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1. Introduction

► A. Das and B. K. Chakrabarti. Colloquium : Quantum 
annealing and analog quantum computation. Reviews of 
Modern Physics 80 (2008): 1061-1081.

Basic idea
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1. Introduction

Quantum 
Annealing (QA):

the algorithm

Adiabatic Quantum 
Computing (AQC):
the computational 

paradigm

Before we start throwing them 
left and right:
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1. Introduction

▶ T. Kadowaki and H. Nishimori, Quantum annealing in the 
transverse Ising model, Phys. Rev. E 58, 5355 (1998)

▶ Edward Farhi, et al., Quantum computation by adiabatic 
evolution, arXiv:quant-ph/0001106 (2000)

Seminal works of annealing and Adiabatic Quantum Computation (AQC)

GS easy to 
prepare in the 

lab

Hamiltonian 
space

adimensional time scale, 
usually ~t/T GS encodes 

solution to the 
problem
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1. Introduction

▶ T. Kadowaki and H. Nishimori, Quantum annealing in the 
transverse Ising model, Phys. Rev. E 58, 5355 (1998)

▶ Edward Farhi, et al., Quantum computation by adiabatic 
evolution, arXiv:quant-ph/0001106 (2000)

Seminal works of annealing and Adiabatic Quantum Computation (AQC)

GS easy to 
prepare in the 

lab

GS encodes 
solution to the 

problem

adimensional time scale, 
usually ~t/T

Adiabatic theorem
If the process is slow enough, the 

system will remain in the GS 
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1.1. Adiabatic theorem

▶ M. Born and V. Fock. Beweis des adiabatensatzes. Z. Physik, 51:165–180 (1928)
▶ T. Kato. On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5 (6), 

435 (1950)
 gap between GS 
and 1st excited state

* Exact shape of the bound is a debated topic, but the inverse 
  dependence on the gap is a common factor

See nice review of this in:
▶ T. Albash and D. A. Lidar, Adiabatic Quantum Computation, Rev. Mod. Phys. 90, 

015002 (2018)



Se
ct

io
n

1.1. Adiabatic theorem

Δmin

Tad ~ 1/(Δmin)2
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1.1. Adiabatic theorem: scenarios
2nd order QPT* 

Good news

* in the thermodynamic limit, but we 
abuse language for finite size
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1.1. Adiabatic theorem: scenarios

1st order QPT Bad news

2nd order QPT 

Good news
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1.2. General scheme

Initial/driver Hamiltonian
▶ Must contain some overlap 

with solution
▶ Easy to prepare
▶ Standard choice:
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with solution
▶ Easy to prepare
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▶ A(0) = 1, B(0) = 0
▶ A(1) = 0, B(1) = 1
▶ Should have smaller 

derivative around 
smaller gap (for adiabaticity)
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1.2. General scheme

Problem Hamiltonian
▶ Encoding of the solution
▶ Choice of a Hamiltonian with 

such ground state

Initial/driver Hamiltonian
▶ Must contain some overlap 

with solution
▶ Easy to prepare
▶ Standard choice: Schedule

▶ A(0) = 1, B(0) = 0
▶ A(1) = 0, B(1) = 1
▶ Should have smaller 

derivative around 
smaller gap (for adiabaticity)
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Example of problem encoding in Hf
▶ QUBO (Quadratic Unconstrained Binary Optimisation)

Solution: minimising {x}

1.2.2. Problem encoding
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Example of problem encoding in Hf
▶ QUBO (Quadratic Unconstrained Binary Optimisation)

→ constraint satisfaction problem (CSP)

1.2.2. Problem encoding: constraint satisfaction



Conditions:
▶ Having X nurses per shift

▶ A nurse can’t have 2 or more consecutive shifts

▶ Every nurse should have roughly the same number 
of shifts, which we call Y 
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A more down-to-earth application:
# nurses # shifts

Encoding:

1.2.2. Problem encoding: Nurse Scheduling Problem
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set the relative strength of each of the constraints

In a similar manner, more information can be added:
▶ Nurses’ preferences
▶ Dependence on time of the number of nurses required (X)
▶ Dependence on the level of effort that can be provided by each 

nurse (experience, etc) 

1.2.2. Problem encoding: Nurse Scheduling Problem
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1.2.2. Problem encoding

Common classical optimisation problems that can be 
formulated in QUBO form

▶ Network problems (Max-Cut, TSP, ...)
▶ Scheduling
▶ Portfolio optimisation (knapsack)
▶ Satisfiability
▶ Machine Learning
▶ ...



