

Quantum Computation and Simulation with Trapped Ions Martin Ringbauer, University of Innsbruck

The requirements for QIP

- I. Scalable physical system, well characterized qubits
- II. Ability to initialize the state of the qubits
- III. Long relevant coherence times, much longer than gate operation time
- IV. "Universal" set of quantum gates
- V. Qubit-specific measurement capability
- VI. Ability to interconvert stationary and flying qubits
- VII. Ability to faithfully transmit flying qubits between specified locations

The seven commandments for QIP

The DV criteria for an experimentalist

- Find two-level systems,
- II. that can be individually controlled

- III. that are stable and don't decay while you work on them
- IV. that interact to allow for entangling operations
- V. that can be efficiently measured

~100%

- VI. Find a way to interconnect remote qubits
- VII. Make sure, your interconnection is good

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 lon strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

1.7 Entanglement

und Spektroskopie

Interactions for particle traps

Atomic or molecular ions

Trapping in electro-static potentials

Ion with mass m, charge e in a 1D harmonic potential

$$\phi = \frac{U}{2} \left(\frac{x}{x_0}\right)^2$$

<u>Exercise</u>: Calculate the required voltage for a trap depth of 1eV at x_0 =1mm,

as well as the trap frequency for a \mbox{Ca}^{+} ion

D. Leibfried, et al, Rev. Mod. Phys. 75, 281-324 (2003)

Trapping in 3D

Want: $\Phi(\mathbf{r}) = \Phi_0 \sum_i \alpha_i (r_i/\tilde{r})^2$, $\mathbf{i} = \mathbf{x}, \mathbf{y}, \mathbf{z}$

Poisson equation: $\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$

Cannot trap in 3D with static potentials

Penning: $\Phi_0 = U_0 + \text{axial magn. field}$

Paul: $\Phi_0 = U_0 + V_0 \cos \Omega t$

D. Leibfried, et al, Rev. Mod. Phys. 75, 281-324 (2003)

Trapping with dynamic potentials

D. Leibfried, et al, Rev. Mod. Phys. 75, 281-324 (2003)

Micromotion

Paul trap (rf – quadrupole trap)

Paul trap: stability diagram

$$a_{z} = -\frac{8eU_{0}}{mr_{0}^{2}\Omega^{2}} = -2a_{r}, \quad r = x, y$$

$$q_{z} = -\frac{4eV_{0}}{mr_{0}^{2}\Omega^{2}} = -2q_{r}, \quad r = x, y$$

$$x_{i}(t) = C\left(1 - \frac{q_{i}}{2}\cos\Omega t\right)\cos\omega_{i}t$$

$$i = x, y, z$$

$$\omega_{i} \ll \Omega(a_{i}, q_{i} \ll 1) \qquad \beta_{i}^{2} = a_{i} + \frac{q_{i}^{2}}{2}$$

Quantum mechanical motion

$$x_i(t) = C\left(1 - \frac{q_i}{2}\cos\Omega t\right)\cos\omega_i t, \ i \in \{x, y, z\}$$

classical ion motion =

micromotion + secular motion

secular approximation $a_i, \ q_i \ll 1 \ (
ightarrow \omega_i \ll \Omega)$

neglects micromotion and interprets motion as generated by a "pseudo-potential"

$$e\Psi = \frac{1}{2}\sum_{i} m\omega_i^2 x_i^2, \ i \in \{x, y, z\}$$

Thus, we define

and obtain the Hamiltonian

H =

 $\sum \hbar \omega_i \left(a_i^! a_i + \right)$

$$a_{i}^{\dagger} = \sqrt{\frac{m\omega_{i}}{2\hbar}} x_{i} + \frac{i}{\sqrt{2m\hbar\omega_{i}}} p_{i}$$
$$a_{i} = \sqrt{\frac{m\omega_{i}}{2\hbar}} x_{i} - \frac{i}{\sqrt{2m\hbar\omega_{i}}} p_{i}$$

Single trapped ion

Linear ion traps

Trap designs differ primarily in effective distance & optical access

Linear Paul trap: Stability diagram

D. Leibfried et al., Rev. Mod. Phys. 75, 281 (2003)

Non-linear configurations

M. D'Onofrio et al, arxiv:2021.12766 (2020)

Innsbruck linear ion trap (2000)

How does it look like?

