Variational Quantum Algorithms

Adrián Pérez Salinas

¹Lorentz Institute - Leiden University ² $\langle aQa \rangle^{L}$: Applied Quantum Algorithms

Spring school in near-term quantum computing — Benasque 2024 —

→ ∃ > < ∃ >

1/36

NTQC 24

Contents

Introduction

- Variational Quantum Eigensolver (VQE)
- Quantum Approximate Optimization Algorithm (QAOA)
- Ansatzes
- 3 Optimization methods
 - Gradient-based

- Gradient-free
- Problems of variational algorithms
 - Expressivity
 - Trainability
 - Simulability
 - Noise robustness
- 5 Conclusions

Section 1

Introduction

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

イロト 不得下 不同下 不同下

NTQC 24

Э

590

Introduction

- Nowadays quantum computers have hardware limitations
 - Qubit size
 - Available depth
 - Noise
- Variational algorithms were conceived as a way to overcome such limitations by
 - Simplifying problems
 - Reaching solutions quickly
 - Mitigate errors through optimization

Notice $C(\theta, x) \ge E_0$, the ground state of H

How they work

- We create a parameterized quantum circuit (PQC) $U(\theta)$
- Such ansatz generate an output state $|\psi(\theta, x)\rangle = U(\theta) |x\rangle.$
- We encode a problem of interest in a hamiltonian H
- The cost function is defined $C(\theta, x) = \langle \psi(\theta, x) | H | \psi(\theta, x) \rangle$
- We optimize *classically* the parameters θ to minimize C(θ, x)

▶ < ∃ ▶</p>

Introduction

Bharti et al. 2022

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

VQA

NTQC 24 5 / 36

Variational Quantum Eigensolver (VQE)

- The VQE was the first work in this domain^a
- Originally implemented in an experiment, to make it cheaper

$$H = \sum_{i,\alpha} h^i_{\alpha} \sigma^i_{\alpha} + \sum_{i,j,\alpha,\beta} h^{ij}_{\alpha\beta} \sigma^i_{\alpha} \sigma^j_{\beta}$$

^aPeruzzo et al. 2014.

- The Hamiltonian is decomposed in measurable Pauli strings
- Only doable if the Hamiltonian has a few Pauli strings

Quantum Approximate Optimization Algorithm (QAOA)

The QAOA is described in a simple way^a

- Initial Hamiltonian: H_I
- Final Hamiltonian: H_F

The output state is given by

$$\left|\psi(ec{eta},ec{\gamma})
ight
angle = \prod_{j=1}^{L} e^{-ieta_{j}H_{I}} e^{-i\gamma_{j}H_{F}}$$

^aFarhi, Goldstone, and Gutmann 2014.

Originally conceived as a quantum algorithm to solve combinatorial problems encoded in

$$H_F = \sum_i a_i Z_i + \sum_{i,j} a_{ij} Z_i Z_j$$

QAOA is closely related to the adiabatic evolution via Trotter simulation

$$H(t) = (1-t)H_I + tH_F$$

NTQC 24

starting from the ground state of H_I . $|\psi(t)\rangle \approx \prod_j e^{-i\Delta t(1-t_j)H_I}e^{-i\Delta tt_jH_F}|E_{I,0}\rangle$ The parameters $\vec{\beta}, \vec{\gamma}$ aim to shortcut the adiabatic evolution.

Section 2

Ansatzes

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

・ロト ・四ト ・ヨト ・ヨト

NTQC 24

3

590

Ansatzes

Ansatzes are just the circuit structure, without specifying the parameters

- Ansatzes give certain properties to the quantum circuit
- Some ansatzes are capable of reaching any unitary, some others are restricted
- With sufficient depth, it is possible to reach (in principle) any state
- Ansatzes are responsible for connectivity and correlation
- Ansatzes determine whether a quantum circuit is simulable or not

In this graph, the error in obtaining the ground energy decreases when long-range correlations are available^a

^aBravo-Prieto et al. 2020.

