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Adrián Pérez Salinas

1Lorentz Institute - Leiden University
2⟨aQa⟩L: Applied Quantum Algorithms

Spring school in near-term quantum computing
— Benasque 2024 —
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Section 1

Introduction

Adrián Pérez Salinas (⟨aQa⟩L) Error mitigation NTQC 24 3 / 38



Introduction

All computations (classical or quantum) are susceptible to suffer errors due to hardware
faults

To avoid computational errors, correction schemes exist

An easy example

Consider a classical bit (0/1)

Its physical support may suffer an
spontaneous flip (for any reason) with
probability p

The probability of failure is p

Redundancy encoding

Encode the logical bit into many bits:
1 → 111 . . . 1111, of length n, and we apply
a majority rule
What is the probability of logical fault?a

Probfault(n, p) ≤ exp

(
−2n

(
1

2
− p

)2
)

aAvailable through binomial distribution and
Hoeffding’s inequality
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Introduction

All computations (classical or quantum) are susceptible to suffer errors due to hardware
faults

To avoid computational errors, correction schemes exist

An easy example

Consider a classical bit (0/1)

Its physical support may suffer an
spontaneous flip (for any reason) with
probability p

What is the probability of flipping the
entire memory?
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Effect of noise in a quantum computer
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Introduction

Noise affects the capabilities of quantum
computing

Too much noise makes quantum
computing classically simulable

Even in a fault-tolerant regime, the
overhead to correct errors might kill any
quantum advantage

Even in a fault-tolerant regime,
quantum computers cannot be free of
sampling (shot) noise

Noise is ubiquitous in all devices

First quantum supremacy experiment
achieved a fidelity of ∼ 0.002

All quantum computers suffer from
decoherence, non-perfect fidelity,
cross-talk...

We cannot expect any device (even with
advanced technology) to provide 100%
accurate quantum algorithms
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Noise handling in quantum computer

Quantum Error Mitigation

Decrease error of a measured observable
at the end of computation

Low qubit overhead

Low circuit runtime

Exponential sampling overhead (scaling
with error)

Keep it low for performance

Mid-circuit measurements are not
required (or infrequent)

Available now!

Current experiments are already running
these techniques

Quantum Error Correction

Detect and correct errors in the state on
the fly

High qubit overhead

Runtime depends on the circuit

Constant sampling overhead

Error-rate must be below threshold

Mid-circuit measurements are essential

Available in the future

Many codes exist, but their large-scale
implementation needs to wait until low error
levels, below threshold
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This lecture

What kind of noises exist

What techniques can we use for mitigating noise

What are the overheads imposed by error mitigation

What is the final goal, a. k. a. error correction

Adrián Pérez Salinas (⟨aQa⟩L) Error mitigation NTQC 24 9 / 38



Section 2

Kinds of noise
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Noise in quantum computing

Noise models are CPTPa maps

E(ρ) →

(
1−

∑
i

pi

)
ρ+

∑
i

piAiρA
†
i

under the condition
∑

i piAiA
†
i ≤ I

∑
i pi .

The operators Ai are usually called Kraus
operators

aCompletely positive trace preserving

Some commonly used examples

Depolarizing noise

In d dimensions: E(ρ) = (1− p)ρ+ p
d I

Pauli noise

Valid or single-qubit systems, Ai = σi
If p1 = p2 = p3, the Pauli channel is
depolarizing

Decoherence and dephasing

Kz = Z , K0 = |0⟩ ⟨0|
This model is physically motivated through
thermal relaxation, and pi ≈ 1− e−t/Ti .
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General considerations of noise

Noise generically transforms pure states into mixed states

Noise induces undesirable features that can be detected (e.g. symmetry breaking)

Modeling noise is useful, but not all noise is easily captured (non-markovian noise,
cross-talk, ...)

Noise can depend on many parameters

Having perfect knowledge of single pieces does not always guarantee knowledge of the
entire system , i. e. there are emergent properties
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Section 3

Error mitigation
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Common framework

Terminology

Primary circuit: the circuit of interest,
assuming no error

Perfect output state: output of the
primary circuit, ρ0

Noisy state: output of the primary
circuit, affected by noise, ρ

Observable of interest: measurement
done on the noisy state O → Tr(Oρ)

Shots: Number of repetitions of the
circuit, N

Shot noise: noise inherent to
probabilistic nature of quantum
computing

Sampling overhead: Excess in N
required to perform error mitigation,
Cem

Goal

Obtain the most accurate values for

Tr(Oρ) ≈ Tr(Oρ0)
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Common framework

We aim to find an estimator Ô reducing the
errora

E (Ô) = E
[(

Ô − Tr(Oρ)
)2]

,

which we can split in two pieces by
identifying E[Ô] = Tr(Oρ)

E (Ô) = (Tr(Oρ)− Tr(Oρ0))
2︸ ︷︷ ︸

bias

+

Tr
(
O2ρ

)
− Tr(Oρ)2

N︸ ︷︷ ︸
Variance

aE denotes expectation values
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Common framework

Goal: reduce the bias

Achieved through constructing more
complex estimators Ôem

These estimators have larger variances

We need to increase the number of
shots to compensate

Crm =
N(Ôem)

N(Ôρ

=
Var[Ôem]

Var[Ôρ

Probability of faults

P0 =
F∏

f=1

(1− pf ) ≈ (1− p)F .

