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Introduction

Nowadays quantum computers have
hardware limitations

Qubit size
Available depth
Noise

Variational algorithms were conceived as
a way to overcome such limitations by

Simplifying problems
Reaching solutions quickly
Mitigate errors through optimization

How they work

1 We create a parameterized quantum
circuit (PQC) U(θ)

2 Such ansatz generate an output state
|ψ(θ, x)⟩ = U(θ) |x⟩.

3 We encode a problem of interest in a
hamiltonian H

4 The cost function is defined
C (θ, x) = ⟨ψ(θ, x)|H |ψ(θ, x)⟩

5 We optimize classically the parameters θ
to minimize C (θ, x)

Notice C (θ, x) ≥ E0, the ground state of H
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Variational Quantum Eigensolver (VQE)

The VQE was the first work in this
domaina

Originally implemented in an
experiment, to make it cheaper

H =
∑
i ,α

hiασ
i
α +

∑
i ,j ,α,β

hijαβσ
i
ασ

j
β

aPeruzzo et al. 2014. The Hamiltonian is decomposed in
measurable Pauli strings

Only doable if the Hamiltonian has a
few Pauli strings
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Quantum Approximate Optimization Algorithm (QAOA)

The QAOA is described in a simple waya

Initial Hamiltonian: HI

Final Hamiltonian: HF

The output state is given by

∣∣∣ψ(β⃗, γ⃗)〉 =
L∏

j=1

e−iβjHI e−iγjHF

aFarhi, Goldstone, and Gutmann 2014.

Originally conceived as a quantum algorithm
to solve combinatorial problems encoded in

HF =
∑
i

aiZi +
∑
i ,j

aijZiZj

QAOA is closely related to the adiabatic
evolution via Trotter simulation

H(t) = (1− t)HI + tHF

starting from the ground state of HI .
|ψ(t)⟩ ≈

∏
j e

−i∆t(1−tj )HI e−i∆ttjHF |EI ,0⟩
The parameters β⃗, γ⃗ aim to shortcut the
adiabatic evolution.
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Ansatzes

Ansatzes are just the circuit structure, without specifying the parameters

Ansatzes give certain properties to the
quantum circuit

Some ansatzes are capable of reaching
any unitary, some others are restricted

With sufficient depth, it is possible to
reach (in principle) any state

Ansatzes are responsible for connectivity
and correlation

Ansatzes determine whether a quantum
circuit is simulable or not

In this graph, the error in obtaining the
ground energy decreases when long-range
correlations are availablea

aBravo-Prieto et al. 2020.
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Hardware Efficient Ansatz (HEA)

Hardware efficient

Quantum circuits must be run in some
hardware

The hardware is composed by several
qubits in some grid

Only certain connectivity is allowed

Arute et al. 2019

This ansatz is directly mapped to
quantum hardware

Overhead when simulating physics away
from the chip (e. g. long range
correlations)

If the chip is 1D, any shallow HEA is
doable with tensor networksa

Useful if the chip is close to the problem
of interest, not for general purpose

aAttend Mari Carmen’s talk
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Hamiltonian variational ansatz

Hamiltonian-inspired is similar to hardware
inspired, but linking it to the problem

H =
∑
i

hi ,

then

U(θ) =
L∏

j=1

e−igjθj ,

with gj = hi , for some (i , j).
Notice QAOA is a particular instance of the
Hamiltonian-inspired ansatz

This ansatz immediately captures the
properties of the problem of interest

It is an informed guess to solve the
problem

If the chip is not prepared, implementing
this ansatz might bring large overhead

H =
∑

i XiXi+1 + YiYi+1 +∆ZiZi+1
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Unitary coupled-cluster (UCC) ansatz

Unitary Coupled Cluster is a family of
ansatzes specifically designed for
fermionic problems

Widely used in chemistry

UCC includes physical information into
the quantum circuit: particle number

The ansatz is generated by

|ψ⟩ = eS |HF ⟩ ,

with |HF ⟩ being the Hartree-Focka state

asingle-occupation state with lowest energy

Hamiltonian is composed by
creation/annihilation operators a†p, aq

indices p, q are occupied orbitals

indices i , j are virtual (free) orbitals

S = T − T †

T =
∑

k Tk

Tk (θ) =
1

(k!)2

∑occupied
ij...

