	0.0034
$\Gamma_{\tilde{G} \to KK\pi} / \Gamma_{\tilde{G}_2}^{tot}$	0.489	$\Gamma_{\tilde{G} \to KK\pi} / \Gamma_{\tilde{G}_2}^{ioi}$	0.471
$\Gamma_{\tilde{G} \to K_S K_S \pi} / \Gamma_{\tilde{G}_2}^{tot}$	0.002	$\Gamma_{\tilde{G} \to K_S K_S \pi} / \Gamma_{\tilde{G}_3}^{tot}$	0.0057

Conclusions

- Construction of the interaction Lagrangian for the pseudoscalar Glueball with light mesons.
- 2. Decay of the pseudoscalar glueball.
- Construction of several interaction Lagrangians for the excited pseudoscalar glueball with a scalar glueball and (pseudo)scalar mesons
 Decay of the first excited pseudoscalar state.

شكراً جزيلاً THANKS A LOT