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The 1-d model problem for a single interval

F. Alabau, P. Cannarsa and G.L SICON 2017

e We consider the 1-d-wave equation

ut — (a(x)uy) =0 in ]0,00[x]0, 4], (PDE)

X

where a(x) satisfies (H1)

o a cC([0,4)NC(0,4]) with:

(i) alz) >0 V0,4, a(0) =
(41)  Ha 1= SUPgc <y az\a((a):)| and (H1)

(ii7) a € CHal([0, 4]),

where || stands for the integer part.



The 1-d model problem on a single interval

e We differentiate between two cases

e €10,1)  weak degeneration
e € [1,2) strong degeneration

e We consider the control system

utr — (a(x)uy) =0 in ]0,00[x]0, ¢

X

with

u(t,0) =0 if pe €10,1]

. , 0 U<t <@
limg g a(x)ug(t,z) =0 if p, € [1,2]

boundary conditions u(t,¢) = f(t) and {

u(0,x) = ug(x)

00, 2) = uy () x €0, ¢].

initial conditions {

(P)



Problem on a single interval: adjoint problem

e Lat a satisfy assumptions (H1), then we consider the adjoint problem
Upp — (a(x)ux)x =0 in ]0,00[x]0, /]
with

u(t,0) =0 if pg €10,¢]

boundary conditions wu(t,/) =0 and _
d (£ ) {limxw a(x)ug(t,x) =0 if p, € [1,2]

(u((), r) = ug(x)

initial conditions <
(0, 7) = us (x)

(adjP)

¢ Theorem: Let the minimal observation/control time be given by

Ta .= ! | 2,ua V Caa

(2 = pa) mingl, a(1)}

where C, is given by the Poincaré inequality. Then the system (adjP) is ob-
servable in time 1" > T,.




Optimal control problem: penalization

We consider the final value optimal control problem

T

. K

im0 S () - U+ () - 21
0

subject to
Uy — (aug ), =0, (t,x) € Q :=(0,T) x (0,4)
u(0,t) =0, u(t,l) = f(t), t € (0,T)
w(0,z) = u’(z), w(0,2) = u'(z), = € (0,0).

The corresponding optimality system (in the strong formulation) is given by

Utt — (aua?)x — 07 Ptt — (apx>a? — Ov (t,fﬁ) < Q
U(t, O) — 07 U(t,g) — paﬁ(taz)a p(t,O) — 07 p(t7€) — 07 S (OvT)

w(0,z) = u’(x), ue(0,2) =u (), p(T,) = kA (w (T, ") — 24, p(T,-) = (u(T,-) — 2°) = € (0,4).



Limiting problem

We know from (ACL2017) that the system is exactly controllable (the adjoint
observable) in time T},. It follows then by a standard procedure that the optimal
controls f* and the corresponding solutions u(-; %), p(-; k) tend to the solution
of the optimality system for the limiting norm-minimal controllability problem.

N

The corresponding optimality system (in the strong formulation) is given by

Uy — (aUz)s = 0, P — (apz)s =0, (x,1) € Q
U(t,O) — 07 u(& t) — pa:(ga t)? p(O,t) — Ov p(t,f) — 07 S (OaT)

w(z,0) = u’(x), u(z,0) =u'(z),p(-,T) =p°, pe(-,T) =p* x € (0,4),

such that (p°,p!) € V x H is given by the HUM eqation:

< (%, p"), ( /\paz“\th



In-span degeneration or two-link system

For simplicity, let ¢ and d be a given pair of real numbers such that 0 < c <1 <
d < 2. We set

Ql — (C,l), QQ — (1,d), () = (C,d), and QQ :Q\{1}2Q1UQ2
Let a : Q — R be a given weight function with properties

(i) a(1l) =0, a(x) > 0 for all z € Qp, and there exists subintervals (z7,1) C ),
and (1,z%) C 5 such that a(-) is monotonically decreasing on (z7,1) and
monotonically increasing on (1, x%);

(i) a € C(Q)NCHQ\ {1});
(i) (Va), & L>(Q) whereas (v/a), € L>(1).



In-span degeneration
We follow the article by P. Kogut, O. Kupenko and G.L. MMAS22.

We are concerned with the following controlled system

ur — (a(z)uz), =0 in (0,7) x €, f1,q0 1= SUP . _j()a‘;;/(m”
u(t.) = At), u(t.d)=fot) on 0.7),
u(0,) =yo, u(0,-)=5y1 in £, H2,0 == 5&% a(x) |

f1, fo € Faa = L*(0,T).