Se
ct

io
n

1.2. General scheme

Catalyst Hamiltonian
▶ Modify Hamiltonian 

path to enhance 
performance

▶ Counter-diabatic terms

Catalyst schedule
▶ C(0) = 0, C(1) = 0

▶ D. Sels and A. Polkovnikov, 
Variational principle for CD 
driving. PNAS 114 (20) 
E3909-E3916 (2017)
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1.2.1. General scheme: note #1

AQC can be dumb if you’re not smart!
Example: p-spin model

▶ T. Jörg et al., Energy gaps in quantum first-order mean-field–like transitions: The 
problems that quantum annealing cannot solve, EPL 89, 40004 (2010)
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Example: p-spin model

▶ T. Jörg et al., Energy gaps in quantum first-order mean-field–like transitions: The 
problems that quantum annealing cannot solve, EPL 89, 40004 (2010)
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AQC can be dumb if you’re not smart!
Example: p-spin model

▶ T. Jörg et al., Energy gaps in quantum first-order mean-field–like transitions: The 
problems that quantum annealing cannot solve, EPL 89, 40004 (2010)

Bad choice of path in Hamiltonian space

1.2.1. General scheme: note #1
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Gap can be opened through introduction of catalysts 

▶ Fig. 1 from T. Albash, Role of nonstoquastic catalysts in quantum adiabatic 
optimization. Phys. Rev. A 99, 042334 (2019)

1.2.1. General scheme: note #1



Se
ct

io
n

Gap can be opened through introduction of catalysts 

▶ Fig. 1 from T. Albash, Role of nonstoquastic catalysts in quantum adiabatic 
optimization. Phys. Rev. A 99, 042334 (2019)

1.2.1. General scheme: notesBetter choice of path in Hamiltonian space
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▶ Fig. 1 from M. H. S. Amin and V. Choi, First order quantum phase transition in 
adiabatic quantum computation. Phys. Rev. A 80, 062326 (2009)

1.2.1. General scheme: note #2

Common issue in classical optimisation problems:
Perturbative anticrossings 

  

E1 - E0

s0 1

Size of gap 
dependent on 

number of spin flips 
between GS and 
1exc (Hamming 

distance)
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▶ Figs. 1 and 3 from M. Werner et al., Bounding first-order quantum phase 
transitions in adiabatic quantum computing. Phys. Rev. Res. 5, 042334 (2023)

1.2.1. General scheme: note #2

An intuitive picture
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1.2. General scheme

Success of the algorithm depends on 
structure of H0 and Hf → the more you 
know about your solution, the better 

you can tailor your anneal  
Conserved quantities enhance performance 
if leveraged, ruin it if unknown/uncontrolled



Applications: 
general results
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2. On AQC and the search for quantum advantage
Finding GS of k-local 
Hamiltonian is QMA-

complete



Se
ct

io
n

QMA

PSPACE

PPPH

AM
NP/poly

StoqMA

MA

∃BPP

NP

P

BPP

P/poly

Finding GS of 
stoquastic 

frustration-free 
Hamiltonian 

All off-diagonal entries 
strictly non-positive

Includes Hamiltonians encoding 
classical optimisation problems, 

anything encoded in an Ising model

2. On AQC and the search for quantum advantage

Finding GS of 
stoquastic 
Hamiltonian 
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QMA

PSPACE

PPPH

AM
NP/poly

StoqMA

MA

∃BPP

NP

P

BPP

P/poly

Finding GS of 
stoquastic 

frustration-free 
Hamiltonian 

All off-diagonal entries 
strictly non-positive

Simulable with 
quantum Monte Carlo 

(QMC) methods
(no sign problem)

