角PASQAL

## Applications of neutral atom QPUs

April 22, 2024


## Quantum simulation team @PASQAL

- Quantum simulation schemes tailored for PASQAL's QPU
- E.g. Amorphous materials

- Other systems of interest in material science
- Numerical benchmarks
- Tensor networks
- Quantum Monte Carlo
- Semi-analytical methods
- ...


Augustine Kshetrimayum


Joseph Vovrosh


Kemal Bidzhiev


Sergi Julià-Farré


Fergus Hayes

## Outline

1. (Brief) review of the neutral atom QPU
2. Optimization: Maximum independent set
3. Quantum Materials: Amorphous quantum magnets
4. Machine learning: Quantum evolution Kernel
(Brief) review of the neutral atom QPU


## Alkali metals

o The elements in the first column of the periodic table all have just one valence electron (Li, Na, K, Rb, Cs, Fr)
o The valence electron in an alkali metal feels the same Coulomb potential of a hydrogen atom for large $R$
o For small $R$ the finite-size of the ionic core changes the potential


## Making Qubits out of atoms

## How do we make qubits out of this?

1. We need to trap the atoms
2. We need to identify a $|0\rangle$ and a $|1\rangle$ state
3. We need to be able to address transitions between $|0\rangle$ and $|1\rangle$

Most of these are dependent on each other
4. We need to be able to produce entanglement between the atoms
5. We need to be able to measure the state of the system

## 1. Trapping the atoms

o We use optical tweezers to trap individual atoms in a region of around 1 $\mu m$


## 1. Trapping the atoms



Prepare some traps


Load the traps randomly with Rubidium atoms


Rearrange the atoms by moving them to the desired trap

## 1. Trapping the atoms

o High flexibility: atoms can be arranged in arbitrary fixed 2D configurations

https://arxiv.org/abs/2104.04119

https://arxiv.org/abs/2211.16337

https://arxiv.org/abs/2011.06827

## 1. Trapping the atoms

## 196

## A tweezer array with 6100 highly coherent atomic qubits

Hannah J. Manetsch,* Gyohei Nomura,* Elie Bataille, ${ }^{*}$ Kon H. Leung, Xudong Lv, and Manuel Endres ${ }^{\dagger}$ California Institute of Technology, Pasadena, CA 91125, USA

Optical tweezer arrays have had a transformative impact on atomic and molecular physics over the past years, and they now form the backbone for a wide range of leading experiments in quantum computing, simulation, and metrology. Underlying this development is the simplicity of single particle control and detection inherent to the technique. Typical experiments trap tens to hundreds of atomic qubits, and very recently systems with around one thousand atoms were realized without defining qubits or demonstrating coherent control. However, scaling to thousands of atomic qubits with long coherence times and low-loss, high-fidelity imaging is an outstanding challenge and critical for progress in quantum computing, simulation, and metrology, in particular, towards applications with quantum error correction. Here, we experimentally realize an array of optical tweezers trapping over 6,100 neutral atoms in around 12,000 sites while simultaneously surpassing state-of-the-art performance for several key metrics associated with fundamental limitations of the platform. Specifically, while scaling to such a large number of atoms, we also demonstrate a coherence time of 12.6(1) seconds, a record for hyperfine qubits in an optical tweezer array. Further, we show trapping lifetimes close to 23 minutes in a room-temperature apparatus, enabling record-high imaging survival of $99.98952(1) \%$ in combination with an imaging fidelity of over $99.99 \%$. Our results, together with other recent developments, indicate that universal quantum computing with ten thousand atomic qubits could be a near-term prospect. Furthermore, our work could pave the way for quantum simulation and metrology experiments with inherent single particle readout and positioning capabilities at a similar scale.

## 2. Making Qubits out of neutral atoms

We use as a $|0\rangle$ the ground state of Rubidium:
$1 S^{2} 2 S^{2} 2 P^{6} 3 S^{2} 3 P^{6} 3 D^{10} 4 S^{2} 4 P^{6} 5 S^{1}$

As a $|1\rangle$ state, we use a highly excited state, i.e. a state where the valence electron is in a level with high principal quantum number ( $n \sim 70$ )

$$
\text { For } n=60 \text {, }
$$

$$
R \sim n^{2} a_{0} \rightarrow \sim 100 \mathrm{~nm}
$$

$|0\rangle \rightarrow|5 S\rangle$
$|0\rangle \rightarrow|5 S\rangle$
$|0\rangle \rightarrow|5 S\rangle$
$\tau \sim n^{3} \rightarrow \sim 100 \mu s$
$|1\rangle \rightarrow|60 S\rangle$
$|1\rangle \rightarrow|70 S\rangle$
$|1\rangle \rightarrow|70 S\rangle$
https://arxiv.org/abs/ 2211.16337