Here, ug, and u; are given functions, and F,4 stands for the class of admissible
controls.

Se also BAI Jinyan and CHAI Shugen J Syst Sci Complex (2023) 36: 656-671.



Transmission conditions: weak degeneration

Let a : Q@ — R be a weight function satisfying properties (i)—(iii) and 1/a €
L'(€2). Then H, () is continuously embedded into the class of absolutely con-
tinuous functions on {2, so

lim y(z) = lim y(z), |y(1)| < +oo, Vy € H,(Q),

z 1 1
lim a(z)y(z) = lim Va(z)y(x) =0, Vy e H,(Q)

In addition, if y is an arbitrary element of the space
Hy(Q) = {y € Hy(Q) : ay. € W (Q)},
then the following transmission condition

lim a(z)ys(x) = lim a(x)ys(z) = L, with |L] < +oo,

holds true.



Transmission conditions: strong degeneration

Let a : © — R be a weight function satisfying properties (i)—(iii) and 1/a ¢
L'(€)). Then the following assertions hold true:

dx; € Q;, 1 =1,2, such that y(x) = o (\aﬁ — 1\_%> for a.a. x € (x1,x2),

lim \/a(z)y(z) = lim \/a(z)y(z) =0, Vye Hy(Q),

x 1 N1
lim a(z)ys(z) lim a(z)ys(z) =0, Vye Hi (1),

where the small symbol o stands for the Landau asymptotic notation.

We have a Poincareé inequality in the weighted Sobolev space H 370:

lyllz2) < Cpllyllmi), Yy € Hyo(),



Poincare inequality: strong degeneracy

Remark: Note that for Neumann control at x € {c¢,d} and strong degen-
eration u;, € [1,2), we have to take the Neumann homogeneous condition

1im1 a(x)u,(x) = 0. Therefore, the classical Poincaré inequality (as in ACL17)
X—>

doesn’t hold. In that case, we need to resort a more general Poincaré inequality
and work in the quotient space and set

d
Hl(e,d) = {u e L?*(¢,d)|au, is absolutely cont., \/(a)u, € L?(0, 1),/u(a¢)dm =0}

C

Such a (sharp) Poincaré inequality has been proven by Chua and Wheeden in
2000.



Poincare inequality for general boundary conditions

Theorem|ChuaWheeden00]:
Let C. 4 be defined as

x % d
1 1
Cod= sup < (d — x) /(t —c)%a(t) tdt p + sup ( (xz—c)? / — t)*a(t) " dt
d—c r€(c,d) z€(c,d)

Then the weighted Poincaré inequality:

( / @) = / f(s)ds%zx) ey ( / a(x)f’<x>2dx) |

holds if and only if C, 4 < oo.
Indeed, for the coeffients a(z) as used here C < oco.

N

The Theorem hold for more general situations, where dx is replaced by a measure
viz)andp=qg=2is 1 <p <p < .



Regularity and multiplier identity

For any mild solution u(¢,z), we have that u:(-,c¢) € L*(0,T) and us(-,d) €

L?(0,T) for any T > 0, and

/O a(e)y2(t, ¢) dt <

61"

l—c|

61"

I 1
/ a(d)y (¢, d) dt <
0 d

Moreover,

4

min{1, a(c), a(d

4

min{1, a(c), a

(1— ) /O a()2(t, ¢) dt + (d — 1) /O a(d)y2(t. d) dt

SUACIES

/ (x — Dug(t, x)u(t, x) daj_
(z — 1)ag(r)

1

a(x)




Observability/Controllability

Let a : © — R be a weight function satisfying properties (i)—(iii), and let u be
a mild solution of adjoint problem. Then, for every T > 0, the estimate

(1— ) /O a()2 (¢, ¢) dt + (d — 1) /O a(d)y2(t. d) dt

4
min{1,a(c),a(d)}

2Cp| E,(0) (InvIneq)

> (2 — max{pti,a, 2,0 }) T

holds true, where C'p is the constant in the Poincaré inequality.