How it looks like

How it looks like

Ion loading

1) An oven (or laser ablation) produces a weak atomic beam of neutral atoms crossing the trap

Summary

Charge particles cannot be trapped in 3D by static fields

✓ Radio-frequency Paul traps are 3D harmonic oscillators

✓ Motion of particle: Mathieu equation have stability region

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 Ion strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

1.7 Entanglement

AG Quantenoptik und Spektroskopie

Ion crystals

Equilibrium positions: Minimize potential energy of ions in a linear chain:

$$V = \frac{m\omega_z^2}{2} \sum_{i=1}^N z_i(t)^2 + \frac{(Ze)^2}{8\pi\varepsilon_0} \sum_{\substack{j,i=1\\n\neq i}}^N \frac{1}{|z_j(t) - z_i(t)|}$$

Coulomb repulsion defines a length scale

PhD thesis, Petar Jurcevic www.quantumoptics.at

Ion strings: experimental positions

H.C. Nägerl et al., Appl. Phys. B 66, 603 (1998)

lon strings as quantum registers

Normal modes of motion

At low temperatures, ions oscillate around their equilibrium positions

Coulomb interaction: coupling of ion motion

Ion strings: mode frequencies and positions

Mode frequencies are nearly independent of ion number N

 $\nu_n = \nu \{1, \sqrt{3}, \sqrt{29/5}, 3.05, 3.67, 4.23, 4.86, 5.44, \ldots \}$

A. Steane, Appl. Phys. B 64, 623 (1997) D. James, Appl. Phys. B 66, 181 (1998)

Summary

Ions in the chain act as coupled oscillators with normal modes

✓ Mode frequencies are nearly independent of ion number

✓ Ion spacing decreases with ion number

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 lon strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

1.7 Entanglement

und Spektroskopie

Physicists like it simple

Ion trappers' favorites

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

1	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
1	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Possible qubits

universität innsbruck

Storing and keeping quantum information requires long-lived atomic states:

Innsbruck ⁴³Ca⁺, Oxford ⁴³Ca⁺;

Maryland ¹⁷¹Yb⁺;

 optical transition frequencies (forbidden transitions, intercombination lines)
 S – D transitions in alkaline earths: Ca⁺, Sr⁺, Ba⁺, Ra⁺, (Yb⁺, Hg⁺) etc.

Our ion of choice

It's a two-level system?

Required lasers

Lasers and Electronics

Qubit measurement

Summary

✓ Alkali-earth ions are particularly simple

✓ There are different possibilities for encoding qubits into ions

✓ All ions are multi-level systems

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 lon strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

1.7 Entanglement

und Spektroskopie

Laser-ion interaction

k, v, ϕ :wavenumber, frequency and phase of laser radiation *m*: mass of the ion

$$\sigma^{\pm} = (\sigma_x \pm i\sigma_y)/2$$

Laser-ion interaction – Lamb-Dicke Parameter

Define Lamb-Dicke parameter
$$\eta = kx_0 = k\sqrt{\langle (a+a^{\dagger})^2 \rangle} = k\sqrt{\frac{\hbar}{2m\omega}}$$

$$H_I = \frac{1}{2}\hbar\Omega(\sigma^+ + \sigma^-) \left(e^{i(kx-\nu_L t+\phi)} + e^{-i(kx-\nu_L t+\phi)}\right)$$
$$H_I = \frac{1}{2}\hbar\Omega(\sigma^+ + \sigma^-) \left(e^{i(\eta(a+a^{\dagger})} - \nu_L t+\phi)} + e^{-i(\eta(a+a^{\dagger})} - \nu_L t+\phi)}\right)$$