Hardware Efficient Ansatz (HEA)

Hardware efficient

- Quantum circuits must be run in some hardware
- The hardware is composed by several qubits in some grid
- Only certain connectivity is allowed

Arute et al. 2019

- This ansatz is directly mapped to quantum hardware
- Overhead when simulating physics away from the chip (e. g. long range correlations)
- If the chip is 1D, any shallow HEA is doable with tensor networks^a
- Useful if the chip is close to the problem of interest, not for general purpose

^aAttend Mari Carmen's talk

Hamiltonian-inspired is similar to hardware inspired, but linking it to the problem

$$H=\sum_i h_i,$$

then

$$U(heta) = \prod_{j=1}^{L} e^{-ig_j heta_j},$$

with $g_j = h_i$, for some (i, j). Notice QAOA is a particular instance of the Hamiltonian-inspired ansatz

- This ansatz immediately captures the properties of the problem of interest
- It is an informed guess to solve the problem
- If the chip is not prepared, implementing this ansatz might bring large overhead

Unitary coupled-cluster (UCC) ansatz

- Unitary Coupled Cluster is a family of ansatzes specifically designed for fermionic problems
- Widely used in chemistry
- UCC includes physical information into the quantum circuit: particle number

The ansatz is generated by

$$\left|\psi\right\rangle = e^{\mathcal{S}}\left|HF\right\rangle,$$

with $|HF\rangle$ being the Hartree-Fock^a state

Hamiltonian is composed by creation/annihilation operators a_P^{\dagger}, a_q

- indices p, q are occupied orbitals
- indices i, j are virtual (free) orbitals

•
$$S = T - T^{\dagger}$$

$$\begin{split} T &= \sum_{k} T_{k} \\ T_{k}(\theta) &= \frac{1}{(k!)^{2}} \sum_{ij\ldots}^{\text{occupied}} \sum_{ab\ldots}^{\text{virtual}} t_{ij\ldots}^{ab\ldots} a_{a}^{\dagger} a_{b}^{\dagger} \dots a_{i} a_{j} \dots \\ \text{Thus, we utilize an Ansatz with } k \\ \text{annihilation and creation operators. The coefficients } t \text{ come from the problem.} \\ \text{Anand et al. 2022} \end{split}$$

^asingle-occupation state with lowest energy

Unitary Coupled-Cluster (UCC) ansatz

We implement the UCC ansatz in a quantum computer via Trotterization as

$$e^{T-T^{\dagger}} = e^{\sum_{k} \theta_{k}(T_{k}-T_{k}^{\dagger})} \approx \left(\prod_{k} e^{\frac{\theta_{k}}{t}(T_{k}-T_{k}^{\dagger})}\right)^{t}$$

Since this is hard to implement, we can first-order approximate it as

$$\ket{\psi_{\textit{UCC}}(heta)} pprox \prod_{m{p},m{q}} e^{ heta_{m{p}m{q}} A_{m{p}m{q}}} \ket{\textit{HF}}$$

with A_{pq} being a excitation operator $A_{pq} = \prod_{k=1}^{n} a_{p_k}^{\dagger} a_{q_k}^{\dagger} - h.c.$

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

Fermion-to-qubit mapping

Quantum computers cannot natively implement fermionic operations, thus we need to apply a fermion-to-qubit mapping (Jordan-Wigner, Bravyi-Kitaev)

Jordan-Wigner

computer

$$a_{k}^{\dagger} = I^{\otimes k-1} \otimes \sigma_{\pm}^{k} \otimes \sigma_{z}^{\otimes n-k}$$
$$a_{k} = I^{\otimes k-1} \otimes \sigma_{\pm}^{k} \otimes \sigma_{z}^{\otimes n-k}$$
$$2\sigma_{\pm}^{k} = \sigma_{x} \pm i\sigma_{y}$$

- Hard to implement in a quantum

NTQC 24

シへで 13/36 Layered ansatzes are of the form

$$U(heta) = \prod_{l=1}^{L} \prod_{j=1}^{G} e^{-i heta_{l,j}g_j}$$

- There are $L \times G$ different gates
- The structure is repeated in groups of size *G*
- The parameters θ are (in principle) chosen independently
- The generators g are traceless Hermitian matrices, and they define the ansatz