1 ) 4 ]
T, = , -2Cp | . ContTime
2~ max(in . piaa]) |min{L,a(e),a(@} 267 )




Penalization & convergence

We consider the final value optimal control problem

b+ i (T,2) = 21 )

9 2
K
j J()[Pdt + = ( (T, ) — 20
fierlgl(r(l),T)/ E_lﬁ\f( )|"dt + 5 -5—1: Jui (T ) — 2
0 1— 1=

subject to
u; 1t — (At ) =0, (t,x) € Q :=(0,T) x (0,¢)
ui(c,t) = f1(t), ua(t,d) = fa(t), t € (0,T)
2(z), u;¢(0,7) = u;(z), x € (0,4).

u;(0,2) = (0 ;

According to the global observability estimate, we can conclude that the so-
lutions wu;(-,; k), p;(+,; k) of the corresponding optimality system, as Kk — oo
tend to the solutions wu;, p; of the optimality system for the constraints optimal
control problem.

OC P*

relaxing the
controllability

constraint

In principle
to localize t!
|lue(T) — 2

one needs
ne term

‘2
v *

more careful

ly!



Optimality system for finite k

The corresponding optimality system (in the strong formulation) is given by

ui,tt - (@uz’,a’;)x — 07 pi,tt _ (@pz’,x)x — 07 (ta .CE) - Qz

Ul(t,C) — pl,x(tac)v u2(t7d) — pZ,QE(tad)) (S (OaT) OSK’
ui(t,1) = uo(t,1), lim a(z)uy .(t,z) = lim a(x)us (¢, )
r—1_ r—14

w(0,z) = u’ (), u(0,2) = u'(x),

p(T) — ’{A_l(ut(Ta ) o Zl)a pt(Tv ) — K(U(Ta ) o ZO) T < (O,f).

The idea is to decompose the global optimality system OS” iteratively into

local optimality systems [OS;”" or the global optimal control problem OC P*
into [OC P;”" ones on



Optimality system for k = o

The corresponding optimality system (in the strong formulation) for 'k = o0’ is
ogiven by

WUg tt — (auz’,x)az — O, Pitt — (api,:c)x — 07 (t, aj) - Qz
ui(t,c) = p1.(t,c), us(t,d) = p2 .(t,d), t € (0,7
u(t, 1) = uo(t, 1), lim a(x)ul C,3(15 r) = lim a(x)us . (t,x)

—1_ r—14 5T OSOO
u(0,7) = u’(z), u(0,2) = u' (),

= U
p(T) =p°, p(T)=p",(p°,p") €V x H s.t.

<(p07p1)7 (_217 ZO)> — / (pl,x(tv C)2 ‘I'p2,:c(t7 d)z) at

What happens if in OS™" & 3 50 for each n and otherwise if in [0S"" n — o
for fixed k 7



Domain decomposition and OCPs

oSt 7=, 0osPe lOCPMt T, OCPF

(/

K— OO K —> OO K—> OO K —> OO

h 2 4 4 2

[osr =, 08§~ |jocpr = 0CP™

What to do first? First optimize or decompose? First penalize or decompose”’
And then the same questions with respect to discretization.....



First decompose then optimize or first optimize then
decompopse?: virtual controls

T
. 1
min s J(f, 5,0 = 3 [ Y010 + 5 Z(Huz )= 200, + s (T,) — 2113 )
0

A
f9,u,2 P

5, T
T Z / Ai((ui(t, 1) — z) + g(ui(t, 1) — z)th

i=1 7

g 1s called

subject to ,
virtual control

wi pt — (@ ) =0, (t,2) € Q := (0,T) x (0,¢)
) = f1(1), us(t,d) = fo(t), t € (0,T |
uile.t) = fit), ua(t, d) = fot) (0,T) This problems can be seen

uie(t, 1) = g(t). as a relaxation
u; (0, 7) = uj (x), u;¢(0,2) = u; (), = € (0,). of an exact synchronization
problem at the interface



First decompose then optimize or first optimize then
decompopse?: further relaxation

Jminmax £(f,u, g, 2, q: A7) = o /Z\f; (1)2dt + = Z(\uz )= 2213, + i (T, ) = 213

2 L 2 1
% ) 0 ,
0 0

1=1 1=1
subject to
Uj tt — (@Uz‘,a:)a; = 0, (t, 33) c Q= (O,T) X (0,6) We use the fractional
1) = t), t.d) = t), t € (0. T step Uzawa-type saddle-point algorithm
ui(e;t) = filt), ualt, d) = f2(t) ( ) of Glowinski-LeTallec 89 (ALG3),
ui,w(tv 1) — Yi (t), as we did for parabolic problems

