Hybrid static potentials from Laplacian eigenmodes arXiv:2401.09453

R. Höllwieser*, T. Korzec, F. Knechtli,

M. Peardon, L. Struckmeier, J.-A. Urrea-Niño

Bergische Universität Wuppertal, Trinity College Dublin

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

BERGISCHE UNIVERSITÄT WUPPERTAL

Lattice QCD

- link variables $U_{\mu}(x) = \exp(i \int_{x}^{x+a\hat{\mu}} A_{\mu} dx^{\mu})$
- Wilson line $U_s(\vec{x}, \vec{y}) = \exp(i \int_{\vec{x}}^{\vec{y}} A_\mu dx^\mu) = \prod U_\mu$
- path-ordered product of link variables, on-/off-axis
- ▶ plaquette, Wilson loop W(R,T), static $\overline{Q}Q$ pair

Born-Oppenheim

Motivation

- hybrid mesons (valence glue, exotics, XYZ), (hybrid) static-light
- Identify bound states using B-O approximation ⇒ Joan Soto, Braaten et al. (2014) or EFT Brambilla et al. (2005)
- observation of (hybrid) string breaking in QCD, *e.g.*, Bali et al. (2008), Bulava et al. (2019)
- calculate the (hybrid) static potential with high resolution
- \Rightarrow on the lattice we have to work with off-axis separated quarks
- ► the spatial part of the Wilson loop has to go over stair-like paths through the lattice → not unique, computationally expensive
- ⇒ alternative operator which ensures gauge invariance of the quark-anti-quark $\bar{Q}(\vec{x})U_s(\vec{x},\vec{y})Q(\vec{y})$ trial state
- required gauge transformation behavior:

 $U'_s(\vec{x}, \vec{y}) = G(\vec{x})U_s(\vec{x}, \vec{y})G^{\dagger}(\vec{y})$

Born-Oppenheim

Laplace trial states

- adaptation of Neitzel et al. (2016) using SU(2)
- eigenvectors $v(\vec{x})$ of the 3D covariant lattice Laplace operator
- ► spatial Wilson line: $U'_s(\vec{x}, \vec{y}) = G(\vec{x})U_s(\vec{x}, \vec{y})G^{\dagger}(\vec{y})$ $v'(\vec{x})v'^{\dagger}(\vec{y}) = G(\vec{x})v(\vec{x})v^{\dagger}(\vec{y})G^{\dagger}(\vec{y})$
- ▶ Wilson loop of size $(R = |\vec{r}| = |\vec{x} \vec{y}|) \times (T = |t_1 t_0|)$

 $W(R,T) = \langle \operatorname{tr} \left[U_t(\vec{x};t_0,t_1) U_s(\vec{x},\vec{y};t_1) U_t^{\dagger}(\vec{y};t_0,t_1) U_s^{\dagger}(\vec{x},\vec{y};t_0) \right] \rangle$

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

Optimal trial state results

Static potential

- Gaussian profile functions: $\rho_i^{(k)}(\lambda_i) = \exp(-\lambda_i^2/2\sigma_k^2)$
- define correlation matrix W_{kl} using 7 different $\sigma_{k,l}$, SVD $(u_{k,l})$
- GEVP: $W(t)\nu^{(n)} = \mu^{(n)}W(t_0)\nu^{(n)}$, $\mu^{(n)}$ give effective energies
- optimal profiles $\tilde{\rho}_R^{(n)}(\lambda_i) = \nu_k^{(n)} u_{k,l} \exp(-\lambda_i^2/2\sigma_l^2)$

▶ $24^3 \times 48, \beta = 5.3, N_f = 2, \kappa = 0.13270, a = 0.0658$ fm

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

Born-Oppenheim

heimer

Conclusior

Static-hybrid potentials

Hybrid static potentials are characterized by the following quantum numbers $\Lambda_{\eta}^{\epsilon}$, Bali et al. (2005), Bicudo et al. (2015):

- Λ = 0, 1, 2, 3, ... ≡ Σ, Π, Δ, Φ, ..., the absolute value of the total angular momentum with respect to the axis of separation of the static quark-antiquark pair
- η = +, − ≡ g, u, the eigenvalue corresponding to the operator P ∘ C, i.e. the combination of parity and charge conjugation
- ϵ = +, -, the eigenvalue corresponding to the operator P_x, which denotes the spatial reflection with respect to a plane including the axis of separation (Λ > 0 degenerate)
- \Rightarrow derived from the continuous group $D_{\infty h},$ which leaves a cylinder along a chosen axis invariant
- \Rightarrow we can realize gluonic excitations via covariant derivatives

$$\nabla_{\vec{k}} v(\vec{x}) = \frac{1}{2} [U_k(\vec{x})v(\vec{x}+\hat{k}) - U_k^{\dagger}(\vec{x}-\hat{k})v(\vec{x}-\hat{k})]$$