Examples for the generators

- Pauli strings: $g = \bigotimes_{k=1}^{n} \sigma_k$
- Sum of Pauli strings: $g = \sum_{k=1}^{n} Z_k$
- Layered ansatzes allow for systematic studies of the resulting quantum circuits
- Once compiled, layered ansatzes allow for increasing the depth of the quantum circuit

Section 3

Optimization methods

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

* ロ ト * 伊 ト * 三 ト * 三 ト 3 Sac NTQC 24

A story of getting lost in the mountains...

・ロト ・同ト ・ヨト ・ヨト

NTQC 24

3

Sac

A story of getting lost in the mountains...

In a quantum mountain

the ground is unstable (due to errors and shot noise)

▶ < ⊒ ▶

< A

NTQC 24

3

Optimization

- Optimization is a crucial step in variational algorithms
- Optimization is a very hard problem, except in some trivial cases
- Optimization solves two problems
 - Find the minimum closest to an initial point
 - Find the best minimum of all minima
- Optimization relies only on *local* information
- Optimization iteratively suggests new candidates for the minimum

Solving an optimization problem

The only way to solve it with guarantees is through exhaustive search

- Such cost increases exponentially with the number of parameters *m*
- However, for the optimization to be efficient we need cost at most polynomial in *m*
- Thus we need clever ways to explore the optimization landscape

- Number of function evaluations
- Cost of choosing the next step? Depends on method
 - Constructing auxiliary quantities
 - Extra evaluations
- How many iterations are needed to convergence? Depends on method
- How many measurements are needed per iteration? Depends on method
- When are we satisfied with a candidate? Termination condition

Methods

There exist many different methods to address optimization problem, even in a classical setup

And no method is capable of solving all problems

Gradient-based optimizers

These optimizers fall under the general rule

$$heta_{i+1} = heta_i - \eta_i g(heta_i); \qquad g(heta) pprox$$

The parameters θ are iteratively updated

All freedom is encoded in the quantities $\eta, g(\theta)$

- η can be adaptive in the iteration number (faster convergence)
- g(θ) is close to the gradient, but may store past information or momentum (avoid sticking to local minima or saddle points)
- There exist second-order methods that include the information of the Hessian (choosing better directions)

 $\frac{\partial C(\theta)}{\partial \theta}$

Numerical estimation

Most gradient-calculators rely on numerical estimations of the kind

$$\partial_i C(heta) pprox rac{C(heta+\hat{e}_i\epsilon)-C(heta-\hat{e}_i\epsilon)}{2\epsilon}$$

for \hat{e}_i being the unitary vector in the *i*-th direction. ϵ is usually very small

Due to shot noise $\tilde{C}(\theta) = C(\theta) + \mathcal{O}(M^{-1/2})$, and thus the derivative is computed with large error $\mathcal{O}(\epsilon^{-1}M^{-1/2})$

Reliable estimations require large $\boldsymbol{\epsilon},$ which is not common

Exact calculation We exploit the unitary structure to compute exact gradients

Parameter shift rule

Derivative with respect to θ of $C(\theta) = \langle \psi | e^{ig\theta} H e^{-ig\theta} | \psi \rangle$, where g has eigenvalues e_0, e_1 , and $r = (e_1 - e_0)/2$. Then

$$\partial_{\theta} C(\theta) = r \left(C \left(\theta + \frac{\pi}{4r} \right) - C \left(\theta - \frac{\pi}{4r} \right) \right)$$

This strategy can be further generalized to arbitrary generators^a

^aCrooks 2019; Wierichs et al. 2022.