> https://arxiv.org/abs/ 2202.09372
https://arxiv.org/abs/

$$
1707.04344
$$

## 3. Addressing single qubit transition

o This is done by shining on the atom a laser beam very close to the transition energy
between $|0\rangle$ and $|1\rangle$
o The difference between the resonant frequency $\omega_{\alpha}$ and the laser frequency $\omega_{l}$ is called detuning, usually denoted $\delta$


## Entangling qubits

- two atoms in $|00\rangle$, far apart from each other ( $\geq 15 \mu \mathrm{~m}$ )


Laser resonant with the transition $|0\rangle$ to |1)


Laser resonant with the transition $|0\rangle$ to | 1 خ

## Entangling qubits - Rydberg blockade

- We put the two atoms in $|00\rangle$, close to each other ( $\sim 5,6 \mu \mathrm{~m}$ )
- When the resonant laser is switched on, we end up with the entangled state
$|01\rangle+|10\rangle$ rather than $|11\rangle$



## Entangling qubits - van der Waals interactions

o Two Rydberg states interact with a van der Waals interaction decaying as $R^{-6}$ (with $R$ distance between the atoms)
o The interaction shifts upwards the energy of the $|11\rangle$ level, favouring the excitation of the entangled state $|01\rangle+|10\rangle$ instead

- Importantly: during the measurement, we always observe states with Rydberg blockade



## Measuring the qubits

o The optical tweezer is actually repulsive for atoms in the $|1\rangle$ state and for that reason, during quantum computations, the tweezers are switched off.
o After the quantum evolution of the system, the tweezers are turned back on and atoms in |1) are expelled from the traps and lost, while atoms in $|0\rangle$ are recaptured
o A Fluorescent light is shone on the atoms, and the emission is captured by a CCD camera, which therefore only sees atoms in $|0\rangle$. The remaining spots are then assumed to be atoms in the state $|1\rangle$.

https://arxiv.org/abs/
2012.12268

## Rydberg atomic array for quantum simulation

Optical tweezers arrays allow for very flexible atomic register - can directly port amorphous materials into system


Adapted from Phys. Rev. A 102, 063107

Scalable to hundreds of atoms - can capture both short-range order and lack of long-range order.


Can realise both the Ising model and XY model

$$
\begin{aligned}
\mathcal{H}(t) & =\frac{\hbar}{2} \Omega(t) \sum_{j} \sigma_{j}^{x}-\hbar \delta(t) \sum_{j} n_{j}+\sum_{i \neq j} \frac{C_{6}}{r_{i j}^{6}} n_{i} n_{j}, \\
\mathcal{H}(t) & =\frac{\hbar}{2} \Omega(t) \sum_{j} \sigma_{j}^{x}-\frac{\hbar}{2} \delta(t) \sum_{j} \sigma_{j}^{z}+2 \sum_{i \neq j} \frac{C_{3}}{r_{i j}^{3}}\left(\sigma_{i}^{x} \sigma_{j}^{x}+\sigma_{i}^{y} \sigma_{j}^{y}\right) .
\end{aligned}
$$

## Maximum independent set



## A first example: Placing antennas in cities

o We have to decide where to place antennas to maximise their coverage.
o Constraint: Two antennas should not interfere.
o Finding the maximum subset is the so called maximum independent set (MIS)
o Brute force: search within the $2^{n}$ sets


## A second example: networking event

o You have a list of employees and their direct collaborators in the company.
o You want to organise an event

- with a maximum employees
where none of the employees see their direct collaborators.

| Alan | Bob |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Bob | Alan | Charline | Daniel | Eleanore |
| Daniel | Bob | Eleanore | Farid | Guy |
| ... |  |  |  |  |



## Graph theory

An undirected graph is a pair $(V, E)$ where $V$ is finite set $V=\left\{V_{1}, \cdots, V_{n}\right\}$ (vertices), and $E$ is a subset of $V \times V$ (edges).


$$
\begin{aligned}
& V=\{1,2,3\} \\
& E=\{(1,2),(2,3)\}
\end{aligned}
$$

$A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

An adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.