Wilson loop static-hybrid states

standard construction with handles, e.g. Σ_{q}^{-} , Capitani et al. (2019)

Laplacian static-hybrid states

$$\blacktriangleright \ \Sigma_g^+(R,T) = \sum_{\vec{x},t_0,i,j}$$

 $\left\langle \mathrm{tr}\left[U_t(\vec{x};t_0,t_1)\rho(\lambda_j)v_j(\vec{x},t_1)v_j^{\dagger}(\vec{y},t_1)U_t^{\dagger}(\vec{y};t_0,t_1)\rho(\lambda_i)v_i(\vec{y},t_0)v_i^{\dagger}(\vec{x},t_0)\right]\right\rangle$

$$\Sigma_{u/g}^{+}(R,T) = \sum_{\vec{x},t_{0},i,j,\vec{k}\mid|\vec{r}=\vec{y}-\vec{x}} \left\langle \operatorname{tr} \left[U_{t}(\vec{x};t_{0},t_{1})\rho(\lambda_{j})\{ [\nabla_{\vec{k}}v_{j}](\vec{x},t_{1})v_{j}^{\dagger}(\vec{y},t_{1})\pm v_{j}(\vec{x},t_{1})[\nabla_{\vec{k}}v_{j}]^{\dagger}(\vec{y},t_{1}) \} \right. \\ \left. U_{t}^{\dagger}(\vec{y};t_{0},t_{1})\rho(\lambda_{i})\{ [\nabla_{\vec{k}}v_{i}](\vec{y},t_{0})v_{i}^{\dagger}(\vec{x},t_{0})\pm v_{i}(\vec{y},t_{0})[\nabla_{\vec{k}}v_{i}]^{\dagger}(\vec{x},t_{0}) \} \right] \right\rangle$$

$$\begin{split} & \models \Pi_{u/g}(R,T) = \Pi_{\mp}(R,T) = \sum_{\vec{x},t_0,i,j,\vec{k}\perp\vec{r}=\vec{y}-\vec{x}} \\ & \left\langle \operatorname{tr} \left[U_t(\vec{x};t_0,t_1)\rho(\lambda_j)\{ [\nabla_{\vec{k}}v_j](\vec{x},t_1)v_j^{\dagger}(\vec{y},t_1)\pm v_j(\vec{x},t_1)[\nabla_{\vec{k}}v_j]^{\dagger}(\vec{y},t_1) \} \right. \\ & \left. U_t^{\dagger}(\vec{y};t_0,t_1)\rho(\lambda_i)\{ [\nabla_{\vec{k}}v_i](\vec{y},t_0)v_i^{\dagger}(\vec{x},t_0)\pm v_i(\vec{y},t_0)[\nabla_{\vec{k}}v_i]^{\dagger}(\vec{x},t_0) \} \right] \right\rangle \\ & \left. U_t^{\dagger}(\vec{y};t_0,t_1)\rho(\lambda_i)\{ [\nabla_{\vec{k}}v_i](\vec{y},t_0)v_i^{\dagger}(\vec{x},t_0)\pm v_i(\vec{y},t_0)[\nabla_{\vec{k}}v_i]^{\dagger}(\vec{x},t_0) \} \right] \right\rangle \end{split}$$

Laplacian static-hybrid states

Optimal trial state profiles

Hybrid Mesons Preliminary!!! $N_f = 3 + 1$, $m_{\pi} = 420$ MeV Static-hybrid states on A2 light (128×48^3) 0.80.70.6 0.5 $\stackrel{(u)}{}{}^{0.4}_{N}$ 0.3 $m_{PS} + m_S$ $2m_{PS}$ 0.2 Π_u 0.1 Σ_q

10

R/a

15

20

5

0.0

0

Born-Oppenheimer Approximation

► solve the radial Schrödinger equation: $E_{\Lambda_{\eta}^{\epsilon};L,n}\Psi_{\Lambda_{\eta}^{\epsilon};L,n}(r) = 1$

$$\left(-\frac{1}{2\mu}\frac{d^2}{dr^2} + \frac{L(L+1) - 2\Lambda^2 + J_{\Lambda^{\epsilon}_{\eta}}(J_{\Lambda^{\epsilon}_{\eta}}+1)}{2\mu r^2} + V_{\Lambda^{\epsilon}_{\eta}}(r)\right)\Psi_{\Lambda^{\epsilon}_{\eta};L,n}(r)$$

 $\mu=m_Q m_{\bar{Q}}/(m_Q+m_{\bar{Q}}),$ for $m_c=1628~{\rm MeV}$ or $m_b=4977~{\rm MeV}$