Laser-ion interaction – Interaction Picture

$$\begin{split} H_{I} &= \frac{1}{2}\hbar\Omega(\sigma^{+} + \sigma^{-})\left(e^{i(\eta(a+a^{\dagger})-\nu_{L}t+\phi)} + e^{-i(\eta(a+a^{\dagger})-\nu_{L}t+\phi)}\right) \\ \text{Transform to the interaction picture} \\ H_{I} &= e^{iH_{0}t/\hbar} H e^{-iH_{0}t/\hbar} \int H_{0} = \frac{\hbar\omega_{0}}{2}\sigma_{z} + \hbar\omega_{m}(a^{\dagger}a + \frac{1}{2}) \\ H_{I} &= \frac{1}{2}\hbar\Omega(e^{i\omega_{0}t}\sigma^{+} + e^{-i\omega_{0}t}\sigma^{-}) \cdot \\ & \left(e^{i(\eta(ae^{-i\omega_{m}t} + a^{\dagger}e^{i\omega_{m}t}) - \nu_{L}t+\phi)} + e^{-i(\eta(ae^{-i\omega_{m}t} + a^{\dagger}e^{i\omega_{m}t}) - \nu_{L}t+\phi)}\right) \\ & \text{define} \quad \hat{a} = ae^{-i\omega_{m}t} \end{split}$$

Laser-ion interaction – Rotating Wave Approximation

$$H_{I} = \frac{1}{2}\hbar\Omega(e^{i\omega_{0}t}\sigma^{+} + e^{-i\omega_{0}t}\sigma^{-})\cdot$$

$$\left(e^{i(\eta(ae^{-i\omega_{m}t} + a^{\dagger}e^{i\omega_{m}t}) - \nu_{L}t + \phi)} + e^{-i(\eta(ae^{-i\omega_{m}t} + a^{\dagger}e^{i\omega_{m}t}) - \nu_{L}t + \phi)}\right)$$

Rotating Wave Approximation (drop rapidly oscillating terms)

$$H_{I} = \frac{\hbar\Omega}{2} \left(e^{i\eta(\hat{a}+\hat{a}^{\dagger})}\sigma^{+}e^{-i\Delta t}e^{i\phi} + e^{-i\eta(\hat{a}+\hat{a}^{\dagger})}\sigma^{-}e^{i\Delta t}e^{-i\phi} \right)$$

with $\hat{a} = ae^{-i\omega_{m}t}$
 $\Delta = \nu_{L} - \omega_{0}$

Laser-ion interaction – Lamb-Dicke regime

In the Lamb-Dicke regime $\ \eta^2(2n+1)\ll 1$

we expand $\exp(i\eta(\hat{a}^{\dagger}+\hat{a})) = 1 + i\eta(\hat{a}^{\dagger}+\hat{a}) + \mathcal{O}(\eta^2)$

D. Leibfried et al, Rev. Mod. Phys. 75, 281-324 (2003)

Interaction in the ladder structure

Coupling strength beyond the Lamb Dicke regime

D. Leibfried et al, Rev. Mod. Phys. 75, 281-324 (2003)

Quantum state manipulation: Carrier and Sidebands

P. Schindler, at al., New. J. Phys. 15, 123012 (2013)

Ca40 Spectroscopy

Summary

Lamb-Dicke regime:

Extension of the ion's wave function Ψ much smaller than optical wavelength

$$\eta \sqrt{\langle \Psi | (a + a^{\dagger})^2 | \Psi
angle} \ll 1$$

Taylor expansion to first order:

$$H_{int} = \frac{\hbar\Omega}{2}\sigma_{+}\{1 + i\eta(e^{-i\nu t}a + e^{i\nu t}a^{\dagger})\}e^{-i\delta t + i\phi} + h.c.$$

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 lon strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

1.7 Entanglement

und Spektroskopie

Laser cooling

In the Lamb-Dicke regime, spontaneous photons rarely change the motional state |n>:

Physical processes that change n, in lowest order of η

S. Stenholm, Rev. Mod. Phys. 58, 699 (1986)

Sideband cooling

Measuring temperature using sidebands **RED** sidebands **BLUE** sidebands $-v_z - \sqrt{3}v_y - v_y \quad v_y \quad \sqrt{3}v_y$ v_Z 0.6 D-state population 0.5 0.4 P_0 P_0 P_0 0.3 > 95% > 96% 98% 0.2 0.1 -3.68 -3.63 -2.12 -2.07 2.07 2.12 3.63 3.68 -4.4 4.4 4.45 -4.45 Detuning at 729 nm (MHz)