$$
\begin{aligned}
V & =\{1,2,3\} \\
E & =\{(1,2),(2,3),(3,1)\}
\end{aligned}
$$

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

## Graph theory

## An independent set of a graph

$G=(V, E)$ is a subset $S \subset V$ such that no pair of vertices in $S$ is connected by and edge.

$$
\begin{array}{ll}
\begin{array}{l}
G=(V, E) \text { is a subset } S \subset V \text { such that } \\
\text { no pair of vertices in } S \text { is connected by } \\
\text { and edge. }
\end{array} \\
V=\{1,2,3\} \\
E=\{(1,2),(2,3)\} & V=\{1,2,3\} \\
E=\{(1,2),(2,3),(3,1)\}
\end{array} \quad \begin{array}{ll}
V_{1}, V_{2} \in S \Rightarrow\left(V_{1}, V_{2}\right) \notin E \\
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \\
E=\{(1,2),(2,3),(3,4),
\end{array}
$$

## 3

## Graph theory

A Maximum independent set of a graph $G$ is a subset $S$ of $V$ which is an independent set, and it has the maximum cardinality among all possible independent sets



1. Find all the independent set for this graph.
2. Find the maximum independent set(s).

## Boolean reformulation

- We give an index to the vertices of the graph.
- A subset S can also be defined in a boolean manner
- 1 if in the subset
- 0 if not in the subset
- We want to maximise the cardinality of the subset \#S.
- The independent set constraint can be rewritten as $h(S)=0$.


$$
\{3,8\} \longmapsto S=(00100001)
$$

$$
\text { Size of the set: } f(S)=\sum_{i \in V} n_{i}^{(S)}=\# S
$$

$$
\text { IS condition: } h(S)=\sum_{i, j \in E} n_{i}^{(S)} n_{j}^{(S)}=0
$$

BOOLEAN REFORMULATION OF THE MIS

$$
\begin{array}{r}
\max _{S \in \mathscr{B}} f(S) \\
\text { s.t. } h(S)=0
\end{array}
$$

## MIS as an unconstrained optimisation problem

## LAGRANGE MULTIPLIERS



Given the problem

$$
\max f(x) \text { s.t. } h(x)=0,
$$

$x$
We define the Lagrangian
$\mathscr{L}(x)=f(x)+\lambda h(x)$

The solution of the constrained optimisation problem will be a saddle point of $\mathscr{L}$.

$$
\begin{gathered}
\partial_{\lambda} \mathscr{L}=0 \text { and } \partial_{x} \mathscr{L}=0 \\
g(x)=0 \text { and } \partial_{x} f+\lambda \partial_{x} g=0
\end{gathered}
$$

## MIS as an unconstrained optimisation problem

o We therefore want to minimise $C=-\mathscr{L}$.

- In principle, the minimisation should be both on $S$ and on $\lambda$
o Since $h(S) \geq 0$, the first term always favours is solutions.
o The proper choice of $\lambda$ can be done through an optimisation procedure.
o One can show that for $\lambda>1$, the solution is always an IS (see e.g. appendix of 2006.11190)
o We have now reduced our MIS to a QUBO problem and also a problem that can be natively solved on the QPU.
o We will now see how one can reach the ground state of the optimisation problem with quantum annealing.

$$
\begin{gathered}
C=\min _{S \in \mathscr{B}} \lambda h(S)-f(S) \\
=\min _{S \in \mathscr{B}} \lambda \sum_{i, j \in V} n_{i}^{(S)} n_{j}^{(S)}-\sum_{i \in V} n_{i}^{(S)} \\
\geq 0
\end{gathered}
$$

## Quantum evolution on a QPU

- Initially $(t=0)$ all the spins are in the GS. $|00 \ldots 00\rangle$.
- A run consists on modulating

$$
H_{\text {pulse }}=\frac{\hbar}{2} \sum_{i} \sin (\phi) \Omega(t) \sigma_{i}^{x}-\cos (\phi) \Omega(t) \sigma_{i}^{y}-\delta(t) \sigma_{i}^{z}
$$

- Pulse shaping is possible (interpolated waveform), but with a certain modulation bandwidth.
- The use of en Electro Optical Modulator (EOM) allows one to achieve square pulses with high precision.
- Maximal allowed time before decoherence starts to matter is typically $\tau_{\max }=4 \mu \mathrm{~s}$.

