Quandela

Benasque Spring School on Near-Term Quantum Computing

Photonic circuits

Alexia Salavrakos
24-25 April 2024

Structure of the lectures

- Experimental components in photonics
- Linear optical quantum computing
- Designing algorithms with linear optics
- Measurement-based quantum computing and photonics

Photonic quantum computing companies

Not an exhaustive list!

DV QC

Quandela

DV QC

$$
\text { France - } 2017
$$

(1)

Xanadu
Canada-2018

Continuous variable QC

Quix
Netherlands - 2019

SiN4 based DV QC

ORCA
UK - 2020

Memory-based
QC

DV QC: discrete variable quantum computing
Information is encoded in single photons that can be in different modes (e.g. spatial or polarization)

Quandela

Not covered: continuous variable photonics

Qubit

$$
|\phi\rangle=\phi_{0}|0\rangle+\phi_{1}|1\rangle
$$

$X \wedge N \wedge D U$
Qumode $\quad|\psi\rangle=\int d x \psi(x)|x\rangle$

My academic and professional experience

- Studied physics at Universite Libre de Bruxelles
- PhD at ICFO in quantum correlations
- Worked for a couple of years in data science and machine learning
- Now working at Quandela
- Topics:
- photonic quantum computing
- quantum machine learning
- machine learning for quantum

Experimental components in photonics

Quandela

Desired properties of a single-photon source

Quandela

Desired properties of a single-photon source

Quandela

Desired properties of a single-photon source

Quandela

Desired properties of a single-photon source

Quandela

Desired properties of a single-photon source

Quandela

Desired properties of a single-photon source

Metrics

Hong-Ou-Mandel (HOM) interference for measuring indistinguishability

Metrics

Hanbury Brown and Twiss (HBT) effect for measuring single photon purity

${ }^{(1))_{1}}$
Second order
correlation function $\mathrm{g}^{2}(0)$

Quandela

Quantum dots as single photon sources

Quantum dot

InGaAs

Quandela

Quantum dots as single photon sources

Quantum dot

InGaAs

Quandela

Quantum dots as single photon sources

Quantum dot

InGaAs

Quandela

Quantum dots as single photon sources

Quantum dot in micropillar cavity

Quandela

To voltage control
$\xrightarrow{\longrightarrow}$

Top mirror

Cavity spacer

Bottom mirror

SPDC sources

Quandela

SPDC sources

Emitted state

$$
|\Psi\rangle \approx|0\rangle_{s}|0\rangle_{i}+\lambda|1\rangle_{s}|1\rangle_{i}+\lambda^{2}|2\rangle_{s}|2\rangle_{i} \quad \longrightarrow \begin{aligned}
& \text { Depends on } \chi \text { (2) } \\
& \text { and laser power }
\end{aligned}
$$

After detection of signal photon

$$
\rho_{i} \approx|1\rangle_{i}\left\langle\left. 1\right|_{i}+\lambda^{2} \mid 2\right\rangle_{i}\left\langle\left. 2\right|_{i} \quad g^{(2)} \approx \frac{2 P(2)}{P(1)^{2}} \approx \frac{2 \lambda^{2}}{1}=2 \lambda^{2}\right.
$$

Quandela

SPDC sources

Emitted state

$$
|\Psi\rangle \approx|0\rangle_{s}|0\rangle_{i}+\lambda|1\rangle_{s}|1\rangle_{i}+\lambda^{2}|2\rangle_{s}|2\rangle_{i}
$$

After detection of signal photon

$$
\rho_{i} \approx|1\rangle_{i}\left\langle\left. 1\right|_{i}+\lambda^{2} \mid 2\right\rangle_{i}\left\langle\left. 2\right|_{i} \quad g^{(2)} \approx \frac{2 P(2)}{P(1)^{2}} \approx \frac{2 \lambda^{2}}{1}=\right.
$$

Quandela

Multiplexing

Spatial multiplexing

Quandela

Multiplexing

Temporal multiplexing

Single photon sources

Brightness metric

Heralded

$$
B=p_{h} p_{(1 \mid h)} \eta_{\text {coupl }}
$$

Deterministic

$$
B=p_{1} \eta_{\text {coupl }}
$$

Single photon sources

Brightness metric

Heralded

$$
B=p_{h} p_{(1 \mid h)} \eta_{\text {coupl }}
$$

Deterministic

$$
B=p_{1} \eta_{\text {coupl }}
$$

Indistinguishability

Quandela

Demultiplexer for deterministic sources

Quandela

Demultiplexer for deterministic sources

(1) $+\ldots,+4)^{2} ;$;

Photonic integrated chips

J. Wang et al. Science 360 (2018)

Quandela

Photon detectors

Superconducting Nanowire Single Photon Detector
(SNSPD)

a

c
> 95\% single photon detection

Photon detectors

Superconducting Nanowire Single Photon Detector (SNSPD)

a

b

$>95 \%$ single photon detection

Photon number resolution (PNR)

Ideally: PNR detectors

Output states such as |0210301〉

Current technology: threshold detectors

Indicates click or no click

Output states such as |0110101〉

Quandela

Near-term processors

Ascella Quantum Computing Platform

Photon loss happens throughout the setup

- Main source of noise
- Affects the whole circuit
- Exponential scaling with number of photons in an experiment

