

Quantum simulation and computation with cold atoms

Daniel Barredo

Laboratoire Charles Fabry Institut d'Optique, CNRS Palaiseau (France) & CINN, CSIC El Entrego (Spain)

Spring School on Near-Term Quantum Computing

Benasque Science Center, Apr 14 - Apr 27, 2024

Many-body quantum systems: challenges

Goal: Understand ensembles of interacting quantum particles

Superconductivity

High energy physics

Transport

home.cern/

Many-body quantum systems: challenges

Goal: Understand ensembles of interacting quantum particles

Superconductivity

High energy physics

Transport

Open questions: Phase diagram, dynamics (hard for N>40...) Topology, disorder, entanglement,...

Many-body quantum systems: challenges

Goal: Understand ensembles of interacting quantum particles

Superconductivity

High energy physics

Transport

Open questions: N>40...)

Phase diagram, dynamics (hard for Topology,

disorder, entanglement,...

R.P. Feynman

Use experimental control to

Implement many-body Hamiltonians (including "mathematical" ones...)

Larger tunability than « real » systems

= QUANTUM SIMULATION

Analog vs digital quantum simulation

Analog

The platform implement directly *H*_{model}

$$\begin{split} |\psi(t)\rangle &=\\ \exp\left(-\frac{i}{\hbar}\int_{0}^{t}H_{\rm mod}(t')dt'\right)|\psi(0)\rangle \end{split}$$

e.g. Fermi Hubbard, spin models, electrons in B-fields...

Georgescu, Rev. Mod. Phys. (2014)

Analog vs digital quantum simulation

Analog

The platform implement directly *H*_{model}

$$\begin{split} |\psi(t)\rangle &=\\ \exp\left(-\frac{i}{\hbar}\int_{0}^{t}H_{\rm mod}(t')dt'\right)|\psi(0)\rangle \end{split}$$

e.g. Fermi Hubbard, spin models, electrons in B-fields...

Digital

 H_{model} is synthesized digitally $H_{\text{model}} = \sum_{i=1}^{l} H_i$

- e.g. single / 2 qbit operations $e^{-iH_{mod}t} \approx \left(e^{-iH_1t/n}e^{-iH_2t/n}...e^{-iH_3t/n}\right)^n$
- = "universal" quantum simulation

Georgescu, Rev. Mod. Phys. (2014)

Quantum state engineering with individual systems

Cold atoms and molecules

Trapped ions

Photons

NV centers

Quantum dots

Superconducting qubits

Polaritons condensates

See e.g. Hazzard et al., PRA 90, 063622 (2014)

Atom arrays

Coupling range

Atom arrays

See e.g. Hazzard et al., PRA 90, 063622 (2014)

Outline

1. Arrays of individual atoms

- 2. Rydberg atoms and their interactions
- 3. Examples of quantum simulations
 - A. Exploration of phase diagrams
 - B. Out-of-Equilibrium dynamics
 - C. Ground state preparation & squeezing
 - D. Synthetic Topological matter
- 4. Digital quantum computing

Outline

1. Arrays of individual atoms

- 2. Rydberg atoms and their interactions
- 3. Examples of quantum simulations
 - A. Exploration of phase diagrams
 - B. Out-of-Equilibrium dynamics
 - C. Ground state preparation & squeezing
 - D. Synthetic Topological matter
- 4. Digital quantum computing

Harmonic oscillator model

Interaction atom - light $\mathcal{U}(\boldsymbol{\chi}) \sim - \boldsymbol{\alpha} \ \mathcal{E}(\boldsymbol{\chi})^{p}$

Conservative POTENTIAL

Interaction atom - light $\mathcal{U}(\boldsymbol{\chi}) \sim - \boldsymbol{\alpha} \ \mathcal{E}(\boldsymbol{\chi})^{p}$

Conservative POTENTIAL

Quantum

$$\begin{split} \hbar\Omega &= d.E\\ d &= \langle e | \hat{D} | g \rangle \end{split}$$

 $\omega^{0} > \omega$

Interaction atom - light $\mathcal{U}(\boldsymbol{\chi}) \sim - \boldsymbol{\alpha} \ \mathcal{E}(\boldsymbol{\chi})^{p}$

Conservative POTENTIAL

Quantum

$$\begin{split} \hbar\Omega &= d.E\\ d &= \langle e | \hat{D} | g \rangle \end{split}$$

 $(\omega_0 > \omega)$

Trap depth ~ 100 μ K – 1 mK \Rightarrow cold atoms

Laser cooling of neutral atoms

87 Rb Rubidium	A	T (K)	λ (nm)	v (m/s)	t (s)
	-	300			.03
	-	1	0.3	20	0.2
	ŀ	10 ⁻³	9	0.5	6
	H		300	2 cm/s	2 min
	6	10 ⁻⁹	9000	0.5 mm/s	1.5 hr

The Nobel Prize in Physics 1997

Photo from the Nobel Foundation archive. Steven Chu Prize share: 1/3

Foundation archive. Claude Cohen-Tannoudji

Photo from the Nobel Foundation archive. William D. Phillips Prize share: 1/3

Dipole force: $\mathbf{F} \propto -\nabla I(\mathbf{r})$

$$E_0 e^{ikx} \qquad E_0 e^{-ikx}$$

$$I(x) = 2E_0^2(1 + \cos 2kx)$$

Dipole force: $\mathbf{F} \propto -\nabla I(\mathbf{r})$

 $I(x) = 2E_0^2(1 + \cos 2kx)$

Each site contains 1 atom!

Boson (Rb, Na, ⁷Li, ³⁹K, ⁴He^{*}), Fermion (⁶Li, ⁴⁰K), Magnetic atoms (Cr, Dy...)

 $\lambda/2 = 0.5 \,\mu\text{m}$

 $I(x) = 2E_0^2(1 + \cos 2kx)$

Each site contains 1 atom!

Boson (Rb, Na, ⁷Li, ³⁹K, ⁴He^{*}), Fermion (⁶Li, ⁴⁰K), Magnetic atoms (Cr, Dy...)

