Peering into the non-perturbative phase-space regions of jets

Authors:

Liliana Apolinário Raghav Kunnawalkam Elayavalli <u>Nuno Olavo Madureira</u>

(liliana@lip.pt)
(raghav.ke@vanderbilt.edu)
(nuno.olavo@tecnico.ulisboa.pt)

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Theoretical Introduction

Hard \sim high transverse momentum Soft \sim low transverse momentum

g -__________

Outgoing Parton

collision results in the ejection of hard partons

Partons

- g gluon
- q-quark
- **q** antiquark

collision results in the ejection of hard partons

g – gluon q – quark q̄ – antiquark

Theoretical Introduction

g – gluon

q-quark

q – antiquark

Hadronization

Process by which free partons bind to produce hadrons

collision results in the ejection of hard partons

Jet: highly-collimated group of energetic final-state particles produced in a hard scattering event

Jet

Clustering Sequence: proxy for the particle evolution history of a jet, down to the original outgoing parton Jet

- Jet: highly-collimated group of energetic final-state particles produced in a hard scattering event
- Clustering Sequence: proxy for the particle evolution history of a jet, down to the original outgoing parton

- > **<u>Clustering Tree</u>**: product of the clustering sequence
- Our work proposes jets as probing tools to investigate the transition from partons to hadrons

Results – Formation Time

[Y.L. Dokshitzer et al., Basics of perturbative QCD] [L. Apolinário et al, arXiv:2012.021999]

Formation Time
$$\tau_{form} = \frac{1}{2 E z (1-z) (1 - \cos \theta_{12})}$$

Estimate of the timescales involved in a particle splitting into 2 other particles that act as independent sources of additional radiation

 $\tau_1 < \tau_2$

Charge Ratio

$$r_{c} = \frac{\frac{d\sigma_{h_{1}h_{2}}}{dX} - \frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX}}{\frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX} + \frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX}}$$

- h_1 leading charged hadron h_2 – subleading charged hadron
- h_1 , h_2 pion (π), kaon (K), proton (p)

X – jet substructure variable of choice

- $r_c > 0$: higher probability of producing jets with equally-charged LCP;
- $r_c < 0$: higher probability of producing jets with oppositely-charged LCP;
- $r_c = 0$: jets produced randomly with equally- or oppositelly-charged LCP.

+ +

+

[Y.-T. Chien et al, arXiv:2109,15318]

> LCP "produced" at earlier times, typical of the earlier splittings \Rightarrow subsequent splittings randomize the charge correlation $\Rightarrow r_c$ closer to 0

- > LCP "produced" at earlier times, typical of the earlier splittings \Rightarrow subsequent splittings randomize the charge correlation $\Rightarrow r_c$ closer to 0
- > LCP "produced" at later times, typical of later splittings \Rightarrow retain more information of the splitting where the LCP separate, which favours opposite charges $\Rightarrow r_c$ more negative

[Y.-T. Chien et al, arXiv:2109,15318]

r_c = -	$rac{d\sigma_{h_1h_2}}{d au_{form}}$ -	$-rac{d\sigma_{h_1\overline{h_2}}}{d au_{form}}$
	$\frac{d\sigma_{h_1h_2}}{d\tau_{form}} +$	$\frac{d\sigma_{h_1\overline{h_2}}}{d\tau_{form}}$

> How dependent is the r_c on the jet fragmentation pattern?

[Y.-T. Chien et al, arXiv:2109,15318]

Results – Formation Time

$$\tau_{form} = \frac{1}{2 E z (1-z) (1 - \cos \theta_{12})}$$

- > **1SD** tends to have smaller τ_{form}
- > LCP tends to have larger τ_{form}
- RSD sits between the 1SD and the LCP

$$\frac{fm}{c} \sim \frac{10^{-15} m}{10^8 m/s} = 10^{-23} s$$

Results – Formation Time

$$_{orm} = rac{1}{2 \, E \, z \, (1-z) \, (1 - \cos \theta_{12})}$$

T

- > **1SD** tends to have smaller τ_{form}
- \succ LCP tends to have larger au_{form}
- RSD sits between the 1SD and the LCP
- $\succ \tau_{form,1SD} \neq \tau_{form,LCP}$ $\succ \tau_{form,RSD} \approx \tau_{form,LCP}$

<u>Conclusion</u>: RSD splitting, an actual splitting from the clustering tree, is a good proxy for the LCP

N_{RSD}/N_{SD} measures the depth/relative position of the RSD in the clustering tree