∑virtual
ab... tab...ij... a†aa

†
b . . . aiaj . . .

Thus, we utilize an Ansatz with k
annihilation and creation operators. The
coefficients t come from the problem.
Anand et al. 2022
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Unitary Coupled-Cluster (UCC) ansatz

We implement the UCC ansatz in a quantum
computer via Trotterization as

eT−T †
= e

∑
k θk (Tk−T †

k ) ≈

(∏
k

e
θk
t
(Tk−T †

k )

)t

Since this is hard to implement, we can
first-order approximate it as

|ψUCC (θ)⟩ ≈
∏
p,q

eθpqApq |HF ⟩

with Apq being a excitation operator

Apq =
∏n

k=1 a
†
pka

†
qk − h.c .

Fermion-to-qubit mapping
Quantum computers cannot natively
implement fermionic operations, thus we
need to apply a fermion-to-qubit mapping
(Jordan-Wigner, Bravyi-Kitaev)

Jordan-Wigner

a†k = I⊗k−1 ⊗ σk+ ⊗ σ⊗n−k
z

ak = I⊗k−1 ⊗ σk− ⊗ σ⊗n−k
z

2σk± = σx ± iσy

Fermion-to-qubit →non-local operations

Hard to implement in a quantum
computer
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Layered ansatzes

Layered ansatzes are of the form

U(θ) =
L∏

l=1

G∏
j=1

e−iθl,jgj

There are L× G different gates

The structure is repeated in groups of
size G

The parameters θ are (in principle)
chosen independently

The generators g are traceless Hermitian
matrices, and they define the ansatz

Examples for the generators

Pauli strings: g =
⊗n

k=1 σk

Sum of Pauli strings: g =
∑n

k=1 Zk

Layered ansatzes allow for systematic
studies of the resulting quantum circuits

Once compiled, layered ansatzes allow
for increasing the depth of the quantum
circuit
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Optimization

A story of getting lost in the mountains...

In a quantum mountain

the ground is unstable (due to errors and
shot noise)
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Optimization

Optimization is a crucial step in
variational algorithms

Optimization is a very hard problem,
except in some trivial cases

Optimization solves two problems

Find the minimum closest to an initial
point
Find the best minimum of all minima

Optimization relies only on local
information

Optimization iteratively suggests new
candidates for the minimum

Solving an optimization problem

The only way to solve it with guarantees is
through exhaustive search

Such cost increases exponentially with
the number of parameters m

However, for the optimization to be
efficient we need cost at most
polynomial in m

Thus we need clever ways to explore the
optimization landscape
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Optimization
How costly is to optimize?

Number of function evaluations

Cost of choosing the next step?
Depends on method

Constructing auxiliary quantities
Extra evaluations

How many iterations are needed to
convergence? Depends on method

How many measurements are needed
per iteration? Depends on method

When are we satisfied with a candidate?
Termination condition

Methods

There exist many different methods to
address optimization problem, even in a
classical setup

And no method is capable of solving all
problems
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Gradient-based optimizers

These optimizers fall under the general rule

θi+1 = θi − ηig(θi ); g(θ) ≈ ∂C (θ)

∂θ

The parameters θ are iteratively updated

All freedom is encoded in the quantities
η, g(θ)

η can be adaptive in the iteration
number (faster convergence)

g(θ) is close to the gradient, but may
store past information or momentum
(avoid sticking to local minima or saddle
points)

There exist second-order methods that
include the information of the Hessian
(choosing better directions)
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Gradient calculation - in quantum