Optical tweezers: trapping in 3D

Optical tweezers: trapping in 3D

Experimental setup

The Rydberg team in Palaiseau

https://atom-tweezers-io.org/

daniel.barredo@csic.es

Individual atoms in optical tweezers

Schlosser et al., Nature **411**, 1024 (2001)

Loading a tweezer from a MOT

Loading rate (~ density of the MOT) = R

 $R \sim n_{\rm MOT} w^2 v$

Loading a tweezer from a MOT

Loading rate (~ density of the MOT) = R

Light-assisted collision

A. Gallagher & Pritchard PRL **63**, 957 (1989) A. Fuhrmanek, PRA **85**, 062708 (2012)

A. Gallagher & Pritchard PRL **63**, 957 (1989) A. Fuhrmanek, PRA **85**, 062708 (2012)

A. Gallagher & Pritchard PRL **63**, 957 (1989) A. Fuhrmanek, PRA **85**, 062708 (2012)

Individual atoms in optical tweezers

Schlosser et al., Nature **411**, 1024 (2001)

Individual atoms in optical tweezers

Schlosser et al., Nature 411, 1024 (2001)

Which atoms?

1	1 H 1.0079	2											13	14	15	16	17	2 He 4.0026
2	3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
3	11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30 974	16 S 32.065	17 Cl 35.453	18 Ar 39.948
4	19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69 723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
5	37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95,94	43 T c (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	57 - 71 La-Lu	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 -103 Ac-Lr	104 RO (261)	105 Db (262)	106 Sg (266)	107 IBh (264)	108 HIS (277)	109 1010 (268)	110 Uun (281)	111 Unu (272)	112 Uuh (285)		114 Uuq (289)				
	Lanthanides		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
Actinides			89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 (237)	94 194 (244)	95 Ann (243)	96 Om (247)	97 (247)	98 (251)	99 125 (252)	100 (257)	101 1016 (258)	102 100 (259)	103 (262)	

Which atoms?

1	1 H 1.0079	2		$\left(\right)$)	Las		13	14	15	16	17	4 He 4.0025					
2	3 Li 4.941	4 Be 9.0122			5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 90 180								
3	11 Na 22.990	12 Mg 94.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30 974	16 S 32.065	17 Cl 35.453	18 Ar 29.948
4	19 K 20 099	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51 006	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69 723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
5	57 Rb 85.469	Sr 97.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95,94	43 To (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	34 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	57 - 71 La-Lu	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	50 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 -103 Ac-Lr	104 IRI (261)	105 Db (262)	106 85 (266)	107 136 (264)	108 115 (277)	109 Mft (268)	110 Uun (281)	111 Uuu (272)	112 Uub (285)		114 Uuq (289)				
Lanthanides		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	50 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97		
Actinides			89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 1410 (237)	94 195 (244)	95 Ann (243)	96 Om (247)	97 1915 (247)	98 01 (251)	99 Dos (252)	100 100 (257)	101 1016 (258)	102 1010 (259)	103 (262)	

Which atoms?

1	1 H 1.0079	2	C Laser cooled											14	15	16	17	4 He 4,0025
2	3 Li 4 941	4 Be 9.0122		$\left(\right)$)	Sir	ngle	e ato	5 B 10.811	6 C 12.011	7 N 14.007	8 0 15.999	9 F 18.998	10 Ne 90 180				
3	11 Na 22.990	24 Mg 04.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30 974	16 S 32.065	17 Cl 35.453	18 Ar 29.948
4	19 K 30,099	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.006	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69 723	32 Ge 72.64	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
5	57 Rb 85.469	Sr 97.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95,94	43 T c (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	34 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	57 - 71 La-Lu	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	50 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 -103 Ac-Lr	104 Rf (261)	105 Db (262)	106 Sci (266)	107 1816 (264)	108 Hs (277)	109 MR (268)	110 Uun (281)	111 Uuu (272)	112 Uub (285)		114 Uuq (289)				
	Lanthanides		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	50 Dy 162_50	67 Ho 164.93	68 Er 167 26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
Actinides			89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 1310 (237)	94 195 (244)	95 Ann (243)	96 Om (247)	97 1816 (247)	98 61 (251)	99 B S (252)	100 100 (257)	101 1016 (258)	102 1010 (259)	103 (262)	
Individual atoms in optical tweezers

Iterative algorithm [Gerchberg - Saxton (1972)]

Spatial Light Modulator (liquid crystals) Reconfigurable

$$I(x,y) = \left| \operatorname{FT}[e^{i\varphi(x,y)}] \right|^2$$

Nogrette et al., PRX 4, 021034 (2014)

2π

 $\varphi(x,y)$

0

Individual atoms in optical tweezers

Avg. Fluorescence

Nogrette et al., PRX 4, 021034 (2014)

Individual atoms in optical tweezers

Avg. Fluorescence

Nogrette et al., PRX 4, 021034 (2014)

Assembled arrays of individual atoms

Assembled arrays of individual atoms

 $\sim 100 \, \mu m$

Solution: sorting atom in the arrays Miroshnychenko, Nature **442**, 151 (2006)

Related: Endres *et al.*, Science **354**,1024 (2016) Kim *et al.*, Nat. Comm. **7**, 13317 (2016)

Barredo et al., Science, 354, 1021 (2016)

What about 3D arrays?

ETL2

DIM

ENCOD

PS

Trap imaging ACIOS

ETL3

Atom imaging

pBS

Atom sorting SLM

Electrically tunable lenses

d-CCD

ETL1

3

It also works in 3D!

- Holographic traps (with SLM) also works in 3D
- Imaging in 3D with a single EMCCD camera
 - fast tunable lens for multi-plane imaging

3D holographic arrays

Di Leonardo, Optics Express **15**, 1913 (2007)

3D holographic arrays

Di Leonardo, Optics Express 15, 1913 (2007)

Quadratic phase _ lensing

3D holographic arrays

Di Leonardo, Optics Express **15**, 1913 (2007)

Quadratic phase _ lensing

Approximate solution for multi-planes: use superposition principle

$$\Phi(x,y) = \arg[e^{i\Phi_1(x,y)} + e^{i\Phi_2(x,y)} + \dots]$$
Plane 1 Plane 2

Assembled arrays of individual atoms

New assembler algorithms:

Schymik *et al.*, PRA, **102**, 063107 (2020)

For N = 100 atoms:

Filling fraction > 99 %

Probability of defect free shots ~ 40 %

Assembled arrays in the world

Assembled arrays in the world

 Position

Lukin (Harvard), 2016

And many more on the way: Bonn, Yale, Columbia, Tokyo, Argonne, UIUC, Amsterdam, Durham, MPQ (4), Pasqal, Atom Computing, ETH, Munich, Hamburg...

