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The Problem

Data-driven modelling: Starting from time dependent data,
the goal is to build a model for simulation and/or prediction

Data (e.g., position of particles, temperature, etc.)
{(ti, xi)}ni=1 for time ti comes from sensors
The model has to be chosen within a certain class
(ODEs, PDEs, SDEs, etc.)
The coefficients of the model have to be optimized to
explain the observed data
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A Crucial Observation

Observation: Traditional approaches like Poincaré Maps to
model dynamical systems often require nonlinear
transformations, which can complicate analysis and
predictions.

Intuition Behind Koopman Approach

The Koopman operator enables a linear representation of
nonlinear dynamics by acting on observables, transforming the
problem into an infinite dimensional Banach space, where
functional analysis techniques can be employed.
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Koopman Operators for Discrete Systems

For discrete-time systems, let f : X → Rd for a Banach space
X , called the state space, be a continuous map describing the
system dynamics

xk+1 = f(xk), ∀k ∈ N.

The Koopman operator K acts on a function g ∈ C(Rd)
(often called observable) as

(Kg)(x) = g(f(x)).

This operator is linear, enabling the prediction of future values
of observables.
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Koopman Operators for Continuous Systems

Generalization for continuous-time systems is straight forward
and the Koopman operator Kt is then defined as

(Ktg)(x) = g(ft(x))

where ft is the flow map associated with the ODE.
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Properties of the Continuous Koopman Operator

Semigroup Property:
The continuous Koopman operator Kt forms a semigroup.
This semigroup property implies Kt+s = KtKs for all
t, s ≥ 0.
Generator:
The generator L of the Koopman semigroup is given by:

Lg = lim
t→0+

Ktg − g

t

The generator captures the infinitesimal evolution of
observables. For the dynamical system ẋ = f(x) it is
L = f · ∇.
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Predicting Observables Using Koopman
Eigenfunctions

Knowledge of the spectral properties of the Koopman operator
can allow prediction of the future value of an observable.
Suppose ϕ is an eigenfunction of K with eigenvalue λ. Then:

ϕ(xk+l) = λlϕ(xk) ∀l ∈ N

Given the current value of ϕ(xk), the future value can be
predicted easily.
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(Continued)

If the observable g of interest can be expanded as:

g =
∑
i

λiϕi

using Koopman eigenpairs (ϕi, λi), then:

g(xk+l) =
∑
i

λliϕi(xk)

This allows prediction of the future value of f using the linear
properties of the Koopman operator.
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Example: Continuous Spectrum Issue

While this approach is appealing, it has a main drawback:
eigenfunction expansions of observables may not exist.

Consider for this Rθ : S1 → S1 as an irrational rotation and
Kθ : L

2(m) → L2(m).

⇝ σ(Kθ) = S1

Example not pathological; based on it e.g. the famous
Pendulum has also a continuous spectrum.
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Extended Dynamic Mode Decomposition (EDMD)
(1/4)

We want to approximate Kτ in a data-driven manner. We use
the technique known as EDMD:

We use snapshots of data (ti, xi, yi)
n
i=1, where

xi is a vector in the state space X , containing all the
necessary variables that describe the condition or
configuration of the system at that moment and
yi = fti+τ (xi) for a time step τ > 0.

In practice, if (ti, xi)ni=1 is the measured data, we simply
restructure it into (ti, xi, xi+1)

n−1
i=1
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EDMD (2/4)

xi at time ti System ft yi = fti + (xi)

State Space State Space 

Observable g(xi) Observable g(yi)

Given Data (ti, xi, yi)

Figure: Structure of the assumed Data
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EDMD (3/4)

Let ϕ1, . . . , ϕℓ and ψ1, . . . , ψm be two finite dictionaries in
Cb([0, T ]× R). Construct the matrices

Ψn :=

ψ1(t1, x1) ψ1(t2, x2) . . . ψ1(tn, xn)
...

... . . . ...
ψm(t1, x1) ψm(t2, x2) . . . ψm(tn, xn)

 ∈ Rm×n,

Φτ
n :=

ϕ1(t1 + τ, y1) ϕ1(t2 + τ, y2) . . . ϕ1(tn + τ, yn)
...

... . . . ...
ϕl(t1 + τ, y1) ϕl(t2 + τ, y2) . . . ϕl(tn + τ, yn)

 ∈ Rl×n
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Approximating Kτ (4/4)

Given the matrices Ψn, Φτ
n, the approximation Kτ

mn of the
Koopman operator is computed as

Kτ
mn = argmin

K
∥Φτ

n −KΨn∥F ,

where F denotes the Frobenius norm

One can show that in the infinite data limit

lim
n→∞

Kτ
mnφ = Kτ

mφ,

a.s., where Kτ
m is the restriction of Kτ on span(ψ1, . . . , ψm).