Desired square pulse


## Open source emulator

o Play with analog device specs.
o Simulate realistic pulse shapes.
o EOM, addressability,
o State preparation, shot noise, ...


Pulser Studio


## Quantum evolution: A review

- Initially $(t=0)$ all the spins are in the GS $|0\rangle \equiv|00 \ldots 00\rangle$.
- Quantum evolution under the time-dependent Hamiltonian

$$
H=\hbar \sum_{i} \frac{\Omega(t)}{2} \sigma_{i}^{x}-\delta(t) n_{i}+\sum_{i \neq j} V_{i j} n_{i} n_{j}
$$

- A time $t$, the state is described by
$|\psi(t)\rangle=\exp ^{-i \int_{0}^{t} H(t) d t}|0\rangle$
- It is also worth to write $|\psi(t)\rangle$ in the computational basis

$$
|\psi(t)\rangle=\sum_{S \in \mathscr{B}} a_{S}(t)|S\rangle
$$

- The probability of measuring a given bitstring $S^{\prime}$ is then given by


$$
P\left(S^{\prime}\right)=\left|\left\langle S^{\prime} \mid \psi(t)\right\rangle\right|^{2}=\left|a_{S^{\prime}}\right|^{2}
$$

## Quantum evolution: Rabi oscillations

Let us consider the single qubit Hamiltonian

$$
H=\Omega \sigma_{x}+\delta \sigma_{z}
$$

- Compute the time-evolution of the initial state $\left|\psi_{0}\right\rangle=|0\rangle$.
- Compute the probability P(1)


## Quantum annealing

- Let us assume we know the ground


## QUANTUM ANNEALING

 state at time 0 of an Hamiltonian $H_{0}$ and we do not know the ground state of the Hamiltonian $H_{1}$.- For a sufficient slow evolution, we can drive continuously the system from the initial state to the final state, while staying in the instantaneous GS.
- This allows then to connect adiabatically the initial GS to the final GS.
- Important condition: there should be a gap between the instantaneous GS and the first excited state.
- If we are not adiabatic, then this can lead to transitions to excited states
- Example: Landau Zener transitions $\rightarrow$ exponentially decaying in terms of a ratio between the gap and the velocity of the path.

$$
\begin{aligned}
& H(t)=(T-t) H_{0}+t H_{1} \\
& |\psi(t)\rangle=e^{\int_{0}^{t} H(t) d t}|\psi(0)\rangle
\end{aligned}
$$



## A first example of MIS

Let us consider the antenna problem on a line with 4 sites

- Analyse the problem by the brute force method
- Reformulate the MIS problem as a QUBO problem
- Compute the value of $\mathscr{L}$
- What happens for $\lambda \ll 1$ ?


First example of MIS: quantum annealing

Probing many-body dynamics on a 51-atom quantum simulator
Hannes Bernien, ${ }^{1}$ Sylvain Schwartz, ${ }^{1,2}$ Alexander Keesling, ${ }^{1}$ Harry Levine, ${ }^{1}$ Ahmed Omran, ${ }^{1}$ Hannes Pichler,,${ }^{3,1}$ Soonwon Choi, ${ }^{1}$ Alexander S. Zibrov, ${ }^{1}$ Manuel Endres, ${ }^{4}$ Markus Greiner, ${ }^{1}$ Vladan Vuletić, ${ }^{2}$ and Mikhail D. Lukin ${ }^{1}$
${ }^{1}$ Department of Physics, Harvard University, Cambridge, MA 02138, USA
2Department of Physics and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{3}$ Institute for Theoretical Atomic, Molecular and Optical Physics,
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
${ }^{4}$ Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA


[^0]
## Optimising the pulse sequence

- We have to choose the path of the quantum annealing
- First approach: linear ramps.
- This might not be optimal.
- Remember: Small gaps and potential gap closing $\rightarrow$ transitions to excited states
- Other approach: We aim to minimise a cost function.
- In our case, the energy of the spin system, which corresponds to the Lagrangian $\mathscr{L}$ is the the function we want to miniziae.

