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Objective

Hadronization

➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD
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Objective

Hadronization
➢ Large Q2  ⇒ Small 𝛼𝑄𝐶𝐷 ⇒ pQCD

➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD
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Objective

Hadronization
➢ Large Q2  ⇒ Small 𝛼𝑄𝐶𝐷 ⇒ pQCD

➢ Small Q2  ⇒ Large 𝛼𝑄𝐶𝐷 ⇒ npQCD

➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD



Is it possible to identify the transition 

between pQCD and npQCD?

10

Objective

Hadronization

?

➢ Large Q2  ⇒ Small 𝛼𝑄𝐶𝐷 ⇒ pQCD

➢ Small Q2  ⇒ Large 𝛼𝑄𝐶𝐷 ⇒ npQCD

➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD
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Jets

➢ Jet: highly-collimated group of energetic final-state particles produced 

in a hard scattering event

Jet
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Jets

➢ Jet: highly-collimated group of energetic final-state particles produced 

in a hard scattering event

Jet

➢ Clustering Sequence: proxy for the particle 

evolution history of a jet, down to the 

original outgoing parton

➢ Clustering Tree: product of the clustering sequence

➢ Our work proposes jets as probing tools to investigate the transition 

from partons to hadrons 



Results – Formation Time

Formation Time

Estimate of the timescales involved in a particle splitting into 2 other 

particles that act as independent sources of additional radiation

              𝐸                   source energy

                     𝜃12                              angle between the 2 emitted prongs

             𝑧 =
𝑚𝑖𝑛 𝐸1

 ,𝐸2
 

𝐸1
 + 𝐸2

  energy fraction

𝝉𝒇𝒐𝒓𝒎 =
𝟏

𝟐 𝑬 𝒛 𝟏 − 𝒛  (𝟏 −  𝐜𝐨𝐬 𝜽𝟏𝟐)

14

t

𝝉𝟏 𝝉𝟐

early

emission

late

emission

[Y.L. Dokshitzer et al., Basics of perturbative QCD] 

[L. Apolinário et al, arXiv:2012.021999]

𝝉𝟏 < 𝝉𝟐 
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Splittings of Interest
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Splittings of Interest

Leading Charged 

Particles splitting (LCP)



Charge Ratio

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

• 𝒓𝒄 > 0  : higher probability of producing jets with equally-charged LCP;

• 𝒓𝒄 < 0  : higher probability of producing jets with oppositely-charged LCP;

• 𝒓𝒄 = 0  : jets produced randomly with equally- or oppositelly-charged LCP.
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𝒉𝟏 – leading charged hadron 

𝒉𝟐 – subleading charged hadron

𝒉𝟏, 𝒉𝟐  - pion (π), kaon (K), proton (p)

𝑋 – jet substructure variable of choice



Charge Ratio
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[Y.-T. Chien et al, arXiv:2109,15318]
𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−
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𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐
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𝒅τ𝒇𝒐𝒓𝒎
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Leading charged particle

Sub-leading charged particle

➢ LCP “produced” at earlier times, typical of the earlier 

splittings ⇒ subsequent splittings randomize the 

charge correlation ⇒  𝑟𝑐 closer to 0

[Y.-T. Chien et al, arXiv:2109,15318]
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➢ LCP “produced” at earlier times, typical of the earlier 

splittings ⇒ subsequent splittings randomize the 

charge correlation ⇒  𝑟𝑐 closer to 0

Leading charged particle

Sub-leading charged particle

➢ LCP “produced” at later times, typical of later 

splittings ⇒ retain more information of the splitting 

where the LCP separate, which favours opposite 

charges ⇒ 𝑟𝑐 more negative

[Y.-T. Chien et al, arXiv:2109,15318]



Charge Ratio 𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐
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➢ How dependent is the 𝑟𝑐 on the 

jet fragmentation pattern?

[Y.-T. Chien et al, arXiv:2109,15318]



Leading Charge

Sub-leading 

Charge

Leading Charge

Sub-leading 

Charge
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Splittings of Interest

Resolved Soft-Drop 

splitting (RSD)

Leading Charged 

Particles splitting (LCP)
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Splittings of Interest

1st Soft-Drop 

emission (1SD)

Leading Charged 

Particles splitting (LCP)

Resolved Soft-Drop 

splitting (RSD)

[A.J. Larkoski et al, arXiv:1502.01719]
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Sub-leading 
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Sub-leading 
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Splittings of Interest

1st Soft-Drop 

emission (1SD)

Leading Charged 

Particles splitting (LCP)

Resolved Soft-Drop 

splitting (RSD)



Results – Formation Time
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𝝉𝒇𝒐𝒓𝒎 =
𝟏

𝟐 𝑬 𝒛 𝟏 − 𝒛  (𝟏 −  𝐜𝐨𝐬 𝜽𝟏𝟐)

𝒇𝒎

𝒄
 ~

𝟏𝟎−𝟏𝟓 𝒎

𝟏𝟎𝟖 𝒎/𝒔
=  𝟏𝟎−𝟐𝟑 𝒔

➢ 1SD tends to have smaller 𝝉𝒇𝒐𝒓𝒎

➢ LCP tends to have larger 𝝉𝒇𝒐𝒓𝒎

➢ RSD sits between the 1SD and the 

LCP



Results – Formation Time
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𝝉𝒇𝒐𝒓𝒎 =
𝟏

𝟐 𝑬 𝒛 𝟏 − 𝒛  (𝟏 −  𝐜𝐨𝐬 𝜽𝟏𝟐)