C.Sorg 12 / 36



1 The Koopman Framework

2 Problem 1: Data-driven optimization of invariant measures
(ongoing; joint work with G. Fantuzzi, L. Liverani)

Problem Statement
Henon Map Example

3 Problem 2: Finite Predicting of Observables Using
Koopman Eigenfunctions (ongoing; joint work with L.
Liverani, E. Zuazua)

Problem Setup
First approaching: The Basis Pursuit Algorithm



1 The Koopman Framework

2 Problem 1: Data-driven optimization of invariant measures
(ongoing; joint work with G. Fantuzzi, L. Liverani)

Problem Statement
Henon Map Example

3 Problem 2: Finite Predicting of Observables Using
Koopman Eigenfunctions (ongoing; joint work with L.
Liverani, E. Zuazua)



Problem Statement: Finding UPOs in Chaotic
Dynamical Systems

Unstable Periodic Orbits (UPOs) are periodic trajectories
sensitive to initial conditions.
Theoretical Importance: often UPOs are dense in chaotic
attractors, providing insights into the structure of the
attractor.
Practical Importance: Critical in applications like space
transportation, where periodic trajectories are vital for
planning efficient satellite routes.
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UPOs and Invariant Measures

Invariant Measures: Measures that remain unchanged
under the dynamics of the system. For discrete dynamical
systems:

µ(f−1(A)) = µ(A)

UPOs are often connected to the extremal invariant
measures that maximize or minimize time averages of
observables.
The Poincaré map reduces the problem to a discrete
dynamical system, making it easier to work with invariant
measures.
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Koopman Operator in this Context

Invariant measures are closely related to the Koopman
operator, because µ is invariant if∫

v(f(x))− v(x) dµ(x) =

∫
Lv(x) dµ(x) = 0

for all compactly supported test functions v. Here L is
the generator of the discrete Koopman operator.
Koopman allows us to approximate the dynamics in a
data-driven manner, which is crucial when the system is
not fully known.

C.Sorg 15 / 36



Optimization Problem

Given an observable g : Rn → R and a compact set
K ⊂ Rn, solve:

g∗ = min
µ∈Pr(K)

∫
g(x) dµ(x),

where µ is invariant.
Reformulation using polynomial approximations:

Approximate the space of continuous functions C(K) by
polynomials R[x], dense in C(K) (special case of
Stone-Weierstrass).
The problem can be equivalently written as:

g∗ = min
µ∈P(K)

{∫
g(x) dµ(x)

∣∣∣∣ ∫ Lv(x) dµ(x) = 0, ∀v ∈ R[x]
}
.
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Polynomial Data Assumptions

f is a polynomial vector field, and each component of
f(x) is a polynomial of degree ≤ d.
The observable g : Rn → R is a polynomial of degree ≤ d.
The compact set K ⊂ Rn is defined by polynomial
inequalities

K = {x ∈ Rn : h1(x) ≥ 0, . . . , hm(x) ≥ 0},

where hi(x) are polynomials of degree ≤ d.
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Moment Method

The moment method is used to encode the invariance
condition in terms of moments of the measure.
The moment method is crucial because it allows the
optimization problem to be formulated in a
finite-dimensional space.
The moment method also ensures that the optimization
problem is linear, which is critical for solvability using
standard numerical techniques.
The use of polynomials is justified because they provide a
natural basis for the moment method, allowing for
representation of the optimization problem.
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Our Final Goal

We aim to apply these techniques to the classical
three-body problem, a chaotic system with applications in
aerospace.
The objective is to find UPOs that could be used in
mission planning and space transportation.
We are developing a method inspired by
Bramburger-Fantuzzi, focusing on two-dimensional
Poincaré maps.
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Demonstration: Henon Map

We have tested our code on the Henon Map, successfully
approximating the invariant measure.
The following slides show visual results, confirming the
code’s correctness and robustness.
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The Henon Map

Dynamics governed by:

f(x) =

(
1− ax21 + x2

bx1

)
.

Parameters: a = 1.4, b = 0.3 (chaotic dynamics).
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Illustrations

Figure: Fixed points of the Henon Map (explicit)

Henon Attractor
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https://youtu.be/qfUdwuyFv2o
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Stochastic Differential Equations

In concrete situations, there is often some intrinsic randomness
in the measurements and observations, for example:

Molecular dynamics
Evolution of stock prices
Data coming from biological processes (e.g. tumor
growth, cellular growth, spreading of genes)
Motion of pollutants in fluids
etc.

This motivates the study of data-driven modeling through
Stochastic Differential Equations (SDEs)
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The SDE model

We look at models in the following class of Itô SDEs

dXt = f(Xt)dt+
√
2ϵdBt,

where:
Xt ∈ Rd is an Itô process.
f : Rd → Rd is the drift term.
ϵ > 0 is the diffusion coefficient.
Bt is a d-dimensional Brownian motion.

This Itô SDE is known as the Langevin dynamics, which
models the velocity of particles subject to both deterministic
forces and random noise
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Data and SDEs

The data have the following structure:
Data snapshots (xi, yi, ti)ni=1

xi = Xti , yi = Xti+τ for a τ > 0

These are the observed values of the stochastic process at
times ti and ti + τ

Goal: Suppose we have some data, realization of the SDE

dXt = f(Xt)dt+
√
2ϵdBt.