Gradient calculation - in quantum

Quantum natural gradient^a

- The natural gradient aims to perform gradient descent over the information landscape
- The optimization happens in a more sensitive geometric space

 $egin{aligned} {G(heta)_{ij}} &= \langle \partial_i \psi(heta) | \partial_j \psi(heta)
angle - \ &\langle \psi(heta) | \partial_j \psi(heta)
angle \, \langle \partial_i \psi(heta) | \psi(heta)
angle \end{aligned}$

and we update parameters as

$$\theta_{i+1} = \theta_i - \eta G(\theta)^+ \nabla C(\theta)$$

^aStokes et al. 2020.

Parametrization effect^{*a*} An arbitrary gates $U \in SU(N)$ is parameterized as

 $U(\theta)=e^{i\sum_{m}\theta_{m}g_{m}},$

with g_m being the generators of the SU(N)group. These generators can be chosen in many different ways. The derivative can be constructed through the adjoint representation of the Lie algebra $\Omega_I(\theta)$

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

VQA

- Sample in different points and construct new candidates
- Explore larger regions of the parameter space than gradient-based
- Less prone to getting stuck in local minima
- Slower convergence
- More evaluations

Simplicial methods

Each iteration constructs new samples deterministically from previous step; Nelder and Mead 1965

Evolutionary algorithms

Each iteration samples from a probability distribution; Hansen 2006

Coordinate-based algorithms

Solves a 1D optimization problem per coordinate, iteratively; Powell 1964

Section 4

Problems of variational algorithms

< □ > < @ >

→ Ξ → → Ξ →

NTQC 24

Э

Sac

- It is the capability of a parameterized model to approximate a family of solutions
- PQCs are a subset of unitary operations
- does there exist a parameter configuration approximating *any* unitary operation?
 - How accurate is the approximation?
 - How many gates are needed?
 - Can we exploit some structure?

< □ > < 向

Expressivity

Haar measure

- The Haar measure is a useful tool for expressivity
- Haar measure is just uniform distribution of unitaries over the unitary space

Formally

$$\mu(U) = \mu(VU), \forall V \rightarrow$$
$$\int_{SU(N)} f(U) d\mu(U) = \int_{SU(N)} f(VU) d\mu(U)$$

What? This is weird...

t-designs

- *t*-designs are the usual way to study expressivity
- A *t* design over a probability distribution matches the *t*-th statistical moment
 - 1-design: mean
 - 2-design: variance

In the unitary group

$$\int_{t- ext{design}} dU \,\, U^{\otimes t} \otimes (U^{\dagger})^{\otimes t} = \int_{ ext{Haar}} dU \,\, U^{\otimes t} \otimes (U^{\dagger})^{\otimes t}$$

Expressivity

Haar measure

- The Haar measure is a useful tool for expressivity
- Haar measure is just uniform distribution of unitaries over the unitary space

An easy example, when we integrate over a sphere, we do

$$\int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta d\theta \int_0^R r^2 dr \ f(r,\theta,\phi)$$

t-designs

- *t*-designs are the usual way to study expressivity
- A *t* design over a probability distribution matches the *t*-th statistical moment
 - 1-design: mean
 - 2-design: variance

In the unitary group

$$\int_{t- ext{design}} dU \,\, U^{\otimes t} \otimes (U^{\dagger})^{\otimes t} = \ \int_{ ext{Haar}} dU \,\, U^{\otimes t} \otimes (U^{\dagger})^{\otimes t}$$

Usual measures for expressivity

States

Unitaries

$$A_{\psi}(O) = \int_{\theta} d\theta \operatorname{Tr}(O(|\psi(\theta)\rangle \langle \psi(\theta)|)^{\otimes t}) - A_{U}(O) = \int_{\theta} d\theta U(\theta)^{\otimes t} O(U(\theta)^{\dagger})^{\otimes t} - \int_{\operatorname{Haar}} d\psi \operatorname{Tr}(O(|\psi\rangle \langle \psi|)^{\otimes t}) - \int_{\operatorname{Haar}} dU U^{\otimes t} O(U^{\dagger})^{\otimes t}$$

Sim, Johnson, and Aspuru-Guzik 2019

Holmes et al. 2022

Reduce expressivity

We can always define Haar measures and t-designs with respect to different spaces to artificially increase or decrease the expressivity

- It is the capability of a parameterized model to find the optimal solution to a given problem
- Trainability maps to the hardness of optimizing a variational landscape
- How efficiently can I explore the parameter space?
 - Are gradients well defined and large?
 - Are there local minima?
 - Can we exploit some structure?