Endres (Caltech) Kauffman (JILA) 2018 Thompson (Princeton) 2018 Why larger arrays?

Why larger arrays?

Avoid edge effects...

Why larger arrays?

Avoid edge effects...

Optimization problems N > 1000 Graph problems (MIS)

Lukin & Pichler , Ahn, Pasqal, Ayral...

Why larger arrays?

Avoid edge effects...

Optimization problems N > 1000 Graph problems (MIS)

Lukin & Pichler , Ahn, Pasqal, Ayral...

Alexandre Dauphine

Next week!

Why larger arrays?

Avoid edge effects...

Optimization problems N > 1000 Graph problems (MIS)

Lukin & Pichler , Ahn, Pasqal, Ayral...

Quantum error correction ~ 100 phys. qbits for 1 logical qbit

Lifetime:
$$\tau_1 \rightarrow \tau_N = \tau_1/N$$

_ atom losses + detection errors

Why larger arrays?

Avoid edge effects...

Optimization problems N > 1000 Graph problems (MIS)

Lukin & Pichler , Ahn, Pasqal, Ayral...

Quantum error correction ~ 100 phys. qbits for 1 logical qbit

Lifetime: $\tau_1 \rightarrow \tau_N = \tau_1/N$

➡ atom losses + detection errors

Development of a 4K, UHV compatible closed-cycle cryostat = "vacuum ~ 0"

K.N. Schymik, Phys. Rev. Applied (2021)

Trapping lifetime > 6000 s !

Trapping lifetime > 6000 s !

Now:

>300 atoms assembled> 30% probability

Schymik et al., PRA 106, 022611 (2022)

19 x 19

17 x 18

Questions?

Outline

1. Arrays of individual atoms

2. Rydberg atoms and their interactions

- 3. Examples of quantum simulations
 - A. Exploration of phase diagrams
 - B. Out-of-Equilibrium dynamics
 - C. Ground state preparation & squeezing
 - D. Synthetic Topological matter
- 4. Digital quantum computing

Arrays of interacting Rydberg atoms

Arrays of atoms

Addressable

Arrays of interacting Rydberg atoms

Lukin, Zoller 2000 Saffman, RMP 2010 Browaeys, Nat. Phys. 2020

$$1000 \int \frac{l=0}{n=9} \frac{l=1}{n=8} \frac{l=2}{n=7} \frac{|n,l\rangle}{n=6}$$

$$800 \int \frac{n=9}{n=8} \frac{n=9}{n=7} \frac{n=7}{n=6} \frac{n=7}{n=5} n \gg 1$$

$$n=6$$

$$1000 \int \frac{n}{n=6} \frac{n}{n=5} \frac{n}{n=$$

Radial wave-function for Rb

Angular wave-function

$$1000 \qquad l = 0 \qquad l = 1 \qquad l = 2 \qquad |n, l\rangle \qquad \langle r \rangle \sim n^2 a_0$$

$$1000 \qquad \boxed{n = 9} \qquad \boxed{n = 9} \qquad \boxed{n = 8} \qquad \boxed{n = 7} \qquad \boxed{n = 6} \qquad n \gg 1$$

$$100 \qquad n = 6$$

$$100 \qquad n = 6$$

$$100 \qquad n = 6$$

$$100 \qquad n = 5$$

$$100 \qquad n = 5$$

$$100 \qquad n = 5$$

Rydberg atoms are huge

Property	n-scaling	Value for 80S1/2 of Rb
Binding energy E_n	n^{-2}	-500 GHz
Level spacing $E_{n+1} - E_n$	n^{-3}	13 GHz
Size of wavefunction $\langle r \rangle$	n^2	500 nm
Lifetime τ	n^3	200 µs
Polarizability α	n^7	-1.8 GHz/(V/cm)2
van der Waals coeffi-	n ¹¹	4 THz $\cdot \mu m^6$
cient C_6		

Table 1. Properties of Rydberg states.

Rydberg atoms: a few historical landmarks

1975 Spectroscopy using lasers (Gallagher, Kleppner, Haroche...)

1980 – 2000 Cavity Quantum Electrodynamics using Rydbergs

High Q cavity: photon lifetime > 1ms + large dipole _ 1 Rydberg interacts with 1 photon!

Haroche, Walther...

1998 Rydbergs meet cold atoms P. Pillet and T. Gallagher

Anderson, PRL **80**, 249 (1998) Mourachko, PRL **80**, 253 (1998)

Diffusion of excitation faster than motion _ correlations between all atoms

k_B**T << Interaction energy** _ T < 1 mK
Strength of Rydberg interactions

"Quantum Information with Rydberg atoms", M. Saffman, T. Walker, K. Moelmer, Rev. Mod. Phys. **82**, 2313 (2010)

Arrays of interacting Rydberg atoms

Large dipole-dipole interactions

 $R \approx 10 \,\mu \text{m} \implies V_{\text{int}}/h \approx 1 - 10 \,\text{MHz}$ $T_{\text{int}} \approx \,\mu \text{s} \ll T_{\text{lifetime}}$ Lukin, Zoller 2000 Saffman, RMP 2010

Browaeys, Nat. Phys. 2020

On-line interaction calculator for Rydberg atoms

Dipole-dipole interactions

https://arc-alkali-rydberg-calculator.readthedocs.io/

Docs » Pairinteraction - A Rydberg Interaction Calculator S. Weber

Pairinteraction - A Rydberg Interaction Calculator

https://www.pairinteraction.org/

On-line interaction calculator for Rydberg atoms

https://pairinteraction.github.io/pairinteraction/sphinx/html/index.html

Interactions between Rydberg atoms and spin models

Interactions between Rydberg atoms and spin models

Quantum Ising

$$\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

XY model $\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$

Coherent excitation to the Rydberg states

Effective Rabi frequency:
$$\Omega = \frac{M_R M_B}{2\Delta}$$

Light-shift: $\delta_{eff} = \delta - \left(\frac{|\Omega_B|^2}{4\Delta} - \frac{|\Omega_R|^2}{4\Delta}\right)$

 \mathbf{O}

 \mathbf{O}

Coherent excitation to the Rydberg states

Coherent excitation to the Rydberg states

Optical detection of Rydberg atoms

Efficiency > 95%

Optical detection of Rydberg atoms

"Optical" detection

Schauss, Nature 491, 87 (2012)