- N_{RSD}/N_{SD} measures the depth/relative position of the RSD in the clustering tree
- The charge ratio decreases, in general, with the increase of the RSD relative position

<u>Conclusion</u>: Yes! The r_c depends on the jet fragmentation pattern

- N_{RSD}/N_{SD} measures the depth/relative position of the RSD in the clustering tree
- The charge ratio decreases, in general, with the increase of the RSD relative position
- > For $N_{RSD}/N_{SD} > 0.5$, the descrease gives place to a plateau where r_c remains constant

<u>Conclusion</u>: Yes! The r_c depends on the jet fragmentation pattern

$\frac{d\sigma_{h_1h_2}}{d\tau_{form}} - \frac{d\sigma_{h_1\overline{h_2}}}{d\tau_{form}}$ $\frac{d\sigma_{h_1h_2}}{d\tau_{form}} + \frac{d\sigma_{h_1\overline{h_2}}}{d\tau_{form}}$

For PYTHIA (Lund String Model),

 $\Rightarrow N_{RSD}/N_{SD} < 0.5$ cut keeps the qualitative behaviour of the generic r_c ;

 $\Rightarrow N_{RSD}/N_{SD} > 0.5$ cut eliminates the timedependence of the r_c for all hadronic species and selects jets with higher chance of having opposite LCP.

For HERWIG (Cluster Model),

 $\Rightarrow N_{RSD}/N_{SD} < 0.5$ cut keeps the qualitative behaviour of the generic r_c ;

 $\Rightarrow N_{RSD}/N_{SD} > 0.5$ cut keeps the r_c close to 0 for earlier times, but also selects jets with overall higher chances of having opposite LCP.

$c = \frac{\frac{d\sigma_{h_1h_2}}{d\tau_{form}} - \frac{d\sigma_{h_1\overline{h_2}}}{d\tau_{form}}}{\frac{d\sigma_{h_1h_2}}{d\tau_{form}} + \frac{d\sigma_{h_1\overline{h_2}}}{d\tau_{form}}}$

Inclusive plot

Significant discrepencies between the predictions made by the two Monte Carlos, coming from the hadronization model;

<u>Conclusion</u>: the cluster model randomizes the charges of the LCP for earlier τ_{form}

Conclusions

The charge ratio is not only dependent on the formation time of the LCP (leading charged particles), but also on the jet fragmentation pattern;

> A selection on N_{RSD}/N_{SD} > 0.5 reveals a qualitatively different behaviour of the charge ratio between the Monte Carlos – PYTHIA and HERWIG.

Excited QCD 2024 Workshop

Thank you for your attention!

Questions?

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Excited QCD 2024 Workshop

Backup Slides

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Implementation

> Jet analysis is performed with **FastJet**

PYTHIA 8.306 and HERWIG 7 are the event generators used in this work to simulate pp and ep collisions

Relativistic Heavy-Ion Collider (RHIC)

- > 0.2 TeV pp collisions
- 0.2 TeV AuAu collisions

Large Hadron Collider (LHC)

- 5 TeV PbPb collisions
- 14 TeV pp collisions

Settings	CM energy	$p_{T,jet}$
RHIC	$\sqrt{s} = 200 \text{ TeV}$	$20 < p_{T,jet} < 40 \; { m GeV/c}$
LHC	$\sqrt{s} = 5 \text{ TeV}$	$200 < p_{T,jet} < 300 \text{ GeV/c}$
EIC	$\sqrt{s_e} = 18 \text{ GeV}$ $\sqrt{s_p} = 275 \text{ GeV}$	$p_{T,jet} > 5 \text{ GeV/c}$

> Anti-*k*_t algorithm:

- Sensitive to hard objects
- Unphysical clustering trees
- C/A algorithm: Angularordered trees
- τ algorithm: Reverse timeordered trees

Groomed Momentum Fraction

Groomed Momentum Fraction

$$\mathbf{z}_{g} = rac{min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$$

Fraction of the total transverse momentum of the source object that is carried out by the softest daughter of a SD emission

Soft-drop (SD) algorithm: remove soft wide-angle radiation; better comparisons between experiment and pQCD calculations

[A. J. Larkoski et al., arXiv:1402.2657]

SD criterion: $z_g > 0.1$

Results – Groomed Momentum Fraction

- ISD is highly asymmetrical; distributions extremely peaked for small z_g
- LCP is highly symmetrical; distributions extremely peaked for large z_g
- RSD is more symmetrical than 1SD and more asymmetrical than LCP; more to the likes of the LCP splitting