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Introduction

Section 1

Introduction
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Concepts in machine learning

Machine learning is...

A set of techniques to teach computers
to solve tasks, without explicitly
programming them

Capable of solving a variety of problems

Supervised learning (classification /
regression)
Unsupervised learning (classification)
Reinforcement learning (interaction
with environment)
Generative modeling (creating samples)

In this talk we focus primarily in supervised
learning

Data plays a fundamental role, but also the
way to interpret it

Figure: A real-world problem: in WWII the planes
received these bullet shots. Where should we
reinforce the planes?

Adrián Pérez Salinas (⟨aQa⟩L) QML NTQC 24 4 / 38



Concepts in machine learning

Training We show the data to the model,
and make the model minimize some loss
function

Data = (X ,Y) = {(x , y(x))}

ML model provides fθ(x)
The (training) solution to the ML problem is
to optimize the empiric risk

L(θ) =
∑
x∈X

D(fθ(x), y(x))

Generalization
We want to learn about a space of data, but
have only limited access X ∼ D
We want to minimize the true risk

R(θ) = Ex∼DD(fθ(x), y(x)) = G(θ) + L(θ)

Complexity of the model

Er
ro

r Optimal model
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Kernel trick

Machine learning models are good at
linearly separating data

The kernel trick allows to linearly
separate data that is non-separable
otherwise

Also used as a trick to compute
distances

This trick has been used to find
quantum advantages in machine
learning (more on that later)

x

y

x
y

z
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Quantum machine learning

Quantum machines for learning classical
data

Data is produced in classical ways

We use a quantum machine to learn it

Examples

Variational algorithms
Discrete Logarithm Problem
classificationa

Linear-algebra-based machine learning

aLiu, Arunachalam, and Temme, “A Rigorous and
Robust Quantum Speed-up in Supervised Machine
Learning”.

Quantum machines for learning quantum
data

Data is in quantum form (thus no
loading overhead)

Data is classical but extracted from a
quantum source (e.g. properties of
quantum materials)

Not covered in this lecture

Classical machines to learn about quantum data (but very interesting topic)
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Section 2

Variational QML
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Variational quantum machine learning

Machine learning where quantum
computers follow variational models

Natural extension of VQAs to data

Data can be understood as input state

If the data is classical, a feature map is
required

Optimization is done as in the case of
variational algorithms

|0⟩

Vϕ(x) U(θ)

H

|0⟩
|0⟩
|0⟩

We optimize θ

Optionally, we can optimize the feature
map
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Linear models12

Linear models are those where the
feature maps appear at the beginning

The choice of the correct feature map is
crucial for the performance of the
algorithm

If Vϕ(x) is fixed, performance in θ is
bounded

U(θ) can only find the optimal
projection

Finding feature maps...

becomes a task of utmost importance

1Havĺıček et al., “Supervised Learning with Quantum-Enhanced Feature Spaces”.
2Lloyd, Schuld, et al., “Quantum Embeddings for Machine Learning”.
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Data re-uploading345

Data re-uploading introduces data
several time and intersperses it with
parameterized gates

It can optimize the feature map on the
fly

Re-uploading models are universal in the
output function (connection to Fourier
analysis)

3Pérez-Salinas, Cervera-Lierta, et al., “Data Re-Uploading for a Universal Quantum Classifier”.
4Schuld, Sweke, and Meyer, “The Effect of Data Encoding on the Expressive Power of Variational Quantum

Machine Learning Models”.
5Pérez-Salinas, López-Núñez, et al., “One Qubit as a Universal Approximant”.
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Data re-uploading vs. linear models

It has ben proven that both methods are
(asymptotically) equivalent

... at the expense of overhead in qubits and
connectivity

Jerbi, Fiderer, et al., “Quantum Machine Learning
beyond Kernel Methods”

Data is encoded in binary form

These 0/1 act as control for trainable
gates, which behaves as data-dependent
gates

Measurement in the work register are
needed, data register is discarded
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Flipped models

We have been encoding data before
processing, why not turning it around?a

These models are more powerful than any
classical model but less powerful than
completely quantum models

aJerbi, Gyurik, et al., Shadows of Quantum
Machine Learning.