Conclusion: RSD splitting, an 

actual splitting from the clustering 

tree, is a good proxy for the LCP

➢ 1SD tends to have smaller 𝝉𝒇𝒐𝒓𝒎

➢ LCP tends to have larger 𝝉𝒇𝒐𝒓𝒎

➢ RSD sits between the 1SD and the 

LCP

➢  𝝉𝒇𝒐𝒓𝒎,𝟏𝑺𝑫  ≠  𝝉𝒇𝒐𝒓𝒎,𝑳𝑪𝑷

➢  𝝉𝒇𝒐𝒓𝒎,𝑹𝑺𝑫  ≈  𝝉𝒇𝒐𝒓𝒎,𝑳𝑪𝑷



Results – Charge Ratio
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𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 =
𝑵𝑹𝑺𝑫

𝑵𝑺𝑫

➢ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 measures the 

depth/relative position of the 

RSD in the clustering tree

0.5



Results – Charge Ratio
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➢  The charge ratio decreases, in 

general, with the increase of 

the RSD relative position

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 =
𝑵𝑹𝑺𝑫

𝑵𝑺𝑫

➢ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 measures the 

depth/relative position of the 

RSD in the clustering tree

0.5

Conclusion: Yes! The 𝒓𝒄 

depends on the jet 

fragmentation pattern 



Results – Charge Ratio
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➢  For 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5, the 

descrease gives place to a 

plateau where 𝒓𝒄 remains 

constant

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 =
𝑵𝑹𝑺𝑫

𝑵𝑺𝑫

➢ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 measures the 

depth/relative position of the 

RSD in the clustering tree

0.5

➢  The charge ratio decreases, in 

general, with the increase of 

the RSD relative position

Conclusion: Yes! The 𝒓𝒄 

depends on the jet 

fragmentation pattern 



Results – Charge Ratio
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 < 0.5 cut keeps the qualitative 

behaviour of the generic 𝒓𝒄 ;

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5 cut eliminates the time-

dependence of the 𝒓𝒄 for all hadronic species 

and selects jets with higher chance of having 

opposite LCP.

➢ For PYTHIA (Lund 

String Model), 

Inclusive plot
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 < 0.5 cut keeps the qualitative 

behaviour of the generic 𝒓𝒄 ;

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5 cut keeps the 𝒓𝒄 close to 0 

for earlier times, but also selects jets with 

overall higher chances of having opposite LCP.

➢ For HERWIG 

(Cluster Model), 

Inclusive plot
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

➢ Significant discrepencies between the 

predictions made by the two Monte Carlos, 

coming from the hadronization model;

Conclusion: the cluster model 

randomizes the charges of the 

LCP for earlier 𝝉𝒇𝒐𝒓𝒎 

Inclusive plot



Conclusions
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➢The charge ratio is not only dependent on the formation time of the LCP 

(leading charged particles), but also on the jet fragmentation pattern;

➢A selection on 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5 reveals a qualitatively different behaviour of the 

charge ratio between the Monte Carlos – PYTHIA and HERWIG.
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
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Implementation

➢ PYTHIA 8.306 and HERWIG 7 are the event 

generators used in this work to simulate pp 

and ep collisions

➢ Jet analysis is performed with FastJet

Settings CM energy 𝒑𝑻,𝒋𝒆𝒕

RHIC

LHC

𝑠 = 200 TeV

𝑠 = 5 TeV

20 <  𝑝𝑇,𝑗𝑒𝑡 < 40 GeV/c

200 <  𝑝𝑇,𝑗𝑒𝑡 < 300 GeV/c

Anti-𝒌𝒕

⇓

Clustering Algorithms

Cambridge/

Aachen (C/A)

⇓

𝜏 

⇓

Jet substructure studies

Relativistic Heavy-Ion Collider

(RHIC)

➢ 0.2 TeV pp collisions

➢ 0.2 TeV AuAu collisions

Large Hadron Collider

(LHC)

➢ 5 TeV PbPb collisions

➢ 14 TeV pp collisions

Jet finding

[“Soft drop” (2014);

“Time reclustering for jet 

quenching studies” (2021)]

➢ Anti-𝒌𝒕 algorithm:

        - Sensitive to hard objects

        - Unphysical clustering trees

➢ C/A algorithm: Angular-

ordered trees

➢ 𝜏 algorithm: Reverse time-

ordered treesEIC 𝑝𝑇,𝑗𝑒𝑡 > 5 GeV/c
𝑠𝑒 = 18 GeV

𝑠𝑝 = 275 GeV



Groomed Momentum Fraction

𝒛𝒈 =
𝒎𝒊𝒏 𝒑𝑻𝟏

 , 𝒑𝑻𝟐
 

𝒑𝑻𝟏
 + 𝒑𝑻𝟐

 
Groomed Momentum 

Fraction

Fraction of the total transverse momentum of the source object 

that is carried out by the softest daughter of a SD emission

⟹
0.1 <  𝑧𝑔 < 0.5

38

𝑝𝑇1
 𝑝𝑇2

 

𝑧𝑔 = 0.5

𝑝𝑇1
 

𝑝𝑇2
 

𝑧𝑔 = 0.1

Soft-drop (SD) algorithm: remove soft 

wide-angle radiation; better comparisons 

between experiment and pQCD calculations

SD criterion:  𝒛𝒈  > 𝟎. 𝟏

[A. J. Larkoski et al., arXiv:1402.2657]



Results – Groomed Momentum Fraction 𝒛𝒈 =
𝒎𝒊𝒏 𝒑𝑻𝟏

 , 𝒑𝑻𝟐
 

𝒑𝑻𝟏
 +  𝒑𝑻𝟐

 

➢ 1SD is highly asymmetrical; 

distributions extremely peaked 

for small 𝑧𝑔

LCP is highly symmetrical; 

distributions extremely peaked 

for large 𝑧𝑔

➢ RSD is more symmetrical than 

1SD and more asymmetrical 

than LCP; more to the likes of 

the LCP splitting

39
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