Image: A matrix and a matrix

Sac

Barren plateaus are known as the problem of exponentially vanishing gradients

 $\operatorname{Var}_{\theta} C(\theta) \in \mathcal{O}(e^{-n})$

They appear if the ansatz forms a 2-design.

Intuition

Focus on the quantum state $|\psi\rangle$ (θ). It lives in a (2^n) -dimensional space. The overlap between two random states is in average 2^{-n} . Therefore $\operatorname{Var}_{\boldsymbol{\theta}}(\langle \psi(\boldsymbol{\theta}) | H | \psi(\boldsymbol{\theta}) \rangle) = \operatorname{Tr}(H^2) 2^{-n}$

The problem is finished for deep layered ansatzes! Ragone et al. 2023

- BPs increase with depth; Cerezo, Sone, et al. 2021
- BPs increase with closeness to 2-designs; Holmes et al. 2022
- BPs increase with noise; Wang et al. 2021
- BPs increase with size of the search space: Larocca et al 2022 NTQC 24

- Number of local minima
 - If there are many, we would need a method to explore them efficiently
- Goodness of sub-optimal local minima
 - If most minima are close to the global one, we might still be satisfied

Intuition

All elements in the ansatz lead to sinusoidal functions \rightarrow Plenty of local minima...

Some known result^a

- If circuits are shallow (log(n)) there exist plenty of local minima
- In addition, a subexponential number of them are close to the global minimum

We need a way to circumvent the non-convexity problem, since it seems to hard to be solved

^aAnschuetz and Kiani 2022.

What can we do?

- Use ansatzes with little expressivity
- Use warm starts
- Use physically motivated ansatzes

Э

Sac

- 田田 - 田田 -

 $\langle \Box \rangle \langle \Box \rangle$

Simulability

The purpose of the VQAs is to perform computations not accessible with classical computers **Tensor-Networks simulation Lie-algebraic simulation**

- TNs, and in particular Matrix Product States are good at simulating circuits with 1D topology
- They are guaranteed to work with log(n)-depth

Applicability

TNs are applicable for shallow circuits, which are not suffering from BPs. Is this the only regime where VQAs are useful?

- From BPs there are classical techniques to simulate VQAs
- These methods are efficient if the resulting circuit has no BPs
 - ... up to a possible initial phase to acquire data with a quantum computer

Goh et al. 2023

Applicability

Does there exist any regime in which VQAs are not classically simulable?^a

Image: A matrix

^aCerezo, Larocca, et al. 2023.

э

- Noise adds complexity to the quantum state
- However, noise has the common effect of mixing states
- In the end, all noises tend to the same state, and each individual noise contributes only slightly
- Therefore, noise detriments the VQAs, by making the cost functions flatter

Noise simulation

There exists clever ways to simulate noise in quantum systems with low effort^{ab} Even a small amount of noise is enough to trigger classical simulation

^aFontana et al. 2023. ^bRudolph et al. 2023.

Section 5

Conclusions

Adrián Pérez Salinas $(\langle aQa \rangle^L)$

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

NTQC 24

3

Sac

- Variational quantum algorithms gave us strong tools to study quantum systems
- VQAs are challenges for classical optimizers
- There is a strong trade-off between expressivity and trainability
- We have unveiled some cases in which VQAs are not giving quantum advantages
- The performance of VQAs strongly depends on the matches between problem to solve and hardware to run

Variational Quantum Algorithms

Adrián Pérez Salinas

¹Lorentz Institute - Leiden University ² $\langle aQa \rangle^{L}$: Applied Quantum Algorithms

Spring school in near-term quantum computing — Benasque 2024 —

★ Ξ ► < Ξ ►</p>

36 / 36

NTQC 24