Includes Hamiltonians encoding 
classical optimisation problems, 

anything encoded in an Ising model

thermalise 

Possibility of any quantum 
advantage comes into question here

Finding GS of 
stoquastic 
Hamiltonian 

2. On AQC and the search for quantum advantage
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2.1. The sign problem

If Z is too small, small 
oscillations explode and 

the algorithm fails to 
converge
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2.1. The sign problem
divide system into 

K “time slices”

sum over all possible 
trajectories for all c

the continuous extension 
of this is path integral MC
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2.1. The sign problem
divide system into 

K “time slices”

sum over all possible 
trajectories for all c

the continuous extension 
of this is path integral MC

Simplest way to ensure           → ensure all positive contributions 

 →  stoquastic
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▶ Key points
▼ Basis-dependent, but finding a basis change that cures 

it is NP-complete in general

▼ Not the only reason QMC may fail, it can still be 
inefficient  

▶ M. Marvian, D. A. Lidar,  and I. Hen. On the computational complexity of 
curing non-stoquastic hamiltonians. Nature Communications, 1 (2019)

▶ M. B. Hastings and M. H. Freedman. Obstructions to classically simulating 
the adiabatic algorithm. Quantum Information and Computation, 13:1038 
(2013)

2.1. The sign problem



▼ Super-polynomial oracle separation between AQC with no 
sign problem and classical computation 
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2.2. Current status

▶ Regarding the competition with QMC

▶ M. B. Hastings. The power of adiabatic quantum computation with no sign 
problem. arXiv:2005.03791 (2020)



▼ Super-polynomial oracle separation between AQC with no 
sign problem* and classical computation 

▼ Shift from stoquastic to VGP (vanishing geometric phase)  
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2.2. Current status

▶ Regarding the competition with QMC

▶ M. B. Hastings. The power of adiabatic quantum computation with no sign 
problem. arXiv:2005.03791 (2020)

▶ I. Hen.  Determining quantum monte carlo simulability with geometric 
phases. Phys. Rev. Research, 3:023080 (2021)

*according to stoquastic/nonstoquastic classification



▼ Recurrent neural networks (RNNs) sometimes used as 
benchmark, but costly to train

▼ Tensor networks currently state of the art benchmark
▼ Parallel tempering algorithms (Markov chain Monte 

Carlo techniques) also state of the art benchmark for 
classical optimisation problems
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2.2. Current status

▶ Regarding competition with other classical methods 
that don’t present the sign problem



▼ Scaling advantage in coherent regime for the simulation 
of TFIM

▼ Large scale simulation of quenches in TFIM beyond 
classical capabilities
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2.2. Current status

▶ More recent arguments for quantum advantage

Short coherence times → study 
of nonequilibrium dynamics 

▶ A. D. King et al. Quantum critical dynamics in a 5000-qubit programmable 
spin glass. Nature 617, 61–66 (2023)

▶ A. D. King et al. Computational supremacy in quantum simulation. 
arXiv:2403.00910 (2024)

(Study of different topologies)
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2.2. Current status

▶ Fig. 4a from A. D. King et al. Quantum critical dynamics in a 5000-qubit 
programmable spin glass. Nature 617, 61–66 (2023)

Be
nc

hm
ark

 ag
ain

st 

SA
, Q

MC (S
QA)

Critical scaling of final residual energy
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2.2. Current status

▶ Figs. 5d, 2d and 2e from A. D. King et al. Computational supremacy in 
quantum simulation. arXiv:2403.00910 (2024)

Benchmark 
against TN (MPS)

Residual energy
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2.2. Current status

▶ Regarding all else
▼ Grover’s quadratic speed-up for quantum search also 

found in AQC

▼ Search beyond adiabaticity

▶ J. Roland and N. J. Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A 65, 
042308 (2002)

allowing for diabatic passages enables universal computation 
▶ S. P. Jordan, D. Gosset, and P. J. Love. Quantum-Merlin-Arthur–complete problems for 

stoquastic Hamiltonians and Markov matrices. Phys. Rev. A 81, 032331 (2010)
▶ E. J. Crosson and D. A. Lidar. Prospects for quantum enhancement with diabatic 

quantum annealing. Nature Reviews Physics 3, 466–489 (2021)