Efficiency > 95%

Trapping Rydberg atoms

Ponderomotive potential

Rydberg not trapped in tweezers

Solution: "hollow trap" for Rydberg trapping

Holographic generation of bottle-beam trap (measured intensity)

The bottle beam trap

Chaloupka Opt. Lett. 1997; Ozeri, PRA 1999

Demonstration of Rydberg trapping

Barredo, PRL 124, 023201 (2020)

Ponderomotive 'Bottle beam' trap

$$U_{nljm_j}(\boldsymbol{R}) = \int d^3r \, V_P(\boldsymbol{R} + \boldsymbol{r}) \, |\psi_{nljm_j}(\boldsymbol{r})|^2$$

$$\mathcal{N}$$
Ponderomotive potential for the electron (repulsive)
$$V_P(\boldsymbol{r}) = \frac{q_e^2 I(\boldsymbol{r})}{2m_e \varepsilon_0 c \, \omega_L^2}$$

for the electron (repulsive)

Demonstration of Rydberg trapping

Barredo, PRL 124, 023201 (2020)

Ponderomotive 'Bottle beam' trap

$$U_{nljm_j}(\boldsymbol{R}) = \int d^3 \boldsymbol{r} \frac{V_P(\boldsymbol{R} + \boldsymbol{r})}{\mathcal{N}} |\psi_{nljm_j}(\boldsymbol{r})|^2$$

Ponderomotive potential for the electron (repulsive)

 $V_P(\boldsymbol{r}) = \frac{q_e^2 I(\boldsymbol{r})}{2m_e \varepsilon_0 c \,\omega_L^2}$

Also: circular atoms Brune & Sayrin PRL 2020

Measuring Rydberg lifetimes

 \checkmark Microwave manipulation of the Rydberg state

 \checkmark Exchange dynamics between two trapped Rydberg atoms

Barredo, PRL 124, 023201 (2020)

See also Cortiñas, PRL 124, 123201 (2020)

Interactions between Rydberg atoms and spin models

Quantum Ising

$$\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

XY model $\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$

Van der Waals blockade

Jaksch *et al.*, PRL 2000 Lukin *et al.*, PRL 2001

Browaeys & Grangier, Saffman, Nat. Phys. 2009

Van der Waals blockade

Blockade: $V_{vdW} \gg \hbar \Omega \implies |rr\rangle$ is not resonant.

- No double excitation: $P_{rr} = 0$
- Enhanced coupling $\sqrt[6]{2}\Omega$) between $|gg\rangle$ and $\frac{1}{\sqrt{2}}(|gr\rangle + |rg\rangle)$

Jaksch *et al.*, PRL 2000 Lukin *et al.*, PRL 2001 Browaeys & Grangier, Saffman, Nat. Phys. 2009

Entanglement!

Van der Waals blockade

Blockade: $V_{vdW} \gg \hbar \Omega$

- No double excitation: $P_{rr} = 0$
- Enhanced coupling ($\sqrt{2} \mathfrak{N}$

Jaksch *et al.*, PRL 2000 Lukin *et al.*, PRL 2001

Browaeys & Grangier, Saffman, Nat. Phys. 2009

Excitation dynamics, varying the blockade radius

Excitation dynamics, varying the blockade radius

Excitation dynamics, varying the blockade radius

Full blockade with many atoms

Also: Saffman, Kuzmich, Bloch, Pfau, Ott...

Some references to Rydberg physics and QS

"Rydberg atoms", T. Gallagher, Cambridge (1994).

"An experimental and theoretical guide to strongly interacting Rydberg gases", R. Loew, J. Phys. B **45**, 113001(2012).

"Quantum Information with Rydberg atoms", M. Saffman, T. Walker, K. Moelmer, Rev. Mod. Phys. **82**, 2313 (2010).

Special Issue on Rydberg Atomic Physics, J. Phys. B (2016) contains many reviews:

"Experimental investigations of the dipolar interactions between a few individual Rydberg atoms", A. Browaeys, D. Barredo, and T. Lahaye, J. Phys. B **49**, 152001 (2016).

"Quantum simulation and computing with Rydberg-interacting qubits", M. Morgado, S. Whitlock, AVS Quantum Sci. **3**, 023501 (2021).

"Many-body physics with individually controlled Rydberg atoms", A. Browaeys and T. Lahaye, Nat. Phys. **16**, 132 (2020).

Questions?

Outline

1. Arrays of individual atoms

- 2. Rydberg atoms and their interactions
- 3. Examples of quantum simulations
 - A. Exploration of phase diagrams
 - B. Out-of-Equilibrium dynamics
 - C. Ground state preparation & squeezing
 - D. Synthetic Topological matter
- 4. Digital quantum computing

Outline

1. Arrays of individual atoms

2. Rydberg atoms and their interactions

3. Examples of quantum simulations

- A. Exploration of phase diagrams
- B. Out-of-Equilibrium dynamics
- C. Ground state preparation & squeezing
- D. Synthetic Topological matter
- 4. Digital quantum computing

Interactions between Rydberg atoms and spin models

Quantum Ising

$$\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

XY model $\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$

Interactions between Rydberg atoms and spin models

Quantum Ising

$$\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$$

XY model $\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$

From van der Waals to Ising

Quantum Ising model:

$$R_{\rm b} \sim a \qquad \frac{C_6}{a^6} \sim \Omega$$

Nearest-neighbor blockade

$$R_{\rm b} \sim a \qquad \frac{C_6}{a^6} \sim \Omega$$

Nearest-neighbor blockade

Antiferromagnetic ground state

$$R_{\rm b} \sim a \qquad \frac{C_6}{a^6} \sim \Omega$$

Nearest-neighbor blockade

Antiferromagnetic ground state

Phase diagram on a square lattice

 $0 = |g\rangle$ $0 = |r\rangle$

 $R_{\rm b} \sim a$ Ising AF phase diagram 0 0 00 00 0 0 00 Ο 0 000 D PM 1.50000 $\bullet \circ \bullet \circ$ 0000 AF 0 0 0 0.50000 • • 0 0000 0 0 0 0 -3 -22 3 4 -10 1 -4 $\frac{\hbar\delta}{U}$ $U = C_6/a^6$
Probing anti-ferromagnetic order on a square lattice

10×10 square array

1D: Pohl **PRL** 2010; Bloch **Science** 2015; Lukin **Nature** 2017, 2019; **2D:** Lienhard **PRX** 2018, Bakr **PRX** 2018; Lukin **Nature** 2021

10×10 square array

Perfect AF (Néel) ordering!