Module	Transmission/Efficiency	Near-term targets
First lens brightness	55%	$80 \%[69]$
Single-mode fiber coupling	70%	$85 \%[70]$
Spectral Filtering module	75%	$>82 \%\left[^{*}\right]$
Demultiplexer	70%	$>80 \%\left[^{*}\right]$
PIC insertion and transmission	45%	$70 \%[71]$
SNSPDs	92%	$>95 \%\left[^{* *}\right]$
Total	$8.4 \pm 0.2 \%$	27%
Pump laser repetition rate	80 MHz	$320 \mathrm{MHz}[72]$
6-photon countrate	4 Hz	$\sim 35 \mathrm{kHz}$ (computed)
12-photon countrate	200 nHz (computed)	$\sim 10 \mathrm{~Hz}$ (computed)

Quandela

QUIZZ

Linear optical quantum computing

What do we mean by linear optics?

- Discrete variable linear optical quantum computing (DVLOQC) uses beam splitters and phase shifters on an input of single photons to perform quantum computing.
- Fock state of n photons in a single mode : $|n\rangle$
- Fock state on m modes: $\left|n_{1}, \ldots, n_{m}\right\rangle$

$\mid 1,2,0,1,0,0$ >
Output Fock state

What do we mean by linear optics?

- Discrete variable linear optical quantum computing (DVLOQC) uses beam splitters and phase shifters on an input of single photons to perform quantum computing.
- Fock state of n photons in a single mode : $|n\rangle$
- Fock state on m modes: $\left|n_{1}, \ldots, n_{m}\right\rangle$

What do we mean by linear optics?

- Linear optical transformation on m modes $U \in U(m)$.
- Linear optical transformations are made of beam splitters (BS) which are $U(2)$ transformations (phases) and phase shifters (PS) which are $U(1)$ transformations.

Beamsplitter

$$
\left[\begin{array}{ll}
e^{i\left(\phi_{t l}+\phi_{t r}\right)} \cos \left(\frac{\theta}{2}\right) & i e^{i\left(\phi_{b l}+\phi_{t r}\right)} \sin \left(\frac{\theta}{2}\right) \\
i e^{i\left(\phi_{t l}+\phi_{b r}\right)} \sin \left(\frac{\theta}{2}\right) & e^{i\left(\phi_{b l}+\phi_{b r}\right)} \cos \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

Phase shifter

Implementing unitary transformations

Copynicht T - Any reproduction of the imgess contined in this
tocument without the authorization of the author is rochibitest

Theorem by Reck et al. : for any $\boldsymbol{U} \in \boldsymbol{U}(\boldsymbol{m})$, there exists an \boldsymbol{m}-mode linear optical circuit implementing it

Scattering mxm unitary matrix implemented with $m(m-1) / 2$ beam splitters

Boson Sampling

N single photons

M layers of coupling gates
M detectors

- The probability to measure an output state $\left|s_{1}, \ldots s_{m}\right\rangle$ is given by $\left|\alpha_{s}\right|^{2} / s_{1}!\ldots s_{m}!n_{1}!\ldots n_{m}$!
- It can be shown that $\left|\alpha_{S}\right|^{2}=\left|\operatorname{Per}\left(U_{S, N}\right)\right|^{2}, U_{S, N}$ submatrix of U determined by $S=\left(s_{1}, \ldots, s_{m}\right)$ rows and $\mathrm{N}=\left(n_{1}, \ldots, n_{m}\right)$ column
- If A is an $\mathrm{n} \times n$ matrix, $\operatorname{Per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i \sigma(i)}$
- Easy rule: like the determinant but with + signs everywhere
- The permanent, unlike the determinant, is hard to compute (best classical algorithms scale as $\mathrm{O}\left(n 2^{n}\right)$)

Boson Sampling

N single photons

M layers of coupling gates
M detectors

- Boson sampling task: sample from the output probability distribution of a DVLOQC circuit
- More specifically, sample outputs S from $\mathrm{P}(\mathrm{S})$
- With $\mathrm{P}(\mathrm{S}) \propto\left|\operatorname{Perm}\left(U_{T, S}\right)\right|^{2}$
- Hard to do classically, conditioned on some widely believed complexity theory conjectures
\rightarrow Near term demonstration of quantum advantage
\rightarrow Task may not be useful

Boson Sampling

Gaussian Boson Sampling defined in continuous variable framework

RESEARCH

QUANTUM COMPUTING
Quantum computational advantage using photons
Han-Sen Zhong ${ }^{1,2 *}$, Hui Wang ${ }^{1,2 *}$, Yu-Hao Deng ${ }^{1,2 *}$, Ming-Cheng Chen ${ }^{1,2 *}$, Li-Chao Peng ${ }^{1,2}$,
Yi-Han Luo ${ }^{1,2}$, Jian Qinit. , Dian Wu ${ }^{1,2}$, Xing Ding ${ }^{1,2}$, Yi $\mathrm{Hu}^{1.2}$, Peng Hu ${ }^{3}$, Xiao-Yan Yang ${ }^{3}$, Wei-Jun Zhang ${ }^{3}$,
 Nai-Le Liu ${ }^{1,2,}$, Chao-Yang Lu ${ }^{1,2}+$, Jian-Wei Pan ${ }^{1,2} \dagger$