https://arxiv.org/abs/
2012.12268


## Expectation values on the QPU

- We perform the time evolution on the QPU
- We should then measure the expectation value of the energy

$$
\begin{aligned}
& E=\langle\psi(T)| H|\psi(T)\rangle \\
& \text { where } H=-\delta(T) \sum_{i} n_{i}+\sum_{i \neq j} V_{i j} n_{i} n_{j}
\end{aligned}
$$

oIn the computational basis

$$
\begin{gathered}
|\psi(t)\rangle=\sum_{S \in \mathscr{B}} a_{S}(t)|S\rangle \\
E=-\delta(T) \sum_{S \in \mathscr{B}, i}\left|a_{S}(T)\right|^{2}\langle S| n_{i}|S\rangle+V_{i j} \sum_{S, \in \mathscr{B}, i, j}\left|a_{S}(T)\right|^{2}\langle S| n_{i} n_{j}|S\rangle
\end{gathered}
$$

o Recall that $n_{i}$ is diagonal in the computational basis

## Experimental implementation

QUANTUM SIMULATION

## Quantum optimization of maximum independent set using Rydberg atom arrays

S. Ebadi ${ }^{1} \dagger$, A. Keesling ${ }^{1,2} \dagger$, M. Cain ${ }^{1} \dagger$, T. T. Wang ${ }^{1}$, H. Levine ${ }^{1} \ddagger$, D. Bluvstein ${ }^{1}$, G. Semeghini ${ }^{1}$, A. Omran ${ }^{1,2}$, J.-G. Liu ${ }^{1,2}$, R. Samajdar ${ }^{1}$, X.-Z. Luo ${ }^{2,3,4}$, B. Nash ${ }^{5}$, X. Gao ${ }^{1}$, B. Barak ${ }^{5}$, E. Farhi ${ }^{6,7}$, S. Sachdev ${ }^{1,8}$, N. Gemelke ${ }^{2}$, L. Zhou ${ }^{1,9}$, S. Choi ${ }^{7}$, H. Pichler ${ }^{10,11}$, S.-T. Wang ${ }^{2}$, M. Greiner ${ }^{1 *}$, V. Vuletici ${ }^{12 *}$, M. D. Lukin ${ }^{1 *}$

Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.

See also
arXiv:1808.10816 for the theory

## Experimental implementation



$$
\begin{aligned}
& H_{q}=\frac{\hbar}{2} \sum_{i}\left[\Omega(t) e^{i \phi(t)}|0\rangle_{i}\langle 1|+\text { h.c. }\right], \\
& H_{\text {cost }}=-\hbar \Delta(t) \sum_{i} n_{i}+\sum_{i<j} V_{i j} n_{i} n_{j}
\end{aligned}
$$

## Experimental implementation



$$
\begin{aligned}
H_{q} & =\frac{\hbar}{2} \sum_{i}\left[\Omega(t) e^{i \phi(t)}|0\rangle_{i}\langle 1|+\text { h.c. }\right], \\
H_{\text {cost }} & =-\hbar \Delta(t) \sum_{i} n_{i}+\sum_{i<j} V_{i j} n_{i} n_{j} \\
\quad R & =\sum_{i}\left\langle\psi_{f}\right| n_{i}\left|\psi_{f}\right\rangle / \# \mathrm{MIS}
\end{aligned}
$$

## Experimental implementation


\# first excited states

$$
H P=\frac{D_{|M I S|-1}}{|M I S| D_{|M I S|}}
$$

\# MIS (or in our notation f(S))

## Quantum simulation vs classical numerics

Hardness of the Maximum Independent Set Problem on Unit-Disk Graphs and Prospects for Quantum Speedups

Ruben S. Andrist, ${ }^{1, *}$ Martin J. A. Schuetz, ${ }^{1,2, *}$ Pierre Minssen, ${ }^{3, *}$ Romina Yalovetzky, ${ }^{3, *}$ Shouvanik Chakrabarti, ${ }^{3}$ Dylan Herman, ${ }^{3}$ Niraj Kumar, ${ }^{3}$ Grant Salton, ${ }^{1,2,4}$ Ruslan Shaydulin, ${ }^{3}$ Yue Sun, ${ }^{3}$ Marco Pistoia, ${ }^{3, ~} \dagger$ and Helmut G. Katzgraber ${ }^{1, \dagger}$<br>${ }^{1}$ Amazon Quantum Solutions Lab, Seattle, Washington 98170, USA<br>${ }^{2}$ AWS Center for Quantum Computing, Pasadena, CA 91125, USA<br>${ }^{3}$ Global Technology Applied Research, JPMorgan Chase, New York, NY 10017 USA<br>${ }^{4}$ California Institute of Technology, Pasadena, CA, USA<br>(Dated: July 19, 2023)