Missing atoms = Rydberg

1D: Pohl **PRL** 2010; Bloch **Science** 2015; Lukin **Nature** 2017, 2019; **2D:** Lienhard **PRX** 2018, Bakr **PRX** 2018; Lukin **Nature** 2021

At the end of experiment:

$$|\Psi\rangle = \alpha | \dots \rangle + \beta | \dots \rangle + \gamma | \dots \rangle + \cdots$$

At the end of experiment:

At the end of experiment:

10×10 square array

Perfect AF (Néel) ordering!

Missing atoms = Rydberg

1D: Pohl **PRL** 2010; Bloch **Science** 2015; Lukin **Nature** 2017, 2019; **2D:** Lienhard **PRX** 2018, Bakr **PRX** 2018; Lukin **Nature** 2021

10×10 square array

Scholl *et al.*, Nature **595**, 233 (2021)

Also: Ebadi *et al.*, Nature **595**, 227 (2021)

10×10 square array

Scholl et al., Nature 595, 233 (2021)

Also: Ebadi et al., Nature 595, 227 (2021)

182-atom antiferromagnetic cluster!

Scholl et al., Nature 595, 233 (2021)

Also: Ebadi et al., Nature 595, 227 (2021)

Benchmarking the dynamics on a square

Benchmarking the dynamics on a square

Including experimental imperfections:

Benchmarking the dynamics on a square

Tutorial about this!

Accurate MPS limited to 10 x 10 (14 days!!)

2D Ising anti-ferromagnet on a square beyond NN interactions

Lukin group

Ebadi, Nature 595, 227 (2021)

Vary
$$(C_6/a^6)/\Omega$$

Samajdar et al. PRL (2020)

Order parameters:

$$\mathcal{F}(\mathbf{k}) = \frac{1}{\sqrt{N}} \sum_{i} n_{i} e^{i\mathbf{k}\cdot\mathbf{x}_{i}}$$

2D Ising anti-ferromagnet on triangular lattices

2D Ising anti-ferromagnet on triangular lattices

Probing the 1/3 phase

PM phase

Probing the 1/3 phase

PM phase

1/3 phase!

Scholl et al., Nature 595, 233 (2021)

2D Ising anti-ferromagnet on a triangle

Staggered magnetisation:

$$m_{\rm stag} = n_A + n_B \, e^{i\frac{2\pi}{3}} + n_C \, e^{i\frac{4\pi}{3}}$$

2D Ising anti-ferromagnet on a triangle

2D Ising anti-ferromagnet on a triangle

2D Ising anti-ferromagnet on a ruby lattice: spin liquid?

Semeghini, Science 374, 1242 (2021)

2D Ising anti-ferromagnet on a ruby lattice: spin liquid?

Semeghini, Science 374, 1242 (2021)

Outline

1. Arrays of individual atoms

2. Rydberg atoms and their interactions

3. Examples of quantum simulations

- A. Exploration of phase diagrams
- B. Out-of-Equilibrium dynamics
- C. Ground state preparation & squeezing
- D. Synthetic Topological matter
- 4. Digital quantum computing

1D with periodic boundaries

1D with periodic boundaries

Studying the quantum phase transition

Studying the quantum phase transition

Adiabaticity criteria:

$$H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$$
$$|\langle \psi_1(t)| \frac{dH}{dt} |\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

Adiabaticity criteria:

$$H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$$
$$|\langle \psi_1(t)|\frac{dH}{dt}|\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

But...gaps close at the QPT!!

Adiabaticity criteria:

$$H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$$
$$|\langle \psi_1(t)|\frac{dH}{dt}|\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

But...gaps close at the QPT!!

Sweeping too fast _ create defects 1D: Keesling, Nature (2019), 2D: arXiv.2012.12281

Adiabaticity criteria:

$$H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$$
$$|\langle \psi_1(t)|\frac{dH}{dt}|\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

But...gaps close at the QPT!!

Sweeping too fast _ create defects 1D: Keesling, Nature (2019), 2D: arXiv.2012.12281

Adiabaticity criteria:

$$H(t) = (1 - \lambda(t))H_0 + \lambda(t)H_{\rm MB}$$
$$|\langle \psi_1(t)|\frac{dH}{dt}|\psi_0(t)\rangle| \ll \frac{\Delta E(t)^2}{\hbar}$$

But...gaps close at the QPT!!

Sweeping too fast _ create defects 1D: Keesling, Nature (2019), 2D: arXiv.2012.12281

Kibble-Zurek mechanism: statistics of defects $_$ critical exponent $v_{1D} = 0.50(3) (v_{MF} = 1/3)$ $v_{2D.square} = 0.62(4) (v_{MF} = 1/2)$

Non-equilibrium: thermalization of closed many-body systems

Question: do closed systems always reach equilibrium?

Answer: it depends... ETH, many-body localization

Non-equilibrium: thermalization of closed many-body systems

Question: do closed systems always reach equilibrium?

Answer: it depends... ETH, many-body localization

Quantum scars in 2D (1D: Lukin Nature 2019)

Scars depends on geometry

Lukin, Science 2021

Questions?

Outline

1. Arrays of individual atoms

2. Rydberg atoms and their interactions

3. Examples of quantum simulations

- A. Exploration of phase diagrams
- B. Out-of-Equilibrium dynamics
- C. Ground state preparation & squeezing
- D. Synthetic Topological matter
- 4. Digital quantum computing

Interactions between Rydberg atoms and spin models

Quantum Ising $\hat{H} = \sum_{i \neq j} J_{ij} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)}$ **XY model** $\hat{H} = \sum_{i \neq j} J_{ij} \left(\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+ \right)$

$$d = \langle S | \hat{D}_q | P \rangle \qquad 60P_{1/2} = | \uparrow \rangle \\ 60S_{1/2} = | \downarrow \rangle$$

Resonant dipole-dipole interaction

XY model:

$$H = \sum_{i \neq j} \frac{C_3}{R_{ij}^3} (\sigma_x^i \sigma_x^j + \sigma_y^i \sigma_y^j)$$

"exchange" of P excitation (XY model)