Article

Original Boson Sampling article

The Computational Complexity of Linear Optics
Scott Aaronson* Alex Arkhipov ${ }^{\dagger}$

Quantum computational advantage with a programmablephotonic processor

[^0]Published online: 1 June 2022

Quandela

Qubits and logical gates with linear optics

Choose an encoding

$$
|0\rangle_{q u b i t}:=|1,0\rangle
$$

$$
|1\rangle_{q u b i t}:=|0,1\rangle
$$

Dual rail

$$
|0\rangle \rightarrow|0\rangle+|1\rangle
$$

One qubit gates

Qubits and logical gates with linear optics

Choose an encoding

Dual rail

$|0\rangle \rightarrow|0\rangle+|1\rangle$

Qubits and logical gates with linear optics

However, some two-qubit gates cannot be achieved deterministically with passive linear optics

Options:

- Nonlinearities (materials unavailable)
- Post-selection (probabilistic)
- Heralding (probabilistic)
- Feedforward

Example: post-selected CNOT gate

CNOT gate: exercise

Can you convince yourself that

$$
\begin{aligned}
&|00\rangle \rightarrow|00\rangle \\
&|01\rangle \rightarrow|01\rangle \\
&|10\rangle \rightarrow|11\rangle \\
&|11\rangle \rightarrow|10\rangle \\
& ?
\end{aligned}
$$

What is the probability of success?

Simulation of LOQC - tutorial Thursday afternoon

त / Welcome to the Perceval documentation!
© Edit on GitHub

Welcome to the Perceval documentation!

Through a simple object-oriented Python API, Perceval provides tools for composing photonic circuits from linear optical components like beamsplitters and phase shifters, defining single-photon sources, manipulating Fock states, and running simulations.

Perceval can be used to reproduce published experimental works or to experiment directly with a new generation of quantum algorithms.

It aims to be a companion tool for developing photonic circuits - for simulating and optimis
the ideal and realistic behaviours, and proposing a normalised interface to control them thri

Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing

- Tools to build linear optical circuits from a collection of pre-defined components - Powerful computing backends implemented in C++
- A variety of technical utilities to manipulate:
pip install perceval-quandela
import perceval as pcv/

Nicolas Heurtel ${ }^{1,2}$, Andreas Fyrillas ${ }^{1,3}$, Grégoire de Gliniasty ${ }^{1}$, Raphaël Le Bihan ${ }^{1}$, Sébastien Malherbe ${ }^{4}$, Marceau Pailhas ${ }^{1}$, Eric Bertasi ${ }^{1}$, Boris Bourdoncle ${ }^{1}$, Pierre-Emmanuel Emeriau ${ }^{1}$, Rawad Mezher ${ }^{1}$, Luka Music ${ }^{1}$, Nadia Belabas ${ }^{3}$, Benoît Valiron ${ }^{2}$, Pascale Senellart ${ }^{3}$, Shane Mansfield ${ }^{1}$, and Jean Senellart ${ }^{1}$
${ }^{1}$ Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France
${ }^{2}$ Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, CentraleSupélec, LMF, 91190, 15 Gif-sur-Yvette, France
${ }^{3}$ Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas
Gobert, 91120, Palaiseau, France
${ }^{4}$ Département de Physique de l'Ecole Normale Supérieure - PSL, 45 rue d'Ulm, 75230, Paris Cedex 05, France

Simulation of LOQC - tutorial Thursday afternoon

Make an account on cloud.quandela.com

QUANDELA Cloud

Making the future of computing brighter

Quandela

QUIZZ

Quandela

Let's sum up

DiVincenzo's criteria for a quantum computer

1. A scalable physical system with well characterized qubits
2. The ability to initialize the state of the qubits

The Physical Implementation of Quantum Computation

> David P. DiVincenzo
> IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA (February 1, 2008)

After a brief introduction to the principles and promise of quantum information processing, the requirements for the physical implementation of quantum computation are discussed. These five requirements, plus two relating to the communication of quantum information, are extensively explored and related to the many schemes in atomic physics, quantum optics, nuclear and electron magnetic resonance spectroscopy, superconducting electronics, and quantum-dot physics, for achieving quantum computing.
3. Long decoherence times
4. A "universal" set of quantum gates
5. A qubit-specific measurement capability

DiVincenzo's criteria for a quantum computer

- A scalable physical system with well characterized qubits :
\Rightarrow A qubit $=$ a single photon
> Many degrees of freedom to encode
- The ability to initialize the state of the qubits :
> Many degrees of freedom to encode

- Long decoherence times
\Rightarrow No decoherence in transparent media

Quandela

DiVincenzo's criteria for a quantum computer

- A "universal" set of quantum gates
$>$ Single qubit gates very easy to implement

DiVincenzo's criteria for a quantum computer

- A qubit-specific measurement capability
$>$ Superconducting single photon detectors

Commercially available - System efficiency > 90\%

DiVincenzo's criteria for a quantum computer

- A "universal" set of quantum gates
> Two qubit gates are trickier
> Photon entanglement with interaction through non-linear materials (e.g. AC Kerr effect) is extremely challenging
> Knill, Laflamme and Milburn removed the need of strong non-linearities by showing that photon interference + photon measurement can induce photon entangling interactions
> Browne and Rudolph showed that this could be done with HOM-type interference (see later) instead of Mach-Zehnder-type interference, removing the need for phase stability -> fusion gates
$>$ Further developments integrate these ideas in the MBQC framework