Properties

The data is now in the measurement

I can train the model with access to a
quantum computer, and then measure
classically

Using classical shadowsa we can predict
any observables classically, provided a
pool of information b

aH.-Y. Huang, Kueng, and Preskill, “Predicting
Many Properties of a Quantum System from Very
Few Measurements”.

bClassical shadows are an amazing topic, but it
will not be covered right now
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Generalization bounds

Gen. bounds are tools to deal with
generalization errors

Gen. bounds measure the size of the
function space

How?

Create sets of functions that are
equally equispaced
Measure how far these points are from
every other function achievable by the
model
Through mathematical foundations
one can bound generalization errorsa

aWolf, Mathematical Foundations of Supervised
Learning.

In quantum machine learning

Even though the size of available space
increases exponentially, the generalization
error grows as

gen ∈ O

(√
T logT

N

)

T are trainable gates, N are number of data
points.
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Variational quantum machine learning

Do not forget we are using variational methods, thus all problems from VQAs are inherited

VQAs are a subset of variational QML, with just one data point
(no overfitting is possible in this case)

Generalization and optimization must be tackled independently

Feature maps become a crucial aspect of variational QML, performance critically depends
on them

There exist methods to extend claims from variational methods to QML6

6Barthe and Pérez-Salinas, Gradients and Frequency Profiles of Quantum Re-Uploading Models.
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Section 3

Kernel-based QML
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Kernel-based QML

In kernel-based QML we utilize a quantum
computer as a kernel

K (x , x ′) = Tr
(
V †
ϕ(x

′)Vϕ(x)ρ0
)

|0⟩

Vϕ(x) V †
ϕ(x

′)

⟨0|

|0⟩

|0⟩

|0⟩

to combine with easy classical methods, e. g.
support vector machine.

Once the kernel is computed, we can
perform classification by optimizing
classical parameters

If the quantum kernel is such that it
performs an efficient non-classical linear
separation, then we aim for quantum
advantage
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Discrete Logarithm Problem (DLP)-kernel

Discrete logarithm problem (DLP) Given
(a, b), find k (if any) such that

logb a = k → bk = a

Shor’s algorithm

The DLP is tightly connected to Shor’s
algorithm, and it is the main instance of
problem that is quantumly tractable and
believed to be classically impossible

ML problema

fs(x) =

{
1 if logg x ∈

[
s, s + p−3

2

]
−1 else

with g ∈ {1, 2, . . . , p − 1} for a prime p.

aLiu, Arunachalam, and Temme, “A Rigorous and
Robust Quantum Speed-up in Supervised Machine
Learning”.Adrián Pérez Salinas (⟨aQa⟩L) QML NTQC 24 18 / 38



DLP-kernel

Why this is interesting

Show rigurously a case where QML
surpasses classical

The proof relies on Shor’s algorithm,
which is believed to be a problem in the
class BQP

Strong assumptions in complexity
theory a

aI am trying to stay away from complexity theory,
but in case of doubt, please do not hesitate to ask
now or later!

Should I care about this?

How relevant is this problem?

How artificial is this problem?

Complexity theory arguments are
extremely strong, but they are usually
constructed in very particular ways

This result cannot be extended to other
problems unsolvable for classical
computers
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Expressivity of quantum kernels

Quantum kernels for quantumly tractable
problems

Quantum kernels: kernels that are not
efficient in classical computers

For all problems that are tractable with
quantum computers, there exists at least
one kernel that allows for tackling a
related classification problema

aJäger and Krems, “Universal Expressiveness of
Variational Quantum Classifiers and Quantum
Kernels for Support Vector Machines”.

Quantum kernels for kernel functions

For a kernel function k(x , x ′), there
always exist an embedding quantum
kernel such that
k(x , x ′) = ⟨0|U†(x ′)U(x) |0⟩
Under some conditions of the kernel
function, the embedding quantum kernel
is efficienta.

aGil-Fuster, Eisert, and Dunjko, On the
Expressivity of Embedding Quantum Kernels.
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Section 4

Linear-algebra-based QML
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Linear-algebra-based QML

A linear algebra approach

If we can invert matrices exponentially faster,
then any ML task based on it has advantage

There exist many ML algorithms
consisting in inverting matrices

There exist techniques to invert matrices
with quantum computers more
efficiently than with classical
computersab

aHarrow, Hassidim, and Lloyd, “Quantum
Algorithm for Solving Linear Systems of Equations”.

bChilds, Kothari, and Somma, “Quantum
Algorithm for Systems of Linear Equations with
Exponentially Improved Dependence on Precision”.