Alternatively, the average number of faults is

λ =
∑
f

pf .

For small pf and many possible faults, one
can use Poisson’s distribution to obtain

P0 ≈ e−λ,

which hints for exponential overheads.
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Zero-noise extrapolation

A mathematical trick: Richardson extrapolation Let A0(x) ≈ A∗, such

A∗ = A0(h) + a0h
k0 + a1h

k1 + a2h
k2 + a3h

k3 + . . .

in decreasing order hki ≥ hki+1 . h is the step.
We aim to decrease the error of approximationby comparing two step sizes h, h/t for a positive
constant t. Then

A∗ = A1(h) + a1h
k1 + a2h

k2 + a3h
k3 + . . .

and we can obtain a recursive formula

Ai (h) =
tkiAi−1(h/t)− Ai−1(h)

tki−1 − 1
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Zero-noise extrapolation

We apply Richardson trick by artificially
increasing the fault rate λ, and fitting

Tr(Oρλ) = f (λ, θ⃗),

for tunable θ⃗. We aim for the zero-noise
value f (0, θ⃗).
Assuming small λ we can find a good
polynomial approximation,

f (λ, θ⃗) =
M−1∑
m=0

θm
λm

m!

A closed formula from sets {λm,Tr(Oρλm)}

E[Ô] =
M∑

m=1

Tr(Oρλm)
∏
k ̸=m

λk
λk − λm

Choose your λm wisely! Bad choices may
blow up the overhead

Cem =

 M∑
m=1

∣∣∣∣∣∣
∏
k ̸=m

λk
λk − λm

∣∣∣∣∣∣
2
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Zero-noise extrapolation

Theoretical guarantees for small λ, practical performance for large λ

Divergence at λ→ ∞, combine with exponential extrapolation (use the function
eλ Tr(Oρλ)

Difficult problem: how to increase λ without losing the characterization of the noise
models?

Adding more gates with no noiseless effect?
Engineeringly tune the error parameters?

Can we effectively learn the noise models?
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Probabilistic error cancellation

Any noisy circuit is a modified primary
quantum circuit, and we can expect to
estimate the noiseless observable as a
linear combination of noisy circuits.

Then, by Monte Carlo sampling, we can
recover a more accurate estimator, even
with zero bias

Let U be an ideal channel and {Bn} a basis
of noisy operations, then

U =
∑
n

αnBn

and then

Tr(Oρ0) = Tr(OU(ρin)) =
∑
n

αn Tr(Bn(ρin))

Challenge: find the noisy basis Bn.
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Probabilistic error cancellation

Finding noisy basis

Use a tree-combination of small noises

Propagate all possible combination and
sample them according to probability
distribution given by αn

Not exhaustive, but average are good
enough

Eunit = (1− p)U + pN →

U =
1

1− p
Eunit −

p

1− p
N

Over all possible faults we choose E and N ,
and sample them accordingly to the
probability
Assuming all ps are equal we obtain a
sampling overhead

Cem =
M∏

m=1

(
1 + p

1− p

)2

≈ e4λ
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Probabilistic error cancellation

The sampling overhead depends dramatically in the choice of basis

For combining many small errors, one can use gate set tomography

There exist successful implementations in correlated noise

Extensible to measurement errors

Not clear how good this model captures emergent properties

Adrián Pérez Salinas (⟨aQa⟩L) Error mitigation NTQC 24 22 / 38



Symmetry verification

In some cases, the quantum
computation satisfies some symmetry

We can post-select and discard outputs
with broken symmetries

Examples of symmetries: parity, spin, particle
number... Given a physical system dominated
by the Hamiltonian H, its symmetries are
given by S such that

[H,S ] = 0,

and thus S and H can be diagonalized
simultaneously.

Thus, if we know that the output of a
computation is such that S |ψ⟩ = s |ψ⟩, we
can measure S on the output and check the
value s.