Knill Laflamme Milburn (KLM) scheme

Scheme for a universal quantum computer with LO elements, singlephoton sources and photon detectors:

- Qubit encoding, state measurement, single qubit gates
- Post-selected CNOT / CZ gates
- Gate teleportation for near-deterministic gates

Article Published: 04 January 2001
 A scheme for efficient quantum computation with linear optics

E. Knill $\boxtimes, ~$ R. Laflamme \& G. J. Milburn

Nature 409, 46-52 (2001) \mid Cite this article

- Prepare entangled state with gate already applied offline
- Teleport into circuit
- Prepare many probabilistic gates with n-photon state
- Success rate $\frac{n^{2}}{(n+1)^{2}}$

$$
\begin{aligned}
& \text { Linear optical quantum computing with photonic qubits } \\
& \text { Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn } \\
& \text { Rev. Mod. Phys. 79, } 135 \text { - Published } 24 \text { January } 2007
\end{aligned}
$$

Quandela

Knill Laflamme Milburn (KLM) scheme

Teleportation circuit

Teleport CZ gate
$|\psi\rangle=U_{C Z}\left|\phi_{1}\right\rangle\left|\phi_{2}\right\rangle$

Advantages / inconvenients summary

- Long coherence
- Connectivity
- 4 K to room temperature
- Connection with network
- Single-qubit gates

- Photon loss
- Source efficiency
- Two-qubit gates

Quandela

Designing algorithms with linear optics

Quandela

Let's go back to a simple linear optical setup

$$
\left|n_{1}, n_{2}, \ldots, n_{i}, \ldots, n_{m}\right\rangle \quad \text { Fock state with } n_{i} \text { photons in mode } i
$$

Beamsplitter

$$
\left[\begin{array}{cc}
e^{i\left(\phi_{t l}+\phi_{t r}\right)} \cos \left(\frac{\theta}{2}\right) & i e^{i\left(\phi_{b l}+\phi_{t r}\right)} \sin \left(\frac{\theta}{2}\right) \\
i e^{i\left(\phi_{t l}+\phi_{b r}\right)} \sin \left(\frac{\theta}{2}\right) & e^{i\left(\phi_{b l}+\phi_{b r}\right)} \cos \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

Phase shifter

$$
\left[e^{i \phi}\right]
$$

+ source and detectors

$$
|0\rangle \rightarrow|0\rangle+|1\rangle
$$

$|1\rangle_{\text {qubit }}:=|0,1\rangle$

Qubit encoding

Dual rail

Near term algorithm design: two approaches

Photonic native

Qubit circuit based

Algorithm example: Variational Quantum Eigensolver (VQE)

- Variational quantum algorithms are a type of hybrid quantum-classical algorithm
- A computation is usually run on a quantum circuit (ansatz) with parameters that can be optimised
- The optimisation procedure is done on a classical computer

Algorithm example: Variational Quantum Eigensolver (VQE)

A variational eigenvalue solver on a photonic quantum processor
 Alberto Peruzzo \boxtimes, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik $\boxtimes \&$ Jeremy L. O'Brien \boxtimes

A versatile single-photon-based quantum computing platform

Nicolas Maring, Andreas Eyrillas, Mathias Pont, Edouard Ivanov, Petr Stepanov, Nico Margaria, William Hease, Anton Pishchagin, Aristide Lemaître, Isabelle Sagnes, Thi HuongAu, Sébastien Boissier, Eric Bertasi, Aurélien Baert, Mario Valdivia, Marie Billard, Ozan Acar, Alexandre Brieussel, Rawad Mezher, Stephen C. Wein, Alexia Salavrakos, Patrick Sinnott, Dario A. Fioretto, Pierre-Emmanuel Emeriau, Nadia
Belabas, Shane Mansfield, Pascale Senellart, Jean Senellart \boxtimes \& Niccolo Somaschi \boxtimes

Quandela

Algorithm example: Variational Quantum Eigensolver (VQE)

Algorithm example: variational quantum classifier

- Variational framework is the same as VQE
- Here, the ansatz computes the model, which is a function of the variational parameters θ
- For a dataset $\left(\overrightarrow{x_{i}}, y_{i}\right)$ where $\overrightarrow{x_{i}}$ are the data points and y_{i} the labels, the loss function is of the form

$$
L=\sum_{i} d\left(f_{\theta}\left(x_{i}\right), y_{i}\right)
$$

Algorithm example: variational quantum classifier

- Variational framework is the same as VQE
- Here, the ansatz computes the model, which is a function of the variational parameters θ
- For a dataset $\left(\overrightarrow{x_{i}}, y_{i}\right)$ where $\overrightarrow{x_{i}}$ are the data points and y_{i} the labels, the loss function is of the form

$$
L=\sum_{i} d\left(f_{\theta}\left(x_{i}\right), y_{i}\right)
$$

Algorithm example: variational quantum classifier

- Variational framework is the same as VQE
- Here, the ansatz computes the model, which is a function of the variational parameters θ
- For a dataset $\left(\overrightarrow{x_{i}}, y_{i}\right)$ where $\overrightarrow{x_{i}}$ are the data points and y_{i} the labels, the loss function is of the form

$$
L=\sum_{i} d\left(f_{\theta}\left(x_{i}\right), y_{i}\right)
$$

- Variationalframework is teme

Algorithm example: variational quantum classifier

Fock-space based quantum neural network (QNN)

