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General framework of training problems
@ Data: {(x;,y;) € RIT}Y .
@ NN architecture:

f:RYxRP - R, (x,0) — f(x,0), where

x : feature (input), © : parameter (control), f(x,®): prediction (output).

@ Three training scenarios:

@ Exact representation:
f(xi,®©)=y;, fori=1,...,N.
@ Approximate representation:
If(xi,©) —yill <e, fori=1,...,N.

© Regression:

inf@ 1

=

Zf(f(xi,e) - ¥i)

Problems

Existence, design of loss function, generalization property, numerical algorithms...

™ = =
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Shallow Neural Network

Shallow NNs with P neurons Hidden Layer

Input Layer Output Layer

f;hallow X @ ij a_/a + b; )

where © = (wj, aj, bj)le, with

wj € R and (aj, bj) € RI+L, »
O
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Shallow Neural Network

Shallow NNs with P neurons
f;hallow X @ ij a_/a + b; )a

where © = (wj, aj, bj)le, with
wj € R and (aj, bj) € RI+L,

Hidden Layer
Input Layer

Output Layer

X wy

—"/ ofa; x+ bi;\:\ —
Why shallow NNs
@ Simple structure;
@ Universal approximation property [Cybenko, 1989];
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Why shallow NNs
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Shallow Neural Network

Shallow NNs with P neurons
f;hallow X @ ij a_/a + b; )a

where © = (wj, aj, bj)[;, with
wj € R and (aj, bj) € RI+L,

Why shallow NNs

@ Simple structure;

@ Universal approximation property [Cybenko, 1989];
@ Finite-sample representation property [Pinkus, 1999];
@ "Convergence” of the SGD algorithm [Chizat-Bach, 2018].

Hidden Layer

Input Layer Output Layer

X w;
— o(aj-x+b;) | ——

-
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Finite-sample representation property

Recall that

fshallow X @ ZWJU( aj7 )

Finite-sample representation property [Pinkus 1999]

Assume that P > N and m = 1. If ¢ is non-polynomial, then for any
distinct dataset {x;,y;}_;, there exists © such that

fehallow(Xi,©) = yi, fori=1,... N.
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Finite-sample representation property

Recall that

fshallow X @ ZWJU( aj7 )

Finite-sample representation property [Pinkus 1999]

Assume that P > N and m = 1. If ¢ is non-polynomial, then for any
distinct dataset {x;, y;}I;, there exists © such that

fehallow(Xi,©) = yi, fori=1,... N.

We extend in [L.-Zuazua, 2024] the previous result to the case where y; is
in high dimension and (aj, bj) are within a compact set. The proof is by
induction and the application of the Hahn-Banach Theorem.
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Design of loss function/regularization
@ A well-known principle ! in machine learning is the following:

“sparsity” mitigates “overfitting” .

Srivastava et al. “Dropout: A simple way to prevent Neural Networks from
overfitting”. In JMLR, 2014.
2Candes and Romberg. “Quantitative robust uncertainty principles and optimally
sparse decompositions”. In FOCM, 2006.
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Design of loss function/regularization
@ A well-known principle 1 in machine learning is the following:

“sparsity” mitigates “overfitting” .

@ In shallow NNs, the number of activated neurons is ||w|| -

w,

\ .

— | o(aj-x+by) x

~

@ The function ||w]||, is non-convex. A practical replacement from
compressed sensing 2:
[wlleo = [|]lr-

Srivastava et al. “Dropout: A simple way to prevent Neural Networks from
overfitting”. In JMLR, 2014.
2Candes and Romberg. “Quantitative robust uncertainty principles and optimally
sparse decompositions”. In FOCM, 2006.
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Primal problems

Let Q be a compact subset of R7™'. Note © = (wy, aj, bj)[;.
@ The sparse exact representation problem:

P
infocrxayr lwlla, st Y wio((a,x)+b) =y, fori=1,...,N. (Po)

j=1
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@ The sparse exact representation problem:
P
infocrxayr lwlla, st Y wio((a,x)+b) =y, fori=1,...,N. (Po)
j=1
@ The sparse approximate representation problem:
P
infocmxar Iwlla, st ija((aj,x,-> +b))—yi|<e fori=1,...,N,

Jj=1

where € > 0 is a hyperparameter.
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Primal problems

Let Q be a compact subset of R7™'. Note © = (wy, aj, bj)[;.
@ The sparse exact representation problem:

P
infoc@xayr [[wlla, st ijo((aj,x;) +bj)=yi, fori=1,....,N. (Po)

j=1

@ The sparse approximate representation problem:

<e fori=1,...,N,

> wio((a, %) + b) = yi

Jj=1

infocmxar Iwlla, st

where € > 0 is a hyperparameter.