Numerical estimation
Most gradient-calculators rely on numerical
estimations of the kind

∂iC (θ) ≈ C (θ + êiϵ)− C (θ − êiϵ)

2ϵ

for êi being the unitary vector in the i-th
direction. ϵ is usually very small

Due to shot noise C̃ (θ) = C (θ) +O(M−1/2),
and thus the derivative is computed with
large error O(ϵ−1M−1/2)

Reliable estimations require large ϵ, which is
not common

Exact calculation We exploit the unitary
structure to compute exact gradients

Parameter shift rule

Derivative with respect to θ of
C (θ) = ⟨ψ| e igθHe−igθ |ψ⟩ , where g has
eigenvalues e0, e1, and r = (e1 − e0)/2. Then

∂θC (θ) = r
(
C
(
θ +

π

4r

)
− C

(
θ − π

4r

))
This strategy can be further generalized to
arbitrary generatorsa

aCrooks 2019; Wierichs et al. 2022.

Adrián Pérez Salinas (⟨aQa⟩L) VQA NTQC 24 20 / 36



Gradient calculation - in quantum

Quantum natural gradienta

The natural gradient aims to perform
gradient descent over the information
landscape

The optimization happens in a more
sensitive geometric space

G (θ)ij = ⟨∂iψ(θ)|∂jψ(θ)⟩−
⟨ψ(θ)|∂jψ(θ)⟩ ⟨∂iψ(θ)|ψ(θ)⟩

and we update parameters as

θi+1 = θi − ηG (θ)+∇C (θ)

aStokes et al. 2020.

Parametrization effecta An arbitrary gates
U ∈ SU(N) is parameterized as

U(θ) = e i
∑

m θmgm ,

with gm being the generators of the SU(N)
group. These generators can be chosen in
many different ways. The derivative can be
constructed through the adjoint
representation of the Lie algebra Ωl(θ)

aWiersema et al. 2023.
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Gradient-free optimizers

Sample in different points and construct
new candidates

Explore larger regions of the parameter
space than gradient-based

Less prone to getting stuck in local
minima

Slower convergence

More evaluations

Simplicial methods

Each iteration constructs new samples
deterministically from previous step; Nelder
and Mead 1965

Evolutionary algorithms

Each iteration samples from a probability
distribution; Hansen 2006

Coordinate-based algorithms

Solves a 1D optimization problem per
coordinate, iteratively; Powell 1964
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Problems of variational algorithms
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Expressivity

It is the capability of a parameterized
model to approximate a family of
solutions

PQCs are a subset of unitary operations

does there exist a parameter
configuration approximating any unitary
operation?

How accurate is the approximation?
How many gates are needed?
Can we exploit some structure?

SU(N)

U(θ)
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Expressivity

Haar measure

The Haar measure is a useful tool for
expressivity

Haar measure is just uniform distribution
of unitaries over the unitary space

Formally

µ(U) = µ(VU), ∀V →∫
SU(N)

f (U)dµ(U) =

∫
SU(N)

f (VU)dµ(U)

What? This is weird...

t-designs

t-designs are the usual way to study
expressivity

A t design over a probability distribution
matches the t-th statistical moment

1-design: mean
2-design: variance

In the unitary group∫
t−design

dU U⊗t ⊗ (U†)⊗t =∫
Haar

dU U⊗t ⊗ (U†)⊗t
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Expressivity

Haar measure

The Haar measure is a useful tool for
expressivity

Haar measure is just uniform distribution
of unitaries over the unitary space

An easy example, when we integrate over a
sphere, we do∫ 2π

0
dϕ

∫ π

0
sin θdθ

∫ R

0
r2dr f (r , θ, ϕ)

t-designs

t-designs are the usual way to study
expressivity

A t design over a probability distribution
matches the t-th statistical moment

1-design: mean
2-design: variance

In the unitary group∫
t−design
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Expressivity