Resulting model:

$$
f^{(n)}(x, \boldsymbol{\Theta}, \boldsymbol{\lambda})=\left\langle\mathbf{n}^{(i)}\right| \mathcal{U}^{\dagger}(x, \boldsymbol{\Theta}) \mathcal{M}(\boldsymbol{\lambda}) \mathcal{U}(x, \boldsymbol{\Theta})\left|\mathbf{n}^{(i)}\right\rangle
$$

Defined in Fock space:

$$
\left|\mathbf{n}^{(i)}\right\rangle=\left|n_{1}^{(i)}, n_{2}^{(i)}, \ldots, n_{m}^{(i)}\right\rangle
$$

[1] B. Y. Gan, D. Leykam, and D. G. Angelakis. EPJ Quantum Technol. 9, 16 (2022)

Algorithm example: variational quantum classifier

Fock-space based quantum neural network (QNN)

[1] B. Y. Gan, D. Leykam, and D. G. Angelakis. EPJ Quantum Technol. 9, 16 (2022)

Recall Clements / Reck decompositions:

Algorithm example: variational quantum classifier

Input Fock state $\left|\psi_{i n}\right\rangle=|0010101000000\rangle$

Variational quantum classifier: results

Quandela

Algorithm example: Bell test

$$
\mathcal{B}_{\mathrm{CHSH}}=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \leq 2
$$

Quandela

Algorithm example: Bell test

Quandela

Algorithm example: Bell test

Algorithm example: Bell test

Certified randomness in tight space

Andreas Fyrillas, ${ }^{1, *}$ Boris Bourdoncle, ${ }^{1, *}$ Alexandre Maïnos, ${ }^{1,2}$ Pierre-Emmanuel Emeriau, ${ }^{1}$ Kayleigh Start, ${ }^{1}$ Nico Margaria, ${ }^{1}$ Martina Morassi, ${ }^{3}$ Aristide Lemaître, ${ }^{3}$ Isabelle Sagnes, ${ }^{3}$ Petr Stepanov, ${ }^{1}$ Thi Huong Au, Sébastien Boissier, ${ }^{1}$ Niccolo Somaschi, ${ }^{1}$ Nicolas Maring, ${ }^{1}$ Nadia Belabas, ${ }^{3, \dagger}$ and Shane Mansfield ${ }^{1, \dagger}$

Entanglement
generation

$$
\frac{|01\rangle+|10\rangle}{\sqrt{2}}
$$

Implementation of measurement bases

Phases are functions
of input x and y

Algorithm example: solving graph problems

N single photons

M layers of coupling gates

$$
\mathrm{P}(\mathrm{~S}) \propto\left|\operatorname{Perm}\left(U_{S, N}\right)\right|^{2}
$$

- The probability to measure an output state $\left|s_{1}, \ldots s_{m}\right\rangle$ is given by $\left|\alpha_{s}\right|^{2} / s_{1}!\ldots s_{m}!n_{1}!\ldots n_{m}$!
- It can be shown that $\left|\alpha_{s}\right|^{2}=\left|\operatorname{Per}\left(U_{S, N}\right)\right|^{2}, U_{S, N}$ submatrix of U determined by $S=\left(s_{1}, \ldots, s_{m}\right)$ rows and $\mathrm{N}=\left(n_{1}, \ldots, n_{m}\right)$ column
- If A is an $\mathrm{n} \times n$ matrix, $\operatorname{Per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i \sigma(i)}$
- Easy rule: like the determinant but with + signs everywhere
- The permanent, unlike the determinant, is hard to compute (best classical algorithms scale as $\mathrm{O}\left(n 2^{n}\right)$)

Algorithm example: solving graph problems

Adjacency matrix of a graph

If two vertices are connected in the graph you get a 1 in the adjacency matrix, otherwise a 0

Several graph problems can be related to the properties of the adjacency matrix

Algorithm example: solving graph problems

N single photons

$$
\begin{aligned}
\mathrm{p}\left(\boldsymbol{n}_{\text {out }} \mid \boldsymbol{n}_{\text {in }}\right) & \propto\left|\operatorname{Per}\left(A_{s}\right)\right|^{2} \\
& \propto \frac{1}{s^{2 n}}|\operatorname{Per}(A)|^{2}
\end{aligned}
$$

Algorithm example: solving graph problems

Solving graph problems with single photons and linear optics
Rawad Mezher, Ana Filipa Carvalho, and Shane Mansfield
Phys. Rev. A 108, 032405 - Published 6 September 2023

Number of perfect matchings: $\sqrt{\operatorname{Per}(A)}$

Densest subgraph identification

Graph isomorphism: compare permanents of adjacency matrices
(a)

(b)

References: reinforcement learning on photonic circuits

Experimental quantum speed-up in reinforcement learning agents

V. Saggio \boxtimes, B. E. Asenbeck, A. Hamann, T. Strömberg, P. Schiansky, V. Dunjko, N. Friis, N. C. Harris, M. Hochberg, D. Englund, S. Wölk, H. J. Briegel \& P. Walther \boxtimes