- ► parametrization of potentials $V_{\Lambda_{\eta}^{\epsilon}}(r)$ from Capitani et al. (2019) $V_{\Sigma_{g}^{+}}(r) = V_{0} - \alpha/r + \sigma r$ $V_{\Pi_{u}}(r) = A_{1}/r + A_{2} + A_{3}r^{2}$
- $E_{\Lambda_n^{\epsilon};L,n}$ contain the self-energies of the static quarks

$$\Rightarrow m_{\Lambda_{\eta}^{\epsilon};L,n} = E_{\Lambda_{\eta}^{\epsilon};L,n} - E_{\Sigma_{q}^{+};L=0,n=1} + \overline{m}$$

with \overline{m} the spin averaged mass Workman et al. [PDG] (2022) $\overline{m}_c = (m_{\eta_c(1S), \exp} + 3m_{J/\Psi(1S), \exp})/4 = 3069(1) \text{ MeV}$ $\overline{m}_b = (m_{\eta_b(1S), \exp} + 3m_{\Upsilon(1S), \exp})/4 = 9445(1) \text{ MeV}$

Born-Oppenheimer Approximation

$L=0, m_Q =$	$= m_c = 1628$ Me	eV:	Braaten et al. (2014)
state	n=1	n=2	
$\frac{\Sigma_g^+}{m_{J/\Psi}(nS)}$	$ar{m}_c$ 3096.900(6)	4347(24) 3674(1)	
Π_u	4490(23)		
-			

L = 1,	m_Q	$= m_b$	=	4977	MeV:
--------	-------	---------	---	------	------

state	n=1	n=2	n=3	n=4
$\frac{\Sigma_g^+}{\Upsilon(nS)}$	<i>m̄</i> _b 9460.4(1)	10401(18) 10023.4(5)	11032(32) 10355.1(5)	11741(42) 10579.4(1.2)
Π_u	11023(22	11563(35))		

 $m_{ps}^* - m_{ps} = 932(20) \Leftrightarrow B_c^{\pm}(2S) - B_c^{+}(1S) = 2397(1) \text{ MeV}$

Static-light meson operators

$$\begin{split} C_{\mathcal{O}}^{sl}(t) &= \frac{1}{N_f} \sum_{\vec{x}, t_0, i} \left\langle \bar{Q}(\vec{x}, t_0 + t) \mathcal{O}q^i(\vec{x}, t_0 + t) \bar{q}^i(\vec{x}, t_0) \gamma_4 \mathcal{O}Q(\vec{x}, t_0) \right\rangle \\ &= -\sum_{\vec{x}, t_0} \left\langle \operatorname{tr}_{c, d} \left(\mathcal{O}\underbrace{\mathcal{D}(\vec{x}, t_0 + t; \vec{x}, t_0) \gamma_4}_{\text{light propagator}} \mathcal{O}\underbrace{U_t(\vec{x}; t_0, t_0 + t) P_-}_{\text{static propagator}} \right) \right\rangle \\ \hline \\ \hline \\ \hline \\ \mathcal{O} & \overline{J^{\mathcal{P}}} \underbrace{J^{\mathcal{P}} & \underline{O}_h & \text{not.}}_{\text{static propagator}} \\ \hline \\ \hline \\ \frac{\gamma_5, \gamma_5 \gamma_j \nabla_j}{1, \gamma_j \nabla_j} \underbrace{O^- [1^-] & (1/2)^- & A_1 & S}_{1, \gamma_j \nabla_j} \\ O^+ [1^+] & (1/2)^+ & P_- \\ \gamma_1 \nabla_1 - \gamma_2 \nabla_2 (\text{and cyclic}) & 2^+ [1^+] & (3/2)^+ & E & P_+ \\ \gamma_5(\gamma_1 \nabla_1 - \gamma_2 \nabla_2) (\text{and cyclic}) & 2^- [1^-] & (3/2)^- & D_{\pm} \\ \gamma_1 \nabla_2 \nabla_3 + \gamma_2 \nabla_3 \nabla_1 + \gamma_3 \nabla_1 \nabla_2 & 3^- [2^-] & (5/2)^- & A_2 & D_+ \\ \gamma_5(\gamma_1 \nabla_2 \nabla_3 + \gamma_2 \nabla_3 \nabla_1 + \gamma_3 \nabla_1 \nabla_2) & 3^+ [2^+] & (5/2)^+ & F_{\pm} \\ \hline \\ C_{S/P_-}^{sl}(t) &= -\sum_{\vec{x}, t_0} \left\langle \operatorname{tr}_{c, d} \left(\mathcal{D}(\vec{x}, t_0 + t; \vec{x}, t_0) \gamma_4 P_{\pm} U_t(\vec{x}; t_0, t_0 + t) \right) \right\rangle \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \end{split}$$