Rydberg atom arrays are among the leading contenders for the demonstration of quantum speedups. Motivated by recent experiments with up to 289 qubits [Ebadi et al., Science 376, 1209 (2022)] we study the maximum independent set problem on unit-disk graphs with a broader range of classical solvers beyond the scope of the original paper. We carry out extensive numerical studies and assess problem hardness, using both exact and heuristic algorithms. We find that quasi-planar instances with Union-Jack-like connectivity can be solved to optimality for up to thousands of nodes within minutes, with both custom and generic commercial solvers on commodity hardware, without any instance-specific fine-tuning. We also perform a scaling analysis, showing that by relaxing the constraints on the classical simulated annealing algorithms considered in Ebadi et al., our implementation is competitive with the quantum algorithms. Conversely, instances with larger connectivity or less structure are shown to display a time-to-solution potentially orders of magnitudes larger. Based on these results we propose protocols to systematically tune problem hardness, motivating experiments with Rydberg atom arrays on instances orders of magnitude harder (for established classical solvers) than previously studied.

## Beyond MIS with analog neutral atoms

(a) Computational Problem


## (d) Solution


(b) Unit-Disk Encoding (c) MWIS on Rydberg platform


M. Lanthaler, C. Dlaska, K. Ender, and W. Lechner,
"Rydberg-blockade-based parity quantum
optimization," Physical Review Letters, vol. 130, no. 22, p. 220601, 2023.

## Amorphous quantum magnets



## From crystals to amorphous solids

The disordered structure of the material makes it difficult to simulate and requires large approximations.

However, amorphous materials are ubiquitous and simulate them could lead to
groundbreaking discoveries

3 TYPES OF MATERIALS


Crystal lattice
Translational invariance

- These materials are fully ordered and translational symmetry
- Majority of quantum simulation results consider such lattice structures


Quasicrystal
Materials with no translational symmetry but long range order

- Proposal and first results for the quantum simulation with cold atoms


Amorphous materials
Short range order but no long-range order

- The quantum simulation of these is focus of this talk


## Amorphous: Disordered at Long range and short ranged ordered

Amorphous materials have no longrange order

However, they have well defined short-range order due to covalent bonds: bond lengths and bond angles

The combination of these leads to a well-defined coordination number

Reflected through in

- the radial distribution function $g(r)$

Coordination number

$$
C=2 \pi \int_{0}^{R_{1}} r g(r) d r
$$

FROM ORDERED TO DISORDERED MATERIALS


BOND LENGTHS AND BOND ANGLES IN GRAPHENE AND MONOLAYER AMORPHOUS CARBON


[^1]$g(r)$ : ATOMIC DENSITY FROM A REFERENCE ATOM


## Interest in amorphous solids


'Nearly all materials can, if cooled fast enough and far enough, be prepared as amorphous solids.'

Spectral gaps in DOS
$\rightarrow$ Amophous Semiconductors
Phys. Rev. B 4, 2508


## Amoprhous Superconductors

Amorphous Superconductors, Tsuei, C.C. (1981).

| Elemercond. Tc | Crystal | Amorphous |
| :--- | :--- | :---: |
| Element | 5 mK | 6 K |
| Bi | 26 mK | 10 K |
| Be | 6 K |  |
| Al | 1.18 K |  |
| Adapted from Paul Corbae et |  |  |
| al 2023 EPL 14216001 |  |  |

## Amorphous Topological Insulators

 Phys. Rev. Lett. 118, 236402

Amorphous Quantum Spin Liquids Nat. Commun. 14, 6663 (2023)

## Amorphous Quantum Magnets

o much research into amorphous materials typically focusing on classical/non-interacting
o Limited research into work on quantum amorphous materials due to inherent complexity

- inherent requirement of large systems
- No translational symmetry



## Amorphous solid Generation

Most common methods in previous literature is Voronoi tessellation


Adapted from Nature volume 577, 199-203 (2020)

## Problems:

- Two sites connected by an edge (no matter its length) become nearest-neighbours.
- Limited control over coordination number and edge lengths - we consider $\mathrm{I} \propto 1 / r^{6}$
> We need a method with very precise control - use variational approach


$$
\begin{aligned}
& \mathscr{L}=a_{1} \sum_{j}\left|\sum_{i} k\left(r_{i j}\right)-m_{j}\right|^{2}+a_{2} \sum_{i j}\left(1-\frac{1}{1+e^{-\gamma\left(r_{i j}-r_{\min }\right)}}\right)+a_{2} \sum_{i j} \frac{e^{r_{i j}-r_{\max }}}{1+e^{-\beta\left(r_{i j}-r_{\max }\right)}} \\
& \text { Gaussian kernel to control Penalty for atoms getting too } \\
& \text { coordination number } \\
& \text { close } \\
& \text { Distance } \\
& \text { penalty }
\end{aligned}
$$