Towards interpretable quantum machine learning via single-photon quantum walks
Fulvio Flamini, ${ }^{1, *}$ Marius Krumm, ${ }^{1, *}$ Lukas J. Fiderer, ${ }^{1}$ Thomas Müller, ${ }^{2}$ and Hans J. Briegel ${ }^{1}$ ${ }^{1}$ Universität Innsbruck, Institut für Theoretische Physik, Technikerstraße 21a, A-6020 Innsbruck, Austria ${ }^{2}$ Department of Philosophy, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany

2021 IEEE International Conference on Quantum Computing and

 Engineering (QCE)
Photonic Quantum Policy Learning in OpenAl Gym

Year: 2021, Pages: 123-129
DOI Bookmark: 10.1109/QCE52317.2021.00028

Authors

Dániel Nagy, Wigner Research Centre for Physics and Ericsson
Research,Budapest,Hungary
Zsolt Tabi, Ericsson Hungary and Eötvös Loránd University,Budapest,Hungary Péter Hága, Ericsson Research,Budapest,Hungary
Zsófia Kallus, Ericsson Research,Budapest,Hungary
Zoltán Zimborás, Wigner Research Centre for Physics and MTA-BME Lendület QIT Research Group,Budapest,Hungary

References: reinforcement learning on photonic circuits

Experimental quantum speed-up in reinforcement learning agents

V. Saggio \boxtimes, B. E. Asenbeck, A. Hamann, T. Strömberg, P. Schiansky, V. Dunjko, N. Friis, N. C. Harris, M. Hochberg, D. Englund, S. Wölk, H. J. Briegel \& P. Walther \boxtimes

Towards interpretable quantum machine learning via single-photon quantum walks
Fulvio Flamini, ${ }^{1, *}$ Marius Krumm, ${ }^{1, *}$ Lukas J. Fiderer, ${ }^{1}$ Thomas Müller, ${ }^{2}$ and Hans J. Briegel ${ }^{1}$ ${ }^{1}$ Universität Innsbruck, Institut für Theoretische Physik, Technikerstraße 21a, A-6020 Innsbruck, Austria ${ }^{2}$ Department of Philosophy, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany

Demonstration of quantum projective simulation on a single-photon-based quantum computer

Giacomo Franceschetto ${ }^{1,2, *}$ and Arno Ricou ${ }^{1}$
${ }^{1}$ Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France ${ }^{2}$ ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 8860 Castelldefels (Barcelona), Spain Dated: April 22, 2024

2021 IEEE International Conference on Quantum Computing and Engineering (QCE)

Photonic Quantum Policy Learning in OpenAl Gym

Year: 2021, Pages: 123-129
DOI Bookmark: 10.1109/QCE52317.2021.00028

Authors

Dániel Nagy, Wigner Research Centre for Physics and Ericsson
Research,Budapest,Hungary
Zsolt Tabi, Ericsson Hungary and Eötvös Loránd University,Budapest,Hungary Péter Hága, Ericsson Research,Budapest,Hungary
Zsófia Kallus, Ericsson Research,Budapest,Hungary
Zoltán Zimborás, Wigner Research Centre for Physics and MTA-BME Lendület QIT Research Group,Budapest,Hungary

Compilation and transpilation

Scalable machine learning-assisted clear-box characterization for optimally controlled photonic

Andreas Fyrillas, ${ }^{1,2}$ Olivier Faure, ${ }^{1}$ Nicolas Maring, ${ }^{1}$ Jean Senellart, ${ }^{1}$ and Nadia Belabas ${ }^{2}$ ${ }^{1}$ Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France ${ }^{2}$ Centre for Nanosciences and Nanotechnologies, CNRS, Université Paris-Saclay, ntre for Nanosciences and Nanotechnologies, CNRS, Universite Paris-Sa
UMR 9001, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France

Cloud computing

Single-photon and coincidence counts

Qiskit to Perceval converter

A Qiskit QuantumCircuit can be converted to an equivalent Perceval Processor using QiskitConverter
>>> import qiskit
>>> from perceval. converters import QiskitConverter
>>> from perceval.components import catalog
>>> \# Create a Quantum Circuit (the following is pure Qiskit syntax):
>> qc = qiskit. QuantumCircuit(2)
>> qC.h(0)
\ggg qc.cx $(0,1)$
>>> print(qc.draw())

>>> \# Then convert the Quantum Circuit with Perceval QiskitConvertor
>>> qiskit_convertor = QiskitConverter(catalog)
>>> perceval_processor = qiskit_convertor. convert (qc)

VQE error mitigation scheme

Error mitigation scheme inspired from [1]

State preparation and measurement (SPAM) errors

Correct probability distribution $q=\Gamma_{b} p$
Evaluate right before experiment $\left(\Gamma_{b}\right)_{i j}=\left|\left\langle\left.\psi\right|_{i} ^{b} b \mid \psi\right\rangle_{j}^{b}\right|^{2}$

```
    9.99999952e-01 3.09568451e-02 3.09568451e-02 1.54929555e-09
\GammaZZ
    2.34741773e-08 1.45337301e-09 9.38086308e-01 2.34741773e-08
    1.54929555e-09 3.09568451e-02 3.09568451e-02 9.99999952e-01}
    9.99999951e-01 2.47148265e-02 2.47148265e-02 1.24580719e-09
F}\mp@subsup{\}{X}{}=[\begin{array}{lllll}{2.39578331e-08 9.50570344e-01 1.18422748e-09 2.39578331e-08}
    2.39578331e-08 1.18422748e-09 9.50570344e-01 2.39578331e-08
```