HHL algorithms in a nutshell Problem to
solve: A |x⟩ = |b⟩,
How to:

1 Load matrix A

2 Load vector |b⟩ (QRAM needed!)

3 Apply hamiltonian time evolution e−iAt

4 Use Fourier Transform to extract
eigevalues

5 Invert eigenvalues

Runtime: O(logNs2κ2/ϵ)
N: size, s: sparsity, κ: condition number of
A, ϵ: error
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Algorithms

Principal Component Analysisa

With input state ρ =
∑
λi |ψi ⟩ ⟨ψi |, then

qPCA(ρ) =
∑
i

λi |λi ⟩ ⟨λi | ⊗ |ψi ⟩ ⟨ψi |

Quantum Support Vector Machineb

The SVM is given as a matrix F to invert
Using the HHL algorithm, we invert F

aLloyd, Mohseni, and Rebentrost, “Quantum
Principal Component Analysis”.

bRebentrost, Mohseni, and Lloyd, “Quantum
Support Vector Machine for Big Data Classification”.

Quantum recommendation systemsa

Recommendation systems give advice to
users for future purchases (e. g. Netflix,
Amazon...)

They function assuming low-rank in the
recommendation matrix

Most people belong to a pre-define types

We can invert recommendation systems
leveraging the low-rank assumption

aKerenidis and Prakash, Quantum
Recommendation Systems.
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Dequantization
The history of Tang
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Dequantization

It is the process of returning quantum
algorithms to classical machines

Many applications of HHL are
succesfully dequantized

After Tang, only a few applications still
resist

Working principle

Quantum algorithms are probabilistic,
and thus admit some errors

But most classical algorithms are
deterministic

Tang relaxes this condition for classical
algorithms, yielding a classical version of
the quantum algorithms

Quantum algorithms are still better, but only slightly7

7Tang, “A Quantum-Inspired Classical Algorithm for Recommendation Systems”; Tang, “Quantum Principal
Component Analysis Only Achieves an Exponential Speedup Because of Its State Preparation Assumptions”.
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Generative models
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Generative models

A generative model transforms a
random number z into a sample x

The samples x follow a probability
distribution x ∼ p(x)

The goal is to mimic some target
probability distribution q(x)

If Gθ : z → x ∼ pθ(x), then
θ∗ = argminθ

∑
x D(pθ(x), q(x))

Examples:

ChatGPT

https://thispersondoesnotexist.com/a

aThere is a Twitter account with the worst
generated faces: @wedontexisthere

In quantum computing

Exponential support

Most experiments on quantum
supremacy rely on sampling from
probability distributionsa

Sampling is harder than simulating
expectation valuesb

Learning probability distribution is hard
if they are only slightly quantumc

aBoixo et al., “Characterizing Quantum
Supremacy in Near-Term Devices”.

bLund, Bremner, and Ralph, “Quantum Sampling
Problems, BosonSampling and Quantum Supremacy”.

cHinsche et al., “A Single $T$-Gate Makes
Distribution Learning Hard”.
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Quantum Generative models

Quantum Boltzmann machines
In this model, we aim to sample states
according to the Boltzmann distribution of a
Hamiltonian

H =
∑
i

biZi +
∑
i ,j

wi ,jZiZj .

The weights b,w are tunable, to match
whatever probability distribution.

Quantum Circuit Born Machines
Assume a circuit U(θ), then the QCBM is
given by sampling from its output state

x ∼ pθ(x) = | ⟨x |U(θ) |0⟩ |2

The goal is to make pθ(x) match some
data-defined distributiona.
If U(θ) is chosen at random, then pθ(x)
follows a Porter-Thomas distribution

Prob(pθ(x) = p) = Ne−Np,

where N is the size of the support.

aBenedetti et al., “A Generative Modeling
Approach for Benchmarking and Training Shallow
Quantum Circuits”.
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Section 6

Learning quantum vs. classical data
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Learning quantum vs. classical data

Folklore of quantum computing says:
Nature isn’t classical, dammit, and if
you want to make a simulation of Na-
ture, you’d better make it quantum me-
chanical, and by golly it’s a wonderful
problem because it doesn’t look so easy.