Usual measures for expressivity

States

Aψ(O) =

∫
θ
dθTr

(
O (|ψ(θ)⟩ ⟨ψ(θ)|)⊗t)−∫

Haar
dψTr

(
O (|ψ⟩ ⟨ψ|)⊗t)

Sim, Johnson, and Aspuru-Guzik 2019

Unitaries

AU(O) =

∫
θ
dθU(θ)⊗tO(U(θ)†)⊗t−∫

Haar
dU U⊗tO(U†)⊗t

Holmes et al. 2022

Reduce expressivity

We can always define Haar measures and t-designs with respect to different spaces to
artificially increase or decrease the expressivity
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Trainability

It is the capability of a parameterized model to find the optimal solution to a given
problem

Trainability maps to the hardness of optimizing a variational landscape

How efficiently can I explore the parameter space?

Are gradients well defined and large?
Are there local minima?
Can we exploit some structure?
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Barren plateaus

Barren plateaus are known as the problem of
exponentially vanishing gradients

Varθ C (θ) ∈ O(e−n)

They appear if the ansatz forms a 2-design.

Intuition

Focus on the quantum state |ψ⟩ (θ). It lives
in a (2n)-dimensional space. The overlap
between two random states is in average
2−n. Therefore
Varθ(⟨ψ(θ)|H |ψ(θ)⟩) = Tr

(
H2
)
2−n

The problem is finished for deep layered
ansatzes! Ragone et al. 2023

BPs increase with depth; Cerezo, Sone,
et al. 2021

BPs increase with closeness to
2-designs; Holmes et al. 2022

BPs increase with noise; Wang et al. 2021

BPs increase with size of the search
space; Larocca et al. 2022
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Non-convexity

Number of local minima

If there are many, we would need a
method to explore them efficiently

Goodness of sub-optimal local minima

If most minima are close to the global
one, we might still be satisfied

Intuition

All elements in the ansatz lead to sinusoidal
functions →Plenty of local minima...

Some known resulta

If circuits are shallow (log(n)) there
exist plenty of local minima

In addition, a subexponential number of
them are close to the global minimum

We need a way to circumvent the
non-convexity problem, since it seems to hard
to be solved

aAnschuetz and Kiani 2022.
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Trainability

What can we do?

Use ansatzes with little expressivity

Use warm starts

Use physically motivated ansatzes
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Simulability

The purpose of the VQAs is to perform computations not accessible with classical computers

Tensor-Networks simulation

TNs, and in particular Matrix Product
States are good at simulating circuits
with 1D topology

They are guaranteed to work with
log(n)-depth

Applicability

TNs are applicable for shallow circuits, which
are not suffering from BPs.
Is this the only regime where VQAs are
useful?

Lie-algebraic simulation

From BPs there are classical techniques
to simulate VQAs

These methods are efficient if the
resulting circuit has no BPs

... up to a possible initial phase to
acquire data with a quantum computer

Goh et al. 2023

Applicability
Does there exist any regime in which VQAs are not
classically simulable?a

aCerezo, Larocca, et al. 2023.
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Noise robustness

Noise adds complexity to the quantum
state

However, noise has the common effect
of mixing states

In the end, all noises tend to the same
state, and each individual noise
contributes only slightly

Therefore, noise detriments the VQAs,
by making the cost functions flatter

Noise simulation

There exists clever ways to simulate noise in
quantum systems with low effortab

Even a small amount of noise is enough to
trigger classical simulation

aFontana et al. 2023.
bRudolph et al. 2023.
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Conclusions
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Conclusions

Variational quantum algorithms gave us strong tools to study quantum systems

VQAs are challenges for classical optimizers

There is a strong trade-off between expressivity and trainability

We have unveiled some cases in which VQAs are not giving quantum advantages

The performance of VQAs strongly depends on the matches between problem to solve
and hardware to run
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