@ The sparse regression problem:

N P
. A re
infoc@xay [lwlle + N ZZ (EWJU(<QJ»XI> + b)) —y;) ) (P3®)
i=1

j=1

where A > 0 is a hyperparameter.
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Problem

optimization problems?

@ How can we address these high-dimensional and non-convex
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Mean-field relaxation

Primal problems (Po), (Pc), and (PY*) are non-convex optimization problems, where the
non-convexity is from the non-linearity of shallow NNs, e.g.,

P
{@ ’ ija((aj,x,-) +b)=y,Vi=1,..., N} is a non-convex set.

Jj=1
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Jj=1

P
{@ ’ Zw,—a((a,—,x,—) +b)=y,Vi=1,..., N} is a non-convex set.

The mean-field relaxation technique is commonly employed in shallow NNs, see
[Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].
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Mean-field relaxation

Primal problems (Po), (Pc), and (PY*) are non-convex optimization problems, where the
non-convexity is from the non-linearity of shallow NNs, e.g.,

j=1

P
{6 ’ Zw,—a((a,—,x,—) +b)=y,Vi=1,..., N} is a non-convex set.

The mean-field relaxation technique is commonly employed in shallow NNs, see
[Mei-Montanari-Nguyen, 2018] and [Chizat-Bach, 2018].

Shallow NN
The original shallow NN writes:
P
> wio((aj, x) + by),
j=1

where (wj, aj, bj) € R x Q for all j.

Cost function: ||w||,:.

LIU (FAU DCN-AvH)

Mean-field shallow NN
The mean-field shallow NN writes:
/ o({a,x) + b)du(a, b),
Q

where ;1 € M(£2). The outcome is linear
with respect to p.

Cost function: ||x/|Tv.
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Relaxed problems

Let Y = (y1,...,yn). Define the following linear mapping:

o=@ = ([ o) + b)dutan))

LIU (FAU DCN-AvH)

Benasque

N

i=1



Relaxed problems
Let Y = (y1,...,yn). Define the following linear mapping:

N
o=@ = ([ o) + b)dutan))

Q i=1
Convex relaxations:

@ The relaxation of (Po):

inferm(@) lellrv, st ou=Y.
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Relaxed problems
Let Y = (y1,...,yn). Define the following linear mapping:
N
o=@ = ([ o) + b)dutan))
i=1
Convex relaxations:

@ The relaxation of (Po):
infiem@) lplltv, st du=Y.
@ The relaxation of (P.):
infiem@ llellrv, st llép— Y <e

@ The relaxation of (P®):

N

. A
infue @) llnllrv + > l(bin—yi).
i=1
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Free of relaxation gap

Theorem (L.-Zuazua,2024)
Under mild assumptions * on o and Q, if P > N, then
val(Po) = val(PRyg); val(P¢) = val(PRc); val(P§®) = val(PRSE).

Moreover, the extreme points of the solution sets of relaxed problems have the following
form:

N
M* = wa(s(a}‘,bf)-
j=1

'An example of (0,Q): o is the ReLU function and Q is the unit ball.
2Similar results for particular scenarios of exact representation and regression in ML
obtained by representer theorems are studied in [Unser, 2019] and: [Dios-Bruna, 2020]
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Under mild assumptions * on o and Q, if P > N, then
val(Po) = val(PRyg); val(P¢) = val(PRc); val(P§®) = val(PRSE).

Moreover, the extreme points of the solution sets of relaxed problems have the following
form:

N
M* = wa(s(a}‘,bf)-
j=1

Main techniques in the proof:
@ Existence of solutions: finite-sample representation property.

@ ‘“Representer Theorem” ? from [Fisher-Jerome, 1975].

'An example of (0,Q): o is the ReLU function and Q is the unit ball.
2Similar results for particular scenarios of exact representation and regression in ML
obtained by representer theorems are studied in [Unser, 2019] and: [Dios-Bruna, 2020].
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Problems

@ How should the hyperparameters € and \ be chosen in these
problems? (Generalization)

@ How can the relaxed problems be solved, and how can solutions of the
primal problems be found? (Numerical algorithms)
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A generalization bound

@ Training/ Testing dataset: {(x;,yi)}; / {(x,-’,y,-’)},!\’:/l.
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A generalization bound
@ Training/ Testing dataset: {(x;,yi)}; / {(x,’7y,')},’\’:/1
@ Predictions on testing set by the shallow NN with parameter ©:

{(x/, Fnatiow(x, ©))}4
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A generalization bound
@ Training/ Testing dataset: {(x;,yi)}; / {(x,’7y,')},’\’:/1
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N N’ N’