Static-light

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

Born-Oppenheime

ner Static-light

Conclusio

Static-light meson operators

$$C_{S/P_{-}}^{sl}(t) = -\sum_{t_{0},i,j} \left\langle \rho(\lambda_{i})\rho(\lambda_{j})\mathsf{Tr}_{d}\{[v_{i}^{\dagger}D^{-1}\gamma_{4}v_{j}](t_{0}+t,t_{0})P_{\pm}\}\right.$$
$$\sum_{\vec{x}} v_{j}^{\dagger}(\vec{x},t_{0})U_{t}(\vec{x};t_{0},t_{0}+t)v_{i}(\vec{x},t_{0}+t)$$

- light perambulators v[†]_i(t₁)D⁻¹_{αβ}γ₄v_j(t₀) from distillation framework Peardon et al. (2009), Knechtli et al (2022)
- ► static perambulators $v^{\dagger}(\vec{x}, t_0)U_t(\vec{x}; t_0, t_0 + t)v(\vec{x}, t_0 + t)$
- Gaussian profiles ρ , SVD, GEVP \Rightarrow optimal profiles...

Static-light meson states

ensemble	$N_s^3 \times N_t$	N_f	m_{π}	$m_s~(P)$ - $m_{ps}~(S)~[{\sf MeV}]$
Em1	$24^3 \times 48$	2	2.2 GeV	2394 - 1765 = 629(2)
A0 heavy	$24^3 \times 72$	3+1	800 MeV	1432 - 1062 = 370(5)
A1 heavy	$32^3 \times 96$	3+1	800 MeV	1427 - 1059 = 368(3)
A1 light	$32^3 \times 96$	3+1	420 MeV	1412 - 1123 = 289(5)

Static-light

Conclusions

String breaking and tetra-quark operators

- combine static and light(charm)-quark perambulators
- building blocks for observation of string breaking

$$|=v^{\dagger}(0)U_tv(t) \rightarrow \mathcal{P}, \bullet \cdots \bullet = v^{\dagger}(t)D_{\alpha\beta}^{-1}\gamma_4v(0) \rightarrow \mathcal{D}$$

$$\begin{split} C_{11}(t) &\to \mathcal{P}(\vec{x})\mathcal{P}^{\dagger}(\vec{y}) \qquad \hat{r} = |\vec{y} - \vec{x}|, P_{\pm} = (1 \pm \gamma_{4})/2 \\ C_{12}(t) &\to \sqrt{N_{f}} \operatorname{Tr}_{c,d} \mathcal{P}(\vec{x}) P_{-} \gamma \hat{r} \mathcal{D}(\vec{x}, \vec{y}, t) \mathcal{P}^{\dagger}(\vec{y}) \\ C_{21}(t) &\to -\sqrt{N_{f}} \operatorname{Tr}_{c,d} \mathcal{P}(\vec{x}) \mathcal{P}^{\dagger}(\vec{y}) P_{+} \gamma \hat{r} \mathcal{D}^{\dagger}(\vec{x}, \vec{y}, 0) \\ C_{22}(t) &\to N_{f} \operatorname{Tr}_{c,d} \mathcal{P}(\vec{x}) P_{+} \mathcal{D}(\vec{x}, \vec{y}, t) \mathcal{P}^{\dagger}(\vec{y}) P_{-} \mathcal{D}^{\dagger}(\vec{x}, \vec{y}, 0) \\ &- \delta_{ij} \operatorname{Tr}_{c,d} [\mathcal{P}(\vec{x}) P_{+} \mathcal{D}_{i}^{\dagger}(\vec{x}, 0, t)] \operatorname{Tr}_{c,d} [\mathcal{P}^{\dagger}(\vec{y}) P_{-} \mathcal{D}_{j}(\vec{y}, 0, t) \end{split}$$

Hybrid Mesons

Born-Oppenheim

nheimer

Conclusions

Conclusions & Outlook

- ✓ alternative operator for a static quark-anti-quark potentials based on Laplacian eigenmodes, replacing Wilson loop
- improved Laplace trial states (optimal profiles) give earlier effective mass plateaus and better signal
- computational advantage for high resolution of the potential energy as off-axis distances basically come "for free"
- ✓ hybrid static potentials (hybrid meson masses), instead of "gluonic handles" (excitations) use derivatives of v
- ✓ implementation of static-light (charm) correlator using "perambulators" $v(t_1)D^{-1}v(t_2)$ from distillation framework
- putting together building blocks for string breaking in QCD (mixing matrix of static and light quark propagators)
- more (hybrid) static(-light) and multi-quark potentials

Conclusions

Acknowledgements