Ui(O, x) _ ug(x% Ui,t(O, m) _ u,} (:1;‘), = (O, g). with M.J. Gander 2024



Decomposed optimality system

The corresponding optimality system (in the strong formulation) for given & is
given by

uly — (aul T, =0, pift — (aplih)e =0, (t,2) € Q;

U; (ta U’L') — pi,af;(ta vi)v p?—l—l(ta Ui) — 07
ein lim a(x)ug (8, @) + Bpf T (8, 1) = NP (1),

r—1 vo

ein lim a(z)pP T (t, @) — Bpf (¢, 1) = pi(t), t € (0,7T)

r—1

w; (0, 2)" T =0, u; +(0,2)" ! =0,

pi(T, )"t = p}(2), pI'{ (T, z) = pi(z), v €,

with the iteration history

Ai(t)" = Bejipy (t,1) — €51 lim a(x)py (¢, T)

r—1

pi(t)" == —Bejrui (L, 1) — €51 lim a(x)u’ (L, x),

r—1 J

i=1,2, t € (0,T)



Domain decomposition: the local problem

We consider the local final value optimal control problem (v; := ¢,v9 = d, vg =
1, €;1 — (—1)7’, €0 — (—1)7’_'_1) for the cost

T

T
1
T2 (i) i= [P + Zlai@Pd + 5o [ (enfuilt 1) + ()
0

0
2
V>

Y
4 2 s () = 20113 + i (T) — 21

Ji GLQI?OIELP,W JZ (f“ Ji: uZ)

subject to
Uit — (AU o) =0, (t,x) € Q = (0,T) x
ui(vi,t) — fl,i(t)p 11_>Hl1 eila(x)uijx(t, ZC) — gz(t) —+ )\i(t), t € (O,T)

u; (0, 7) = uj (x), u; ¢(0,2) = u; (x), z € Q.

(



Domain decomposition: the local problem

At a given iteration index n, we consider the local final value optimal control
problem (Ul — C, Vg — d, Vo — 1, €;1 — (—1)2, €0 — (—1)Z+1) for the cost

T T
n,.K 1 1 n (4’
T (fis gis wi) ::/|fl,i(t)|2+g|gi(t)|2dt I 26/(6&'161%_'_1@71)_'_:“@’ (t)]%) dt
0 0
o () = 200, + i 1T = 2 )
min qunj’m(fivgiaui) (ZOCPZ””%)

f,L- cl? (O,T) sU 4

subject to

u?;'il (au”“) =0, (t,x) € Q :=(0,T) x €,

w? (v, t) = fi(t), € lim a(x)u? Tt x) = ¢;(t) + N ()", t € (0,T)

‘ r—1 byl

uf ™ (0) =0, uyH(0) =0, z € Q.

1



Convergence: (lOCP;”*) — (OCP")

It has been shown in G.L. SICON99 for the non-degenerated wave equation that,
for a given k, the solutions (u?*'(-;x),p"""(-;k)) of the optimnality system
for (IOCP;”"™) converge, as n — 00, to the solutions (u;(+; &), p;(-;)) of the
optimality system for the global optimal control problem (OCP").

The proot can be extended to the degenerated wave equation.

Indeed,

(i (5 R),ui (5 R))) = (Wil k), wie (5 k) o C([0,T]; Hy x V7)1 = 1,2
(P (1 8), D5 (5 8))) = (a5 ks pie(6))  in C(0, T Vi x Hy), 1= 1,2
) in L=(0,T).

p?(',vi;/f) — i+, Vi K



Relation between OCPs and DDM

lOCP™" =, OCP*

G.L SICON99
Results for non-degenrate
wave equation
K—r OO J. Lagnese and K—>0C
*+— o1 SICONGS Results for the degenrate

Vv | v wave equation 2024

lOoCpPr =, OCP>®

Also: First optimize then decompose or first decompose then optimize!
Discussion with M. Gander 2024



Convergence: (IOCP;") — (lOCP}

We need a local controllability result:

Up gy — (au?th), =0, (t,2) € Q :=(0,T) x £

1,T

u?ﬂ(vi,t) = fi(t), €1 lim1 a(:p)u?;rl(t,x) = g;(t) + \;(t)", t € (0,T)
€r— ’

up T (0) =0, ul'/ 1 (0) =0, z € Q.

uTHT) = 22, uTHT) = 2, 2 € Q.
.. and, in fact, we do have a corresponding observability inequality!