1 1
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A generalization bound

@ Training/ Testing dataset: {(x;, i)}y / {(x/,y}) v
@ Predictions on testing set by the shallow NN with parameter ©:

’

{(X,',, f;hallow(xl',7 e))}:\lzl
@ Empirical measures:
NI

N N’
1 1
Mirain = E : (xiwyi)y  Mhest = WE :J(X/»Y,-'% Mpred (©) = G E :5>< »Fehallow (7 ©))*
i=1

i=1

Theorem (L.-Zuazua,2024)

Let WA(-,-) denote the Wassernstein-1 distance. If o is 1-Lipschitz, then for any ©,

Wl(mtesty mpred(e)) S 2Wl(rntrain, mtest) +r(e), where

Bias from datasets

P
r(©) = N Z [ fehatiow (Xi5 ©) — yi| + Wi (Mirain, Meest Z [AERTR
i=1 Jj=1
Bias from training “Variance”
= = = =yt
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Generalization bounds by optimal solutions

Fix the following: Recall that
@ o: RelLU;
0 O Bd+1(0, 1); Wl(mtesta mpred(e)) < 2W1(mtiin7 mtest) +r(@)
Bias from datasets
o U(:)=]"]
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Generalization bounds by optimal solutions

Fix the following: Recall that
@ o0: RelLU;
0 O Bd+1(0, 1); Wl(mtesb mpred(@)) < 2VVl(mtraim mtest) +r(@)
Bias from datasets
o (()=1"]
Proposition

Let P> N. Forany e >0 and A > 0, let ©, and @Tg be the solutions of
(Pc) and (P'®), respectively. Then,

r(©c) SU(e) = e+ Cval(Pe);

r(@;\eg) S ,C()\) = maX{A—l’ C} Val(PR;\eg),

where C = Wl(mtraina mtest)-
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Optimal hyperparameters
Recall that C = Wi (Mirain, Meest ).
@ Optimal value of X\: \* = C™%.
@ Optimal value of €:
Q if C <!, then ¢* =0;
Q ifC> cgl, then ¢* satisfies the first-order optimality condition
C '€ [cer, Cev).
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Optimal hyperparameters
Recall that C = Wi (Mirain, Meest ).
@ Optimal value of X\: \* = C™%.
@ Optimal value of €:
Q if C <!, then ¢* =0;
Q ifC> cgl, then € satisfies the first-order optimality condition
C7! e [ce, Cer].
Here, (cc, C.) is related to the solutions of the dual problem of (PR.).

v v
3 =]
E K

—_ () —— U(c) where € < ¢!

® N=C L —— U(e) where C > ¢!

O L0 = |Y]la/N ® =0

y=Cval(Py) % o satisfying O € [c, C]
( (
A €
(a) Qualitative curve of L()). (b) Two scenarios of U(e).
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Guideline for numerical algorithms

Relaxed problems are convex, but in an infinite-dimensional space.

infene lullv, st 6p— Vil < (PR.)
>\ N
infuemm) lullry + 5 D 11— il (PRY®)

i=1
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A general approach: Discretization, then Optimization.
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inf e @) llullrv + > lgin—yil- (PRY®)
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A general approach: Discretization, then Optimization.

Two numerical scenarios

@ When dim(Q2) = d + 1 is small, discretize Q by a mesh, then optimize by the
simplex method.
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Guideline for numerical algorithms

Relaxed problems are convex, but in an infinite-dimensional space.

infuerm@) llullrv, st [[op—Yee <e (PR.)
A N

inf e @) llullrv + > lgin—yil- (PRY®)
i=1

A general approach: Discretization, then Optimization.

Two numerical scenarios

@ When dim(Q2) = d + 1 is small, discretize Q by a mesh, then optimize by the
simplex method.

@ When dim(2) = d + 1 is great, discretize (PRY®) by an overparameterized version
(problem (P®) with a large P), then optimize by the SGD algorithm.
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Low-dimensional scenario

@ Discretization of the domain:
Q= Q={(a,b)}, .
@ Discretized problems:

inf lwlle, st |JAw— Y|, <k
w€eRM

. A
inf flwlla + 14w = Ve,

where A € RVM with A;j = o({a}, x:) + b;).
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Low-dimensional scenario

@ Discretization of the domain:
Q= Q={(a,b)}, .
@ Discretized problems:

inf [lwlls, st JAw— Y, <e (PD.)
weRM

. A re
inf flwlla + 14w = Ve, (PDE)

where A € RVM with A;j = o({a}, x:) + b;).