Prepare $|PS\rangle$ using microwaves + addressing beam

P excitation exchange

Particle hopping

 $J|A\rangle\langle B$

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$

Ising model

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations $\langle i,j\rangle$

 $\hat{H} = \sum J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$

Competing order along x / along y

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro $J_{ij} < 0$

Ground state (1/2, 1/3...) = *classical* Néel configurations

XY model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$
$$= \sum_{\langle i,j \rangle} \frac{J_{ij}}{2} (\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+)$$

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro
$$J_{ij} < 0$$

$$y$$

 x Square (1/2) T

Triangle (1/3) $\rightarrow_x \leftarrow_x \rightarrow_x \dots$ $\leftarrow_x \rightarrow_x \leftarrow_x \dots$ 00 000 00000 $\rightarrow_r \leftarrow_r \rightarrow_r \dots$

Ground state (1/2, 1/3...) = classical Néel configurations

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y)$$
$$= \sum_{\langle i,j \rangle} \frac{J_{ij}}{2} (\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+)$$
$$--- |\uparrow\uparrow\rangle$$

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro
$$J_{ij} < 0$$

x Square (1/2) Triangle (1/3) $\rightarrow_x \leftarrow_x \rightarrow_x \cdots$ $\leftarrow_x \rightarrow_x \leftarrow_x \cdots$ $\rightarrow_x \leftarrow_x \rightarrow_x \cdots$

Ground state (1/2, 1/3...) = *classical* Néel configurations

XY model

ſ

Ising model

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x$$

Antiferro
$$J_{ij} < 0$$

y

$$r \text{ Square (1/2)} \text{ Triangle (1/3)}$$

$$\stackrel{\circ}{\underset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ$$

Ground state (1/2, 1/3...) = classical Néel configurations

 $\rightarrow_r \leftarrow_r \rightarrow_r \dots$

XY model

$$\begin{split} \hat{H} &= \sum_{\langle i,j \rangle} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y) \\ &= \sum_{\langle i,j \rangle} \frac{J_{ij}}{2} (\hat{\sigma}_i^+ \hat{\sigma}_j^- + \hat{\sigma}_i^- \hat{\sigma}_j^+) \\ 2\omega_0 & \qquad |\uparrow\uparrow\rangle \\ &= \frac{|\uparrow\uparrow\rangle}{|\uparrow\downarrow\rangle} & \qquad |\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle \\ &= \frac{|\downarrow\uparrow\rangle}{|\uparrow\downarrow\rangle} & \qquad |\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle \\ &= \frac{1}{2J} \\ &= -\rangle \propto |\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle \\ 0 & \qquad |\downarrow\downarrow\rangle \end{split}$$

Ground state (1/2) =non-classical entangled state

continuous U(1) symmetry $M^z = \sum_i \sigma^z_i \quad \text{conserved}$

continuous U(1) symmetry

 $M^z = \sum \sigma^z_i \quad \text{ conserved}$

$$\mathrm{FM}\rangle_{\mathrm{XY}} \propto \int_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \,\mathrm{e}^{-\mathrm{i}\phi \mathrm{S_{z}}} |\mathrm{FM}\rangle_{\mathrm{X}}$$

Expect: $\langle \hat{X} \rangle = 0$ $\langle \hat{X} \hat{X} \rangle^F_{NN} > 0$ $\langle \hat{X} \hat{X} \rangle^F_{NNN} > 0$

Start from
$$H_{tot} = -\frac{J}{2} \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + \hbar \delta \sum_{i \in B} \sigma_i^z$$
 staggered
 H_{XY}
1. Prepare a classical Néel state along *z*: checkerboard pattern

1. Prepare a classical Néel state along z: checkerboard pattern

Sørensen et al., PRA 81, 061603(R) (2010)

$$\begin{array}{ll} \mbox{Start from} & H_{\rm tot} = \\ (J/h \approx 0.8 \, {\rm MHz}) \end{array} \begin{array}{l} - \frac{J}{2} \sum_{i < j} \frac{a^3}{r_{ij}^3} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) + & \hbar \delta \sum_{i \in B} \sigma_i^z \\ H_{\rm XY} & H_{\rm Z} \end{array} \mbox{ staggered} \end{array}$$

1. Prepare a classical Néel state along z: checkerboard pattern

apply local light-shifts

1. Prepare a classical Néel state along z: checkerboard pattern

2. Adiabatically decrease to prepare the XY AFM / FM

2. Adiabatically decrease to prepare the XY AFM / FM

Sørensen et al., PRA 81, 061603(R) (2010)

Observation of Long-Range FM order

Observation of Long-Range FM order

Antiferromagnet: LRO destabilized by frustration Important role of $1/r^3$ interaction

Feng *et al.*, Nature 623, 713 (2023) Sbierski *et al.*, arXiv:2305.03673

C. Chen et al., Nature 616, 691 (2023)
Spin squeezing from a non-linear Hamiltonian

Protocol: Collective spin: $\hat{J}_{\alpha} = \sum_{i=1}^{N} \hat{\sigma}_{i}^{\alpha}$ 1) Initialize: $|\psi_{0}\rangle = | \rightarrow, \rightarrow ...\rangle_{y} = (|\uparrow\rangle + i|\downarrow\rangle)^{\otimes N}$ "Coherent spin state"

Spin squeezing from a non-linear Hamiltonian

Collective spin: $\hat{J}_{\alpha} = \sum \hat{\sigma}_{i}^{\alpha}$

1) Initialize: $|\psi_0
angle = |
ightarrow,
ightarrow ...
angle_y = (|\!\uparrow
angle + i |\!\downarrow
angle)^{\otimes N}$

"Coherent spin state"

i=1

2) Time evolve with *H*:
$$|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle$$

Protocol:

Quantum

projection noise

N/2

Spin squeezing from a non-linear Hamiltonian

Collective spin: $\hat{J}_{\alpha} = \sum \hat{\sigma}_{i}^{\alpha}$

1) Initialize: $|\psi_0
angle = |
ightarrow,
ightarrow ...
angle_y = (|\!\uparrow
angle + i |\!\downarrow
angle)^{\otimes N}$

"Coherent spin state"

2) Time evolve with *H*:
$$|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle$$

3) Measure squeezing at time t:

Protocol:

Improve phase resolution by reshaping quantum spin projection noise

Spin squeezing in OAT vs XY

Ideal case:

Kitagawa, Masahiro & Ueda, Masahito, PRA 47(6), 1993

One axis twisting (OAT):

$$H_{\text{OAT}} = \chi J_z^2 = \chi \sum_{i,j} \hat{\sigma}_i^z \hat{\sigma}_j^z$$
 all-to-all