The proof then follows as in the article Lagnese and G.L. SICON99.



Problem on a planar network: singular measures

P.l. Kogut, O. Kupenko and G.L., PAFA 2022

I We consider a planar star graph.

I3 To I, we associate a singular measure u;
s.t. that u; is uniformly distributed on I,
1, Vs Vo and coincides with Lebesgue measure £1.
M, - 1 Setting du = S:f,\il dpt;,

UN 1 we see that u 1s a singular measure

I, . My with respect to the Lebesgue measure £?
; T, and p (2\ UL, 1;) = 0.

I, can be parametrized as a function of its length by means of the function
Zi . [O,&] — 1;, 1.e.,

Uj

zi(§) = ¢

VEC[0,4], |z(6)] = \/z,gl 22, = ¢, and 2 (6;) = M,

|”U7;‘R27



Star graph representation via singular measures

We consider the problem in 2-d as follows

uy — divt(aVPu)+qu =0 in (0,7 x €,
u(t, M;) = f;(t) fora.a.te(0,Tande=1,...,N —1, (2-d-P)
u(0,2) =yo(x), w(0,x)=yi(z) for p-a.a. x el

where (yo, 1) is a given initial state and V# the tangential gradient, div" the

divergence wrt L.
Local interpretation: If u € W;g (2, Tg,du) then its restriction u; =

ul; € H ».-function of a single variable. Namely,

w € Hy, (0,4;), i=1,...,.N—1, uy € H,, (0,{n),
dui ( U; )
p— Z7
3 V4]

where a; = a (f |;‘j—|), and % stands for the weak derivative of u; = u <§z—|)

for a.a. £ € I;,i=1,...,N, Vz e I'*(u),

r=§ 2

v, |



Problem on a planar network: observation inequality

Theorem: (KKL-PAFA22) Let a : 2 — R be a given weight function, and let
u be a mild solution. Then, for every T' > 0, the estimate

N T 2

ou t,MZ "
Z@a(Mi)/ ((’9 | ) dt > C* Eu(y0,91,0),
i=1 0 v

holds true with

™ = (2 — maX{nl,aa SR 777N,CL})T

N /2 N
_ 4Zmax {1, CL(]\ZL') } —2max{Ni.qy---,N.a} Z \/C’,L-’a
' i=1




Open questions: damage sensitivity

e What happens if there are more points of degeneracy?
...and if there are, can we handle different degrees of degeneracy?”

e How about the sensitivity with respect to

e the q;s, 014 ' ' ' ' 2|
Regularized a(x) | A

e the locations x;7  °®

e shape/topological

variations for 0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1

a(x) = |x — xo|"|x — 21| | — 22|

a(r) = Xw(®)ar(z) + (1 = x(x)ao(z)



Open questions: higher dimensions?

e What can be done for the wave equation on a, say, ring-like domain, where

the coefficient degenerates at the inner circle? Le. a(z) = ((z§+23) —r3)2 and
A={zeR:ro<|zf| <R}, I't ={z:|[z]| = R}, To = {z : [|z|| = ro}

Ut — div (CL(ZE)VU) — O, n Q
u= fon (0,T7)xI'y, u=0o0n (0,7) x I'g
u(0) = u’, u(0) =u' in Q.

e What if the degeneration is strong: a — 27 There is a strong connection with
problem of cloaking! (Uhlmann, Lassas,.....G.L. et al.)



Open questions: damage evolution

e [ivolution of internal damage: we consider

T T 7
min* (u,a, f) = [ fat+ [ [ la=1Pdedt+ 5 (u(0) = o + ur(0) - a'|3)
0 0O O

S.t.

Ut — ((a(t’ :z:)ux)a: =0, (t’ ‘CE) € Q This, or ODE variants of the damage

£ evolution equation my lead to
At = WAypp — @(/ X(:E, S)Ux (t, S)QdS) — ”y)_|_, t € (O, T) non-local in space and time coefficients.

0
U(ta O) = 0, u(ta é) — f(t)a (S (07 T) There is a lot of literature
a(t, O) =1, a(t,é) = 1,t € (O, T) on damage evolution: |
. Fremont, Kuttler and Shillor 1999,

w(0,z) = u’(x), u(0,2) = u'(x), = € (0,4), Bouchitté and Roubicek 2007
a(()’ .CI?) —1, x¢ (O, f) but nothing on control!



Thank you for your attention!