[1] D. Lee et al. Optica 9, 88-95 (2022)

VQE error mitigation scheme

Error mitigation scheme inspired from [1]

State preparation and measurement (SPAM) errors

Correct probability distribution $q=\Gamma_{b} p$
Evaluate right before experiment $\left(\Gamma_{b}\right)_{i j}=\left|\left\langle\left.\psi\right|_{i} ^{b} b \mid \psi\right\rangle_{j}^{b}\right|^{2}$

$$
\begin{aligned}
\Gamma_{Z Z} & =\left[\begin{array}{lllll}
9.99999952 e-01 & 3.09568451 e-02 & 3.09568451 e-02 & 1.54929555 e-09 \\
2.34741773 e-08 & 9.38086308 e-01 & 1.45337301 e-09 & 2.34741773 e-08 \\
2.34741773 e-08 & 1.45337301 e-09 & 9.38086308 e-01 & 2.34741773 e-08 \\
1.54929555 e-09 & 3.09568451 e-02 & 3.09568451 e-02 & 9.99999952 e-01
\end{array}\right] \\
\Gamma_{X X} & =\left[\begin{array}{llll}
9.99999951 e-01 & 2.47148265 e-02 & 2.47148265 e-02 & 1.24580719 e-09 \\
2.39578331 e-08 & 9.50570344 e-01 & 1.18422748 e-09 & 2.39578331 e-08 \\
2.39578331 e-08 & 1.18422748 e-09 & 9.50570344 e-01 & 2.39578331 e-08 \\
1.24580731 e-09 & 2.47148287 e-02 & 2.47148287 e-02 & 9.99999951 e-01
\end{array}\right]
\end{aligned}
$$

[1] D. Lee et al. Optica 9, 88-95 (2022)

New results on QEM for photon loss coming out in May (J. Mills and R. Mezher, in preparation)

Quandela

QUIZZ

Measurement-based quantum computing and photonics

Photonic platforms - scaling proposals

Measurement based quantum computing (MBQC)

Computational depth, k

MBQC is based on graph states

- Circuit model:
- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- MBQC model:
- Start with a large entangled state consisting of multiple qubits (also called resource state, cluster state)
- Make single-qubit measurements in suitably chosen bases
- Apply corrections to make it deterministic

MBQC is based on graph states

- Circuit model:
- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- MBQC model:
- Start with a large entangled state consisting of multiple qubits (also called resource state, cluster state)
- Make single-qubit measurements in suitably chosen bases
- Apply corrections to make it deterministic
(a)

(b)

(c)

(d)

MBQC is based on graph states

- Circuit model:
- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- MBQC model:
- Start with a large entangled state consisting of multiple qubits (also called resource state, cluster state)
- Make single-qubit measurements in suitably chosen bases
- Apply corrections to make it deterministic

What are (b), (c) and (d) equivalent to?
(a)

(b)

(c)

(d)

MBQC is based on graph states

- Circuit model:
- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- MBQC model:
- Start with a large entangled state consisting of multiple qubits (also called resource state, cluster state)
- Make single-qubit measurements in suitably chosen bases
- Apply corrections to make it deterministic

> Z meas: removes qubit and severs all bonds with cluster
> X meas: removes qubit and transfers all the bonds
(a)

(b)

(c)

(d)

MBQC is universal

MBQC is universal and equivalent to circuit model

Milestone
Measurement-based quantum computation on cluster states Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel
Phys. Rev. A 68, 022312 - Published 25 August 2003

Based on set of $J(\theta)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ e^{i \theta} \\ 1\end{array}-e^{i \theta}\right)$ gates for all θ and $C Z$ gates which is universal

MBQC is universal

MBQC is universal and equivalent to circuit model

Milestone
Measurement-based quantum computation on cluster states Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel
Phys. Rev. A 68, 022312 - Published 25 August 2003

Based on set of $J(\theta)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 1 \\ 1-e^{i \theta}\end{array}\right)$ gates for all θ and $C Z$ gates which is universal

MBQC is universal

MBQC examples for variational algorithms

Native measurement-based quantum approximate optimization algorithm applied to the Max K-Cut problem

Massimiliano Proietti, Filippo Cerocchi, and Massimiliano Dispenza
Phys. Rev. A 106, 022437 - Published 30 August 2022

Variational measurement-based quantum computation for generative modeling

Arunava Majumder ${ }^{1}$, Marius Krumm ${ }^{1}$, Tina Radkohl ${ }^{1}$, Hendrik Poulsen Nautrup ${ }^{1}$, Sofiene Jerbi ${ }^{2}$, and Hans J. Briegel ${ }^{1}$
${ }^{1}$ Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria
${ }^{2}$ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Berlin, Germany
(Germany

Measurement based proposal for photonics

Resource-Efficient Linear Optical Quantum Computation
 Daniel E. Browne and Terry Rudolph
 Phys. Rev. Lett. 95, 010501 - Published 27 June 2005