Spin squeezing in OAT vs XY

Ideal case:

Kitagawa, Masahiro & Ueda, Masahito, PRA 47(6), 1993

One axis twisting (OAT): $H_{\text{OAT}} = \chi J_z^2 = \chi \sum_{i,j} \hat{\sigma}_i^z \hat{\sigma}_j^z$ all-to-all

Intuition: Dipolar XY: "same" structure:

$$\begin{aligned} H_{\text{all-to-all XY}} \propto \sum_{i < j} (\sigma_x^i \sigma_y^j + \sigma_y^i \sigma_y^j + \sigma_z^i \sigma_z^j) &- \sum_{i < j} \sigma_z^i \sigma_z^j \\ H_{\text{all-to-all XY}} = H_{\text{Heisenberg}} - H_{\text{OAT}} \\ \text{Commutes with } H_{\text{OAT}} \\ | \rightarrow, \rightarrow ... \rangle_y \text{ is an eigenstate} \end{aligned} \ \ \begin{array}{l} \text{Drives the} \\ \text{dynamics} \end{array} \end{aligned}$$

Spin squeezing in OAT vs XY

Ideal case:

Kitagawa, Masahiro & Ueda, Masahito, PRA 47(6), 1993

One axis twisting (OAT): $H_{\text{OAT}} = \chi J_z^2 = \chi \sum_{i,j} \hat{\sigma}_i^z \hat{\sigma}_j^z$ all-to-all

Intuition: Dipolar XY: "same" structure:

Is $1/r^3$ long-range enough to generate squeezing?

Experimental observations of spin squeezing

Nat

Pezzé et al., RMP 2018

differ. photocurrent 4 Comm E 0 atoms -4 2018 -8 1/16 2/16 0 φ/(2π)

Hot / cold atomic vapors

Polzik (1999), Giacobino, Mitchell, Nascimbene...

Cavity QED + cold atoms (OAT)

Vuletic, Kasevich, Thompson (JILA), Je, Schleier-Smith...

Bose-Einstein condensate (OAT)

Oberthaler, Treutlein, Klempt, Reichel, ...

Nature

2010

Ion crystal (~OAT)

Bollinger, Science 2016

Dipolar squeezing with Rydberg atoms

 $J_{\theta} = \cos(\theta)J_z + \sin(\theta)J_x$

Minimum variance!

G. Bornet et al., Nature 621, 728 (2023)

Dipolar squeezing with Rydberg atoms

Minimum variance!

G. Bornet et al., Nature 621, 728 (2023)

Dipolar squeezing with Rydberg atoms

Scaling of squeezing with atom number

Theory:

Comparin *et al.*, PRL 129, 150503 (2022) Block *et al.*, arXiv:2301.09636 Roscilde *et al.*, PRB 108.155130 (2023)

Other platforms:

Rydberg dressing: Hines *et al.*, PRL 131, 063401 (2023) Eckner *et al.*, Nature 621 (2023)

Ions: Franke *et al.*, Nature 621 (2023)

Conclusion: scalable squeezing with dipolar interaction

G. Bornet et al., Nature 621, 728 (2023)

Outline

1. Arrays of individual atoms

2. Rydberg atoms and their interactions

3. Examples of quantum simulations

- A. Exploration of phase diagrams
- B. Out-of-Equilibrium dynamics
- C. Ground state preparation & squeezing
- D. Synthetic Topological matter
- 4. Digital quantum computing

The Su-Schrieffer-Heeger model

• Introduced to explain conductivity in polymers

Volume 42, Number 25

PHYSICAL REVIEW LETTERS

18 JUNE 1979

Solitons in Polyacetylene

W. P. Su, J. R. Schrieffer, and A. J. Heeger Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

• Now, considered as simplest example of topological model

- **Goal:** build a synthetic SSH system to explore role
 - Symmetries
 - Interactions
 - •

The Su-Schrieffer-Heeger model

tight-binding dimerization: J'

The Su-Schrieffer-Heeger model

Sub-lattice symmetry _ symmetric single particle spectrum

Implementation of SSH spin chain with Rydberg atoms

Science **365**, 775 (2019)

Implementation of SSH spin chain with Rydberg atoms

Science **365**, 775 (2019)

Implementation of SSH spin chain with Rydberg atoms

Science **365**, 775 (2019)

 $J/h = 2.4 \,\mathrm{MHz}$ $J'/h = -0.9 \,\mathrm{MHz}$

Science **365**, 775 (2019)

Spin excitation = "particle"

$$|\uparrow\rangle |P\rangle |P\rangle |S\rangle$$

Atom cannot carry 2 excitations _ excitations = hard-core bosons

On-site interaction $U \to \infty$

$$H_{\rm B} = \sum_{i \in A, j \in B} J_{ij} (b_i^{\dagger} b_j + b_i b_j^{\dagger}), \quad b_i^{\dagger 2} = 0$$

Spin excitation = "particle"

$$\begin{array}{c|c} |\uparrow\rangle & & |P\rangle \\ |\downarrow\rangle & & |S\rangle \end{array}$$

Atom cannot carry 2 excitations _ excitations = hard-core bosons

On-site interaction
$$U \to \infty$$

$$H_{\rm B} = \sum_{i \in A, j \in B} J_{ij} (b_i^{\dagger} b_j + b_i b_j^{\dagger}), \quad b_i^{\dagger 2} = 0$$

 μ W sweep $_$ add excitations 1 by 1 $_$ ground state of interacting SSH

Spin excitation = "particle"

$$\begin{array}{c|c} |\uparrow\rangle & & |P\rangle \\ |\downarrow\rangle & - & |S\rangle \end{array}$$

Atom cannot carry 2 excitations _ excitations = hard-core bosons

On-site interaction $U \to \infty$

$$H_{\rm B} = \sum_{i \in A, j \in B} J_{ij} (b_i^{\dagger} b_j + b_i b_j^{\dagger}), \quad b_i^{\dagger 2} = 0$$

 μ W sweep $_$ add excitations 1 by 1 $_$ ground state of interacting SSH

Spin excitation = "particle"

$$\begin{array}{c|c} |\uparrow\rangle & & |P\rangle \\ |\downarrow\rangle & & |S\rangle \end{array}$$

Atom cannot carry 2 excitations _ excitations = hard-core bosons

On-site interaction $U \to \infty$

$$H_{\rm B} = \sum_{i \in A, j \in B} J_{ij} (b_i^{\dagger} b_j + b_i b_j^{\dagger}), \quad b_i^{\dagger 2} = 0$$

 μ W sweep $_$ add excitations 1 by 1 $_$ ground state of interacting SSH

Correlated ½ - filled bulk

Robustess of the many-body ground state / symmetry

Single-particle case

Broken chiral symmetry _ lifts degeneracy

Robustess of the many-body ground state / symmetry

Robustess of the many-body ground state / symmetry

Robustess of the many-body ground state / symmetry

Robustess of the many-body ground state / symmetry

Questions?