Measuring the temperature of an ion

Measuring temperature using Rabi flops

Cooling and Heating

Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999)

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 lon strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

1.7 Entanglement

AG Quantenoptik und Spektroskopie

Single ion addressing

Option 1: Move the ions

V. Kaushal et al, AVS Quantum Sci. 2, 014101 (2020)

The required operations

Resonant Operations

P. Schindler, at al., New. J. Phys. 15, 123012 (2013)

Off-resonant Operations

P. Schindler, at al., New. J. Phys. 15, 123012 (2013)

Decoherence – phase damping (T2)

To keep the "quantumness" of the qubit, the phase of the driving laser and the two-level system needs to be preserved.

Single ion as an atomic clock

Schrödinger Equation: Relative phase evolution ∞ energy difference

$$|0\rangle + |1\rangle \rightarrow |0\rangle + \exp(i \ \Delta E \ t)|1\rangle$$

Evolution at about 10¹⁵ Hz Linewidth between Hz and mHz

Need to track the clock

Z

Ramsey experiments

Chwalla et al., Phys. Rev. Lett. 102, 023002 (2009)
Qubit coherence

Magnetic Field Stabilization

1) μ -metal shield: 2ms \rightarrow 100ms

to test feedback performance

2) Magnetic field feedback

3) Magnetic field feedforward

1. Trapping and Cooling Ions

1.1 How to trap an ion

1.2 lon strings for quantum computation

1.3 Choosing an ion

1.4 Laser-ion interaction

1.5 Laser cooling in ion traps

1.6 Gate Operations & Decoherence

und Spektroskopie

Normal modes

Perform Taylor expansion around equilibrium positions to find normal modes.

Analogous to 3D classical coupled harmonic oscillator: 3N modes.

C. Marquet, F. Schmidt-Kaler, and D. F. V. James, Applied Physics B 76, 199 (2003)

Generating Entanglement

I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Generating Entanglement

1. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Mølmer-Sørensen entangling operation

Recall: in the Lamb-Dicke regime the interaction Hamiltonian becomes

$$H_{int} = \hbar \frac{\Omega}{2} \left\{ \left(e^{-i(\Delta t - \phi_L)} \sigma_+ \left[1 + i\eta \left(a e^{-i\omega_t t} + a^{\dagger} e^{i\omega_t t} \right) \right] + h.c. \right\}.$$

Exercise: Derive the interaction Hamiltonian for a bichromatic drive

$$H_{\rm Bic} = \hbar \eta \Omega \sigma_x \left(a e^{i\Delta_t t} + a^{\dagger} e^{-i\Delta_t t} \right)$$

Mølmer-Sørensen entangling operation

$$H_{\rm MS} = \hbar \eta \Omega \left(a e^{i\Delta_t t} + a^{\dagger} e^{-i\Delta_t t} \right) \left(\sigma_x^{(1)} + \sigma_x^{(2)} \right)$$

Mølmer-Sørensen entangling operation

Off-resonant coupling to the sidebands Unwanted populations interfere destructively

G. Kirchmair, et. al. New. J. Phys. 11, 023002 (2009) K. Mølmer and A. Sørensen, PRL 82, 1835 (1999)

Mølmer-Sørensen gate: thermal states

Gate operation after ground state cooling

G. Kirchmair et al., New. J. Phys. 11, 023002 (2009)

Mølmer-Sørensen gate: thermal states

Gate operation after Doppler cooling

G. Kirchmair et al., New. J. Phys. 11, 023002 (2009)

Multi path interferometer

Multi path interferometer – 8 ions

Mølmer-Sørensen Entangling Operation

T. Monz et al., *PRL*. **106**, 130506 (2011).

K. Mølmer and A. Sørensen, PRL 82, 1835 (1999).

n+1

T. Monz et al., *PRL*. **106**, 130506 (2011). V. Pogorelov et al., *PRX Quantum* **2**, 020343 (2021).

The Innsbruck Ion Trappers 2023