Improvement on KLM proposal for a linear optical quantum computer

Using MBQC framework
Introducing fusion mechanisms that allow for the construction of cluster states
a) Type-I

b) Type-II

Measurement based proposal for photonics

Fusion-based quantum computation

Sara Bartolucci, Patrick Birchall, Hector Bombín, Hugo Cable, Chris Dawson, Mercedes Gimeno-
Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson ${ }^{\boxtimes}$, Mihir Pant ${ }^{\boxtimes}$, Fernando Pastawski, Terry
Rudolph \& Chris Sparrow

Proposal by PsiQuantum
Compared to MBQC it already integrates fault tolerance

Proposal comes with photonic hardware as well

Fusion Network

1. Resource states
2. Fusion measurements

Paths for graph state generation: GHZ states

Generate small GHZ states Add fusion operations

Heralded generation of 3-photon GHZ states. Measured expectation values of the stabilizing operators of the heralded 3-photon GHZ state $\left|\mathrm{GHZ}_{3}^{+}\right\rangle$ yielding a fidelity of $F_{\mathrm{GHZ}_{3}^{+}}=0.82 \pm 0.04$.

Paths for graph state generation: from the source

High-rate entanglement between a semiconductor spin and indistinguishable photons

N. Coste $\boxtimes, \underline{D . A . F i o r e t t o, ~} \underline{N .}$ Belabas, $\underline{S . C . W e i n, ~ P . ~ H i l a i r e, ~ R . ~ F r a n t z e s k a k i s, ~ M . ~ G u n d i n, ~ B . ~ G o e s, ~} \underline{N}$. Somaschi, M. Morassi, A. Lemaître, I. Sagnes, A. Harouri, S. E. Economou, A. Auffeves, O. Krebs, L. $\underline{\text { Lanco } \& ~ P . \text { Senellart }} \boxtimes$

Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings

Quandela

Paths for graph state generation: from the source

Quandela

Paths for graph state generation: from the source

spin basis: $\left|\downarrow_{z}\right\rangle,\left|\uparrow_{z}\right\rangle$

Quandela

Paths for graph state generation: from the source

$$
\begin{aligned}
\frac{|\uparrow \downarrow\rangle\left|\downarrow_{z}\right\rangle}{\left|\sigma_{-}\right\rangle} & \frac{|\downarrow \uparrow\rangle\left|\uparrow_{z}\right\rangle}{\uparrow} \\
\frac{\downarrow}{\left|\downarrow_{z}\right\rangle} & \frac{\downarrow}{\left|\uparrow_{z}\right\rangle}
\end{aligned}
$$

Quandela

Paths for graph state generation: from the source

$|\uparrow\rangle|R\rangle+|\downarrow\rangle|L\rangle$

Spin-photon entanglement

Quandela

Paths for graph state generation: from the source

$$
\begin{gathered}
|\uparrow\rangle|R\rangle+|\downarrow\rangle|L\rangle \\
\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}|R\rangle+\frac{|\uparrow\rangle-|\downarrow\rangle}{\sqrt{2}}|L\rangle
\end{gathered}
$$

Quandela

Paths for graph state generation: from the source

$$
\begin{gathered}
|\uparrow\rangle|R\rangle+|\downarrow\rangle|L\rangle \\
-i|\uparrow\rangle|V\rangle+|\downarrow\rangle|H\rangle
\end{gathered}
$$

Paths for graph state generation: from the source

Fault tolerant architecture proposal: SPOQC

```
    A Spin-Optical Quantum Computing Architecture
Grégoire de Gliniasty,, ,2,* Paul Hilaire, ,}\mp@subsup{}{}{1,* Pierre-Emmanuel Emeriau,,
    Stephen C. Wein,, Alexia Salavrakos, }\mp@subsup{}{}{1}\mathrm{ and Shane Mansfield }\mp@subsup{}{}{1
        *}\mp@subsup{}{}{1}\mathrm{ Quandela, 7 Rue Léonard de Vinci, }91300 Massy, France
        2}\mathrm{ Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
```

General intuition:

- Strategies like FBQC can be achieved with many quantum dots
- Why not leverage those dots as carriers of quantum information?
- Trade-off between all-photonic and all-matter based approaches
- Using spins of quantum dots as qubits
- Using spin-entangled photon to perform 2-qubit gates

Fault tolerant architecture proposal: SPOQC

A Spin-Optical Quantum Computing Architecture

Grégoire de Gliniasty, ${ }^{1,2, *}$ Paul Hilaire, ${ }^{1, *}$ Pierre-Emmanuel Emeriau, ${ }^{1}$
Stephen C. Wein, ${ }^{1}$ Alexia Salavrakos, ${ }^{1}$ and Shane Mansfield ${ }^{1}$
${ }^{1}$ Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France
${ }^{2}$ Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Quandela

QUIZZ

Conclusions

- Near term photonic quantum computing:
- LOQC (linear optics)
- Boson Sampling
- Variational and boson-sampling-based algorithms
- Medium term photonic quantum computing:
- MBQC and other schemes
- Really cool resource to know more: Mercedes Gimeno-Segovia's PhD thesis

[^0]: https://doi.org/10.10388/s41586-022-04725-x Received: 12 November 2021
 Accepted: 5 April 2022
 Lars S. Madsenti, Fabian Laudenbach ${ }^{1,3,}$, Mohsen Falamarzi. Askarani ${ }^{1,3}$, Fabien Rortais ${ }^{1}$, Trevor Vincent', Jacob F. F. Bulmer', Filippo M. Miatto', Leoonhard Neuhaus', Lukas G. Helt