Outline

1. Arrays of individual atoms

- 2. Rydberg atoms and their interactions
- 3. Examples of quantum simulations
 - A. Exploration of phase diagrams
 - B. Out-of-Equilibrium dynamics
 - C. Ground state preparation & squeezing
 - D. Synthetic Topological matter
- 4. Digital quantum computing

Digital quantum computing: First proposals

VOLUME 85, NUMBER 10

PHYSICAL REVIEW LETTERS

4 September 2000

Fast Quantum Gates for Neutral Atoms

D. Jaksch, J. I. Cirac, and P. Zoller

Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

S.L. Rolston

National Institute of Standards and Technology, Gaithersburg, Maryland 20899

R. Côté1 and M. D. Lukin2

VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JULY 2001

Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles

M. D. Lukin,1 M. Fleischhauer,1,2 and R. Cote3

¹ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 ²Fachbereich Physik, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany ³Physics Department, University of Connecticut, Storrs, Connecticut 06269

L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller

Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria (Received 7 November 2000; published 26 June 2001)

Two-qubit gates

Two-qubit gates

Two-qubit gates

Two-qubit gates

	Inp	out 1	2	3 Out			
C _z oper Oct ion:	0	00	0	00	0	00	
01	0	01	0	-01 _	, -01		
10	0	r0	0	r0	0	-10	

D. Jaksch et al., PRL 85, 2208 (2000)

Saffman et al., Rev. Mod. Phys. 82, 2313 (2010)

Blockad

O Blockade 00

-10

-11

From C_z to CNOT

The CNOT gate can be obtained with the controlled-phase C_z and single qubit rotations (Hadamard)

From C_z to CNOT

The CNOT gate can be obtained with the controlled-phase C_z and single qubit rotations (Hadamard)

From C_z to CNOT

The CNOT gate can be obtained with the controlled-phase C_z and single qubit rotations (Hadamard)

CNOT Operation

Outnut

Innut

CNOT can be used to prepare entanglement

1		put			
00	0	00			Bell state
01	0	01	00	0	(0+1)0 = 00 + 10 👝 00 + 11
10	0	11		Rotate	CNOT
11	0	10		c-qubit	CNOT

Digital quantum computing in arrays

Digital circuits applied to:

Quantum phase estimation

14 C₇ gates

MaxCut problem

43 single qubit gates, 18 C_z gates

2Q Bell state fidelity Raw/SPAM 0.957(0.982)

Graham et al., Nature 604, 457 (2022)

Cs

Non-local connectivity

Long distance transport enables programmable and non-local connectivity

Bluvstein et al., Nature 604, 451 (2022)

Non-local connectivity & error detection

Example: Preparation of a cluster state

Bluvstein et al., Nature 604, 451 (2022)

Non-local connectivity & error detection

Bluvstein et al., Nature 604, 451 (2022)

Rb

Non-local connectivity & error detection

Bluvstein et al., Nature 604, 451 (2022)

Transversal CNOT with logical qubits

Logical CNOT with surface correction

74

5

Conventional decoding

Correlated decoding

146

Errors decrease with surface-code distance!

Hallmark of quantum error correction

Bluvstein, Nature 626, 58 (2024)

A logical quantum processor in operation

7-dimensional hypercube circuit (48 logical qubit algorithm)

quera.link/QEC1

Sampling complex circuits

Up to 48 logical qubit circuits, 3D codes, non-Clifford operations, mid-circuit readout...

Bluvstein, Nature 626, 58 (2024)

Evolution of the neutral atom platform

Superconducting transmons (Google) Google Quantum AI. Nature **614**, 676 (2023) Average 2Q error: 0.6%

Trapped ions (Quantinuum) S. Moses, et. al. arXiv:2305.03828 (2023) Average 2Q error: 0.18%

Tweezer arrays: applications

Regal, Kaufman, Thomson...

						R							
	Ň.,		1-	4	*				.4		,		
	-				4							*	
14	1		•	•							,	1	
10								4	,	1	,		
*	*									1	,		,
-		*	•	•			•	*				1	
*			•			.*							
٠		•	•	٠	•					•			
**	•	•	•		•	•	•		•	•			
**		•		•	٠	•	•			•			
47.	+	*	-	•		+		•	1	•			
ĸ	*	*			•	•							
e	*								*				
r	10		1										

Optical clocks

PHYSICAL REVIEW X 9, 041052 (2019)

Featured in Physics

An Atomic-Array Optical Clock with Single-Atom Readout

Ivaylo S. Madjarov,¹ Alexandre Cooper,¹ Adam L. Shaw⁰,¹ Jacob P. Covey,¹ Vladimir Schkolnik⁰,² Tai Hyun Yoon⁰,^{1,†} Jason R. Williams⁰,² and Manuel Endres⁰,*

Half-minute-scale atomic coherence and high relative stability in a tweezer clock

https://doi.org/10.1038/s41586-020-3009-y Received: 18 June 2020 Aaron W. Young¹², William J. Eckner¹², William R. Milner¹², Dhruv Kedar¹², Matthew A. Norcia¹², Eric Oelker¹², Nathan Schine¹², Jun Ye¹² & Adam M. Kaufman^{12®}

Molecule engineering

Quantum simulation

Tool for cQED

Quantum gates

Summary and outlook

A platform to build synthetic matter

- Single-particle resolution & addressing
- Easily scalable to 1000s qubits, arbitrary geometries (2D, 3D)
- Tunable interactions _ implementation of many-body H

Future directions:

- Analog quantum simulation (spin liquids, LGTs)
- Applications in optimization problems (hybrid computing)
- Digital quantum computing (gate model)
- Hybrid plaftorms + optical cavities

The Rydberg team in Palaiseau

https://atom-tweezers-io.org/

daniel.barredo@csic.es