## Examples of amorphous solids

$C=3$
$C=4$
$C=3.5$
$C=5$


## Static structure factor

Static structure factor
$S(\mathbf{q})=\frac{1}{N}\left|\sum_{j=1}^{N} e^{-\mathbf{q} \cdot R_{j}}\right|^{2}$
o No preferred direction
$\rightarrow$ Rotational symmetry
o Same wave vector as dominant lattice (square, hexagonal)





## Classical emulation of amorphous magnets

o Lack of lattice topology
$\rightarrow$ challenge for the tensor network representation.
o Inherently requires large system sizes (due to boundary effects)
o In the antiferromagnetic case, presence of (local) frustration. How will this behave beyond regular lattices.


## Semiclassical analysis

## PROBLEM SET UP

- We consider the ferromagnetic Ising model with (allows us to avoid any frustration)

$$
H=-\sum_{i<j} \frac{J_{0}}{r_{i j}^{6}} S_{i}^{z} S_{j}^{z}+h_{x} \sum_{i} S_{i}^{x}, \quad S_{j}^{\alpha}=\frac{1}{2} \sigma_{j}^{\alpha}
$$

- We set the minimum distance between two atoms to unity, such that: $\min r_{i j}=1$
- We consider the transverse field $h_{x} / \bar{J}$, in which $\bar{J}$ is the average nearest neighbour interaction strength
- We use mean-theory and linear spin wave theory to capture the physics of amorphous materials in the semi-classical limit

MEAN-FIELD PHASE DIAGRAM

Rotation to the mean-field polarised axis
$S_{i}^{z}=\tilde{S}_{i}^{z} \cos \theta_{i}+\tilde{S}_{i}^{x} \sin \theta_{i}$
$S_{i}^{x}=\tilde{S}_{i}^{x} \cos \theta_{i}+\tilde{S}_{i}^{z} \sin \theta_{i}$
Under the assumption $\left\langle\tilde{S}_{x}\right\rangle \simeq 0$
$E_{M F}=-\frac{1}{4} \sum_{i<j} \frac{J_{0}}{r_{i j}^{6}} \cos \theta_{i} \cos \theta_{j}-\frac{h_{x}}{2} \sum_{i} \sin \theta_{i}$

Mean-field ferromagnetic
order parameter
$M=\frac{1}{N} \sum_{i}\left\langle S_{i}^{z}\right\rangle$

$\Delta$ : Linear spin wave theory energy gap
(VERY BRIEF) REVIEW OF LINEAR SPIN WAVE THEORY
Holstein-Primakoff mapping

$$
\begin{aligned}
& \tilde{S}_{j}^{z}=\frac{1}{2}-a_{j}^{\dagger} a_{j}, \tilde{S}_{j}^{x}=\frac{1}{2}\left(a_{j}^{\dagger}+a_{j}\right) \\
& \Rightarrow H=-\frac{1}{4} \sum_{i<j} \frac{J_{0}}{r_{i j}^{6}} \sin \theta_{i} \sin \theta_{j}\left(a_{i}^{\dagger}+a_{i}\right)\left(a_{j}^{\dagger}+a_{j}\right)+\sum_{i}\left[h_{x} \sin \theta_{i}+\frac{\cos \theta_{i}}{2} \sum_{j} \frac{J_{0}}{r_{i j}^{6} \cos \theta_{j}}\right] a_{i}^{\dagger} a_{i}
\end{aligned}
$$

Bogoliubov transformation

$$
\Rightarrow H=\sum_{\mu=1}^{N} \omega_{\mu} b_{\mu}^{\dagger} b_{\mu}+E_{g}, \quad \begin{aligned}
& \omega_{\mu}: \text { LSWT spectrum } \\
& b_{\mu}: \text { LSWT eigenmodes }
\end{aligned}
$$

## Semiclassical analysis Linear spin wave theory

## NATURE OF THE ENERGY SPECTRUM

Localisation due to special disorder


Adapted from Phy. Rev. Lett. 124, 130604

Disorder in amorphous solids


We calculate the inverse participation ratio

$$
I(\omega)=\int_{r, w}\left|\Psi\left(\omega^{\prime}, r\right)\right|^{4} \delta\left(\omega-\omega^{\prime}\right) d r
$$