Canonical proof of universality of AQC based on equivalence to gate 
model (GM) though Kitaev’s history state
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3. On QS and universality

one can approximate 
the other efficiently

GM → AQC : depth  # qubits
annealing 

time

AQC → GM : running time   

circuit 
depth

► A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum Computation, Number 47 in 
Graduate Series in Mathematics. AMS, Providence, RI (2002)
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Current focus: experimental feasibility

Efficient maps in terms of qubits and energy scale
▼ Rigorous definition of Hamiltonian simulation

▶ Toby S. Cubitt, Ashley Montanaro 
and Stephen Piddock, Universal 
Quantum Hamiltonians, 
Proceedings of the National 
Academy of Sciences 115, 9497 
(2018).

Simulation efficient for target 
Hamiltonians with local interactions 

in the same (or lower) spatial 
dimension

3. On QS and universality
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Current focus: experimental feasibility

Efficient maps in terms of qubits and energy scale
▼ Rigorous definition of Hamiltonian simulation

▼ Proof of existence of efficient simulators regardless of target graph

▼ Connection between the universality of Hamiltonians and their 
complexity class 

▶ Leo Zhou and Dorit Aharonov, Strongly Universal Hamiltonian Simulators, 
arXiv:2102.02991 (2021)

▶ Toby S. Cubitt, Ashley Montanaro and Stephen Piddock, Universal Quantum 
Hamiltonians, Proceedings of the National Academy of Sciences 115, 9497 (2018).

▶ Tamara Kohler et al., General Conditions for Universality of Quantum Hamiltonians, 
PRX Quantum 3, 010308 (2022) ...

3. On QS and universality
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Current focus: experimental feasibility

Efficient maps in terms of qubits and energy scale
▼ Rigorous definition of Hamiltonian simulation

▼ Proof of existence of efficient simulators regardless of target graph

▼ Connection between the universality of Hamiltonians and their 
complexity class 

▶ Leo Zhou and Dorit Aharonov, Strongly Universal Hamiltonian Simulators, 
arXiv:2102.02991 (2021)

▶ Toby S. Cubitt, Ashley Montanaro and Stephen Piddock, Universal Quantum 
Hamiltonians, Proceedings of the National Academy of Sciences 115, 9497 (2018).

▶ Tamara Kohler et al., General Conditions for Universality of Quantum Hamiltonians, 
PRX Quantum 3, 010308 (2022) ...

In summary: 
Practical, precise universality 
recipes are currently under 

development

3. On QS and universality



Annealing platforms
(superconducting)
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Capacitively shunted 
flux qubit (CSFQ)

Computational basis states: 
direction of the current in 

the z-loopx-loop

4. QA platforms: superconducting flux qubits

z-loop

 

▶ SEM image of Qilimanjaro chip
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4. QA platforms: superconducting flux qubits

Circuit QED Hamiltonian

Junction asymmetry

● Additional JJ w.r.t. transmon → richer potential landscape
● Higher anharmonicity
● Restriction to low-energy subspace to use as computational 

space (Schrieffer-Wolff transformation)

kinetic  
part

potential 
part
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4. QA platforms: superconducting flux qubits

▶ Fig. 2 from M. Khezri et al., Anneal-path correction in flux qubits, npj Quantum Inf 7, 
36 (2021)

Projected and gauged Hamiltonian:
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4. QA platforms: superconducting flux qubits

▶ Figs. 1c and 2c from S. J. Weber et al., Coherent coupled qubits for quantum 
annealing, Phys. Rev. Applied 8, 014004 (2017)

Couplings: 
● ZZ coupling relatively easy to implement → TFIM
● Each coupler is essentially another qubit with a very large gap

Coupler bias
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4. QA platforms: superconducting flux qubits

▶ Figs. 1a and 3d from I. Ofzidan et al., Demonstration of a nonstoquastic hamiltonian in coupled 
superconducting flux qubits, Phys. Rev. Applied 13, 034037 (2020)

▶ Fig. 1a from María Hita-Pérez, Gabriel Jaumà, Manuel Pino, Juan José García-Ripoll, Three-
Josephson junctions flux qubit couplings. Appl. Phys. Lett. 29, 119 (22): 222601 (2021)