State symmetrization

Let Π be the projector on the s-eigenspace of
the symmetry S . Then

ρsym =
ΠρΠ

Tr(ΠρΠ)

and equivalently

Tr(Oρsym) =
Tr(ρOsym)

Tr(Πρ)
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Symmetry verification

We can choose between directly measuring the symmetries or measuring other simplified
circuits and post-process

Post-selection

Only acceptance (or not) of a measured
outcome

The number of valid outcomes
decreases, so the variance increases

Modest sampling overhead

Cem = Tr(ρΠ)−1

(with possibly sophisticated measurements)

Post-processing

Decompose the symmetrized observable
in smaller pieces

Sample those smaller pieces according
to Monte Carlo

Number of valid outcomes decreases for
symmetry, plus Monte Carlo uncertainty

Cem = Tr(ρΠ)−2

(with simpler measurements)
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Symmetry verification

Symmetries are particularly useful in physically motivated or chemistry problems, since the
provide huge simplification

Finding symmetries is difficult, but there exist interesting transformations (e.g.
fermion-to-qubit mappings) at hand

We do not have to restrict ourselves to the existing symmetries, we can enforce them

In fact this is the key element of Quantum Error Correction
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Purity-based error mitigation

Noise channels decrease the purity of
the states

Virtual distillation aims to collectively
measure ρ to access expectation values
of the purified states

For
ρ =

∑
i

pi |ϕi ⟩ ⟨ϕi |

then

ρ(M)
pur =

ρM

Tr(ρM)
=

1∑
i p

M
i

∑
i

pMi |ϕi ⟩ ⟨ϕi |

which effectively suppresses the states with
small pi

Virtual distillation

Computing Tr
(
OρM

)
adding symmetric

swapsa

aThese methods require global measurements,
which can be challenging. However, there exist
techniques to reduce these requirements.

Cem = Tr
(
ρM
)−1

≈ e−Mλ
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Purity-based error mitigation

Noise channels decrease the purity of
the states

Virtual distillation aims to collectively
measure ρ to access expectation values
of the purified states

For
ρ =

∑
i

pi |ϕi ⟩ ⟨ϕi |

then

ρ(M)
pur =

ρM

Tr(ρM)
=

1∑
i p

M
i

∑
i

pMi |ϕi ⟩ ⟨ϕi |

which effectively suppresses the states with
small pi

Echo verification

In echo verification, we aim to project
over the noiseless state

We can do it by applying the quantum
computation backwards

The state is given by ρΠρΠ+ ΠρΠρ

Similar to virtual distillation with M = 2

Cem = Tr
(
ρM
)−1

≈ e−2λ
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Overview
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General comments

There exist other techniques to deal with errors

Subspace expansion
N-representability (cheap representations taking advantages of symmetries)
Machine-learning errors

The methods can be combined for better performance

If combined in parallel, different methods can be used in different aspects (evolution,
measurement...)
If combined sequentially, one method may destroy the error characterization for the next one
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Section 4

Quantum Error Correction
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Quantum Error Correction

Final goal for fault-tolerant quantum
computing

Logical qubits are encoded accross
several physical qubits

The physical qubits are measured to
detect syndromes, that map to errors

When an error is detected, it is
corrected on the fly

Requirements

Constantly measuring the circuit

Constantly applying corrections to the
state

The step syndromes →errors is
sometimes difficult

Maximal error threshold
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Threshold theorem

No quantum error correction is available
until we reach the thresholds

Hardware requirements are larger

Error correction is capable of
suppressing all errors

Error mitigation is a cheaper alternative,
for the moment
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5-qubit code
A flavour of quantum error correction

Measurements:

M1 = XZZXI
M2 = IXZZX
M3 = XIXZZ
M4 = ZXIXZ∣∣0̄〉 =∑i ,j MiMj |00000⟩∣∣1̄〉 =∑i ,j MiMj |11111⟩

A syndrome occurs when an error happens,
and we detect it by measuring all M

E = IIXII = X3 →

{E ,M1} = 0
{E ,M2} = 0
[E ,M3] = 0
[E ,M4] = 0

Syndrome table

M1 M2 M3 M4

X1 x
Z1 x x
X2 x
Z2 x x
X3 x x
Z3 x
X4 x x
Z4 x x
X5 x x
Z5 x

x →{, } = 0, blank →[, ] = 0
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Surface code

Scalable approach to fault-tolerant
quantum computing

The control measeurements and
syndromes extend for the entire circuits

We need to decode syndromes to infer
the errors
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Section 5

Conclusions
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Conclusions

Error mitigation (EM) is a technique to improve results available today

EM must come with some overhead, and this overhead is exponential in some resources,
e.g. shots or effort in measurements

EM corrects noise on average, but cannot correct specific errors

Several techniques exist for EM, choose yours according to the task of interest

Does not critically depend on any threshold, but the resource demands scale with error

Intermediate step towards fault-tolerant quantum computing, which needs quantum error
correction (EC)

EC is more demanding than EM, but comes with different overheads
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