$\boldsymbol{I}(\boldsymbol{\omega}) \rightarrow \mathbf{0}$ for delocalised modes at energy $\omega$


## DYNAMICAL STRUCTURE FACTOR

Delocalized band despite


## Geometrical frustration and disorder

o Both locally frustrated and unfrustrated plaquettes can coexist in an amorphous magnet
o For $C=4$, we can generate amorphous magnets which bears similarities with square or Kagome lattices.
o This can lead to important differences already for classical spins:

- regular square $\rightarrow$ AF
- kagome $\rightarrow$ spin liquid
(a)

(b)



## Classical simulated annealing

- We perform simulated annealing on on
$N=60$ replicas.
o We then study statistical quantities such as
- The energy of a replica

$$
E_{\mathrm{SA}}^{\alpha}=\langle H\rangle_{\alpha}
$$

- The Edward-Anderson parameter $q_{\mathrm{SA}}^{2}$

$$
\begin{aligned}
& q_{\mathrm{SA}}^{\alpha \beta}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{\alpha} \sigma_{j}^{\beta} \\
& q_{\mathrm{SA}}^{2}=\frac{1}{N_{R}\left(N_{R}-1\right)} \sum_{\alpha \neq \beta}\left|q_{\mathrm{SA}}^{\alpha \beta}\right|^{2}
\end{aligned}
$$

- We also compute the probability
distribution of the replica overlap $P\left(q_{\mathrm{SA}}^{\alpha \beta}\right)$
for 20 replicas with lowest energy.

MONTE CARLO SWEEP

- random single spin flip
- Metropolis update with temperature $T_{i}$

$$
T_{i}=T_{0}\left(1-i / n_{\text {steps }}\right), i=1, \cdots, n_{\text {steps }}
$$

## SA on paradigmatic models

o Different behaviour of the Probability distribution of the replica overlap for square and kagome (a).
o This reflects the difference between the AF GS and the spin liquid GS.
o We also show the differences between two paradigmatic examples of spin glasses: The Edward Anderson model with Bimodal couplings and Gaussian couplings (b).
olmportant to note that SA converged well for the spin glass because of the small system sizes considered here (6x6)
(a)

(b)


## SA on amorphous materials

- We perform a similar study for the amorphous solid with $C \approx 4$ for both square and kagome types and for $N=400$.
- SA does not converge well in this case (see (a,b)). This features also happens for spin glasses of the EA type.
- Strong difference between the energy landscape of square and kagome amorphous solids.
o Beware that we explore the low energy landscape but not the GS due to the lack of convergence.


## 4 <br> Quantum evolution kernel



## Graph-structured data



Molecules

s


3D shapes


Social networks


Economic networks


## Toxicity screening on Iroise

Predictive Toxicity Challenge on Female Mice [1,2]


- First graph QML implementation on a real dataset of such size.
- Year-long internal R\&D project involving sw and hw teams

| \# of registers <br> \# of qubits | Control | NO Runtime |
| :---: | :---: | :---: |
| 288 registers, up to 32 qubits | Global analog, constant pulses | ~ 120k shots |

- Albrecht B, Dalyac C et al. "Quantum feature maps for graph machine learning on a neutral atom quantum processor." Physical Review A 107.4 (2023): 042615.


## Using the quantum dynamics to embed the data

- The quantum dynamics is expected to introduce a richer feature map, with characteristics that are hard to access by classical means




## Quantum feature map

The graph topology is encoded in the dynamics through the Hamiltonian of the system


The measurement histograms enable us to build a similarity measure between graphs

## Chemical compounds in PTC-FM

## Chemical compounds in PTC-FM



## Large atom number registers



## Experimental results on par with classical kernel

Classification results on par with the best classical kernels on this dataset

| Kernel | $F_{1 \text {-score (\%) }}$ |
| :---: | :---: |
| QEK | $60.4 \pm 5.1$ |
| SVM- $\vartheta$ | $58.2 \pm 5.5$ |
| Graphlet Sampling | $56.9 \pm 5.0$ |
| Random Walk | $55.1 \pm 6.9$ |
| Shortest Path | $49.8 \pm 6.0$ |





[^0]:    H. Bernien et al, Nature 551, 579-584 (2017)

[^1]:    Adapted from Nature, 577, 199-203 (2020)