Couplings: 
● Capacitive couplings allow to implement XX, YY interactions



Persistent current readout: 
● Couple qubit to SQUID such that direction of current in the loop 

can be measured
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4. QA platforms: superconducting flux qubits

▶ Fig. 3a from S. Novikov et al., Exploring More-Coherent Quantum Annealing, 2018 IEEE 
International Conference on Rebooting Computing (ICRC), , McLean, VA, USA, 2018, pp. 1-7



Summary
● High coherence times (~10us)
● TFIM easy to encode, further developments towards XX, YY
● Custom qubit design → high controllability

Challenges
● Connectivity
● Crosstalk compensation
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4. QA platforms: superconducting flux qubits
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4. QA platforms: Josephson Parametric Amplifiers (JPAs)

▶ Fig. 4a from S. Puri et al., Quantum 
annealing with all-to-all connected 
nonlinear oscillators. Nat Commun 8, 
15785 (2017)

In reference frame of 
pump drive (~2ω0), 

after RWA

detuning

Kerr non-linearity

2-ph pump drive

weak 1-ph drive
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4. QA platforms: Josephson Parametric Amplifiers (JPAs)

▶ Fig 1 from S. Puri et al., Quantum annealing 
with all-to-all connected nonlinear 
oscillators. Nat Commun 8, 15785 (2017)

Contour plot of metapotential

y = 0
Degenerate eigenstates

Non-degenerate eigenstates

High α0, so that they can be 
considered orthogonal

gap
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4. QA platforms: Josephson Parametric Amplifiers (JPAs)

▶ S. Puri et al., Quantum annealing with all-to-all connected nonlinear oscillators. Nat Commun 8, 15785 
(2017)

▶ S. E. Nigg et al., Robust quantum optimizer with full connectivity. Sci. Adv. 3, e1602273 (2017)

eigenstates Fock

eigenstates coherent

anneal to

GS is resilient to photon 
loss (main source of 

decoherence) both at 
beginning and end of 

anneal 
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4. QA platforms: Josephson Parametric Amplifiers (JPAs)

▶ S. Puri et al., Quantum annealing with all-to-all connected nonlinear oscillators. Nat 
Commun 8, 15785 (2017)

Readout:
● Homodyne detector (read out phase)
Coupling:
● Linear coupling (capacitive) → tricky to make tuneable
● 4-body coupling → enables LHZ scheme, only local fields to tune

Supp. Fig. 6

Supp. Fig. 8
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▶ Fig. 1 from W. Lechner et al., A quantum annealing architecture with all-to-all 
connectivity from local interactions. Sci. Adv. 1, e1500838(2015)

Alternative encoding of Ising problems
● Qubits encode parity between 

variables
● Local fields implemented as parities 

between variable and fixed spin
● Constraints enforced in plaquettes to 

restrict to logical subspace
● 4-body interactions (planar graph)
● 2-local interactions with mediating 

qutrits

4.1. Lechner-Hauke-Zoller (LHZ) scheme



Summary
● Some shared features with superconducting qubits
● Qubits potentially more resilient to noise (but no public 

experimental data as of today)
● Possibility to implement all-to-all Ising models through LHZ

Challenges
● Tunability of capacitive coupler
● Coupler strength (4-body LHZ)
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4. QA platforms: Josephson Parametric Amplifiers (JPA)
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5. Final recap 

Computation

Many-body 
dynamics

Hamiltonian 
space



Se
ct

io
n

5. Final recap 
Applications
● Optimisation (generally QUBO problems)
● Quantum simulation

▶ Given sufficiently powerful set of interactions universal 
computation/simulation can be achieved, but no practical recipe

Hardware platforms
● Neutral atoms, superconducting flux qubits, JPAs, trapped ions

▶ Keys: high coherence, coupling strengths, connectivity, 
controllability, available interactions
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Topologies of current superconducting large scale 
annealing devices 

Pegasus topology
d = 15 and native K4 and 

K6,6 subgraphs

Chimera topology
d = 6

Zephyr topology
d = 20 and native K4 and 

K8,8 subgraphs

  

Minor embedding
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