@ Error estimates:

[val(PD¢) — val(PR.)|, |val(PD5®) — val(PRY®)| = O(dHausdort(£2, 1))

LIU (FAU DCN-AvH) Benasque Aug 2024 22/28



Low-dimensional scenario
@ Discretization of the domain:
Q= Q={(a,b)}, .
@ Discretized problems:

inf [lwlls, st JAw— Y, <e (PD.)
weRM

. A re
inf flwlla + 14w = Ve, (PDE)

where A € RVM with A;j = o({a}, x:) + b;).

@ Error estimates:

[val(PD¢) — val(PR.)|, |val(PD5®) — val(PRY®)| = O(dHausdort(£2, 1))

@ Equivalent to linear programming problems, solvable using the simplex method.
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Low-dimensional scenario
@ Discretization of the domain:
Q— Q= {(a;, b))}/, -
@ Discretized problems:

[wllers st [[Aw = V] < (PD.)

inf
wWERM
. A reg
inf [l + 514w = Ylla, (PDY)
where A € RVM with A;j = o({a}, x:) + b;).
@ Error estimates:
[val(PD¢) — val(PR.)|, |val(PD5®) — val(PRY®)| = O(dHausdort(£2, 1))

@ Equivalent to linear programming problems, solvable using the simplex method.

> Advantage: Terminates at an extreme point of the solution set, which
corresponds to a solution of the primal problems.
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Low-dimensional scenario

@ Discretization of the domain:
Q— Q= {(a;, b))}/, -
@ Discretized problems:

[wllers st [[Aw = V] < (PD.)

inf
weRM
. A reg
nt [l + 3w = Vs, (PDS?)
where A € RVM with A;j = o({a}, x:) + b;).

@ Error estimates:

[val(PD¢) — val(PR.)|, |val(PD5®) — val(PRY®)| = O(dHausdort(£2, 1))

@ Equivalent to linear programming problems, solvable using the simplex method.

> Advantage: Terminates at an extreme point of the solution set, which
corresponds to a solution of the primal problems.
> Limitation: Suffer from the curse of dimensionality.

LIU (FAU DCN-AvH) Benasque Aug 2024 22/28



High-dimensional scenario

@ Apply the SGD algorithm to the following overparameterized problem:

N
. A
Infee(RxQ)F_’ lwlla + N Z ZWJU (aj, xi) + bj) — )

Jj=1

where P is large *.

!The convergence properties of SGD for the training of overparameterized NNs have
been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019],
[Bach, 2024, Chp.12], etc.
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. A

infocmxay lwlla + N Z( pr((a;,x;) +bi) =i |,
=1\ j=1

where P is large *.

@ Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous
solution, obtaining one with fewer than N activated neurons.
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High-dimensional scenario

@ Apply the SGD algorithm to the following overparameterized problem:

P

N

. A

infocmxay lwlla + N Z( pr((a;,x;) +bi) =i |,
=1\ j=1

where P is large *.

@ Use the sparsification method developed in [L.-Zuazua, 2024] to filter the previous
solution, obtaining one with fewer than N activated neurons.

This approach is free from the curse of dimensionality but lacks rigorous convergence
analysis.

!The convergence properties of SGD for the training of overparameterized NNs have
been extensively studied recently, including [Chitzat-Bach, 2018], [Zhu-Li-Song, 2019],
[Bach, 2024, Chp.12], etc.
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Classification in 2-D

Testing Accuracy

Testing Accuracy

—e— Testing accuracy (6)")

—e— Testing accuracy (6),)

Testing accuracy (pre-trained) Testing accuracy (pre-trained)

A

(a) Datasets. (b) Testing accuracy w.r.t. €. (c) Testing accuracy w.r.t. A.

Conclusion:

o If the datasets have clear separable boundaries, consider (Pg), (Pe)
with ¢ = 0, or (Pfg) with A\ — oo;

o If the datasets have heavily overlapping areas, consider the regression
problem (P;\eg) with a particular range of A ~ Wfl(mtrain, Miest)-
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Classification in a high-dimensional space

m @ The Mnist dataset, vectors in R****°.

Training data: 300 samples of

numbers 0, 1, and 2.
El :

Testing data: 1000 samples of

numbers 0, 1, and 2.
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Classification in a high-dimensional space

m @ The Mnist dataset, vectors in R****°.

@ Training data: 300 samples of

E numbers 0, 1, and 2.
@ Testing data: 1000 samples of
numbers 0, 1, and 2.

—— [l

Testing Accuracy
Number of activated neurons

—e— Testing accuracy (Adam)

% Testing accuracy (sparsified solution)

o o W 50 )
Number of neurons P Number of iterations &

(a) Testing accuracy w.r.t. P. (b) |lwl|lgo w.r.t. the iteration number.
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