Feynman, “Simulating Physics with Computers”

For quantum machine learning

you better try to learn data coming from
quantum processes to make QML
advantageous

Can we obtain quantum advantage if we
machine-learn physical processes?

R. Huang, Tutorial in QTML 23’
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The power of data

Power of data

Consider f (x) = ⟨x |U†OU |x⟩. If f (x) can
be computed by a classical algorithm without
data, then quantum computers are not more
powerful than digital computersa

aBPP = BQP

With generalization error

Ex∈D |h(x)− f (x)| ≤ c
√

p2

N
where c > 0 is constant, N is the number of
data points, and p is given by
xi =

∑p
k=1 x

k
i |k⟩ (i stands for data instance)

H.-Y. Huang, Broughton, et al., “Power of Data in
Quantum Machine Learning”

Quantum data is hard to generate

But it does not mean it is hard to learn

Therefore, classical ML models can take
data coming from quantum sources, and
learn it even more efficiently than
quantum learners.

But this leaves an open question:
How hard is it to get data from a
quantum source?
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The power of data
A small flavour

Data changes the game in quantum
computing H.-Y. Huang, Broughton,
et al., “Power of Data in Quantum
Machine Learning”

Quantum data cannot be created
efficiently

An example

|0⟩

U

θ

V

Z

|0⟩
|0⟩

|0⟩

⟨Z ⟩ = A sin(aθ + b)
Even though computing ⟨Z ⟩ is difficult,
having access to 3 sample points is enough
to characterize it!
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Quantum advantage in machine learning

Learning quantum data
E(·) is an unknown quantum process
f (x) = Tr(OE(|x⟩ ⟨x |))

We allow for two different settings

1 Classical: sequential measurements

2 Quantum: coherent queries
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Quantum advantage in machine learning

Average performance

Theorem

Assume a quantum ML model trained with
NQ samples such that∑

x

D(x)|hQ(x)− Tr(OE(|x⟩ ⟨x |))|2 ≤ ϵ.

Then, there exists a classical ML model such
that∑
x

D(x)|hC (x)− Tr(OE(|x⟩ ⟨x |))|2 ≤ O(ϵ),

trained with Nc ∈ O(mNQ/ϵ) samples

Worst-case performance
Consider a metric
maxx |hQ(x)− Tr(OE(|x⟩ ⟨x |))|2 ≤ ϵ.

Quantum model

NQ = O(log(M)/ϵ4) copies of ρ to predict
M Pauli observables with accuracy ϵ

Classical theorem

Any classical ML model must use at least
NC ∈ Ω(2n) copies of ρ to predict Pauli
expectation values

H.-Y. Huang, Kueng, and Preskill,
Information-Theoretic Bounds on Quantum
Advantage in Machine Learning
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Quantum advantage is lost in measurement

Classical shadows
This technique allows to obtain a lot of
information from a quantum state

Select observables with bodyness up to
k

Measure the quantum state through
random measurements

Reconstruct expectation values of the
observables

The error of the approximation scales as
logM∥Ô∥k∞

Learning

Consider a quantum state ρ

Obtain the representation of this state
in classical shadows

There exist classical ML algorithms to
predict ground states and phase
transitions of Hamiltonians from data
taken through classical shadows

Any advantage in ML is lost in the
measurement!

H.-Y. Huang, Kueng, Torlai, et al., “Provably
Efficient Machine Learning for Quantum
Many-Body Problems”
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Section 7

Conclusions
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Conclusions

Quantum Machine Learning exists in many forms

This lecture was an overview for different techniques, but it is not exhaustive

There exist a few cases where quantum advantage has been proven

From kernels, without data
From data coming from quantum sources

Quantum machine learning is in general universal, and theoretically as powerful as
classical machine learning

Apart from the seen exceptions...

Is quantum machine learning useful for general purpose algorithms?
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