Can we identify the drift f and the diffusion ε in a data-driven
manner?
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Comparing data and synthetic SDE

To fit f and ε we need to minimize the "distance" between
our synthetic SDE model and the observed data

Due to the intrinsic randomness, it is not possible to compare
directly the data with the solutions of the synthetic model

We need a deterministic quantity. Given an observable
g = g(x), we try to learn

E[g(Xt+τ )|Xt = x],

that is, the expected value of the random variable g(Xt) at
time t+ τ , given the observation Xt = x at time t
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Koopman Operator for Stochastic Dynamics

Extending Koopman theory to stochastic differential equations
(SDEs) involves regularizing dynamics with noise. Consider
the Itô SDE:

dXt = f(Xt)dt+
√
2ϵdBt

where Xt ∈ Rd, f : Rd → Rd, and Bt is a d-dimensional
Brownian motion. The stochastic Koopman operator Kt acts
on a function g as:

(Ktg)(x) = E[g(Xt+τ ) | Xt = x]
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The Koopman generator

Even though I can approximate the Koopman operator, I still
have no information on f and ε. This information is hidden in
the infinitesimal generator of the Koopman operator

Lg = lim
τ→0+

E[g(Xt+τ )|Xt = x]− g(x)

τ

is the operator that describes the instantaneous evolution of
observables on the trajectories of the SDE. Indeed, in this case

L = f · ∇+ ε∆
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Approximating the Koopman generator

In order to fit f and ε we need the Koopman generator we
also need to approximate. This can be done as

Lτ
mng =

E[Kτ
mng(Xt)|Xt = x]− g(x)

τ
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Fitting f and ε

At this point, since we know that the real generator of the
SDE has the form

L = f · ∇+ ε∆,

we find the approximation of f , ε solving a minimization
problem

(f̂ , ε̂) = arg min
f∈H,ε∈R

∥Lτ
mnΦ−f ·∇Φ−ε∆Φ∥H+ν∥(f, ε)∥H×R,

where H is a suitable function space and Φ is the dictionary of
function we used for EDMD
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Important Results

Problem 1: We know that (Bramburger, Fantuzzi, 2024)

lim
τ→0

lim
m→+∞

lim
n→+∞

Lτ
mng = lim

m→+∞
lim
τ→0

lim
n→+∞

Lτ
mng = Lg

In other words, Lτ
mn converges strongly to L

Problem 2: Needs work! In particular, we need to quantify
the distance

∥f̂ − f∥H + |ε̂− ε|

in the limits τ → 0, m→ +∞ and n→ +∞. Is it true that
f̂ → f and ε̂→ ε when Lτ

mm → L?

C.Sorg 31 / 36



The Basis Pursuit Algorithm

Problem: In practice, we do not have infinite data or
dictionaries!

We look for ways to improve the convergence: After having
computed f̂ and ε̂, we can compute an approximate spectrum
and eigenfunctions of L̂ = f̂ · ∇+ ε̂ ·∆.

If H is chosen well (i.e. f̂ is regular enough and satisfies
certain growth assumptions), the eigenfunctions will generate
a basis, which can be used to perform EDMD and repeat the
whole process (step 2 and step 3)
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The Basis Pursuit Algorithm

Note that the algorithm works only if we have a basis of
eigenfunctions. But this is fine if we work with SDEs and we
make an additional assumption on f

Proposition

Let f = ∇U and let U be such that

lim inf
|x|→+∞

|U(x)|
x2

> 0.

Then the spectrum σ(L) = σ(f · ∇+ ε∆) is discrete and
there exists a basis of eigenfunctions.
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Steps of the Algorithm

0. Preparation. Obtain Lτ
mn with EDMD.

1. First identification. Use the information f · ∇+ ε∆ and
fit f (1) and ε(1) as

(f (1), ε(1)) = argminf,ε∥Lτ
mnΦ− (f · ∇Φ+ ε∆Φ)∥,

2. Update. From step 2:

L(1) = f (1) · ∇+ ε(1)∆.

For this operator, we can compute numerically eigenvalues λi
and eigenfunctions ϕ(1)

i . Update the basis Φ used in step 0.
3. Iterate. Iterate M times ⇝ f (M) and ε(M) that, hopefully,
converge to the right values f and ε.
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Possible Advantages

Improved Approximation:
Each iteration improves the approximation of the
generator L by getting closer to the true eigenfunctions.
This leads to a more accurate finite-dimensional
representation of the infinite-dimensional Koopman
operator.

Data Efficiency:
The iterative basis update converges towards the correct
eigenfunctions, requiring potentially less data to achieve
accurate models.
This enhances the efficiency and accuracy of data-driven
modeling, especially in high-dimensional systems.
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Thank You for Your
Attention! ,

If you have any questions, feel free to ask/discuss.
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