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Efficient Simulation and Optimal Control of Large-scale Hyperbolic Networks:
Characteristic Analysis, Real-time Capable Methods and Algorithms

Project Summary

Large-scale hyperbolic networks, such as gas distribution networks, pose significant challenges
in terms of efficient modeling, real-time capability, and optimization. In response, this proposal
outlines a six-month research project aimed at addressing these challenges through the
integration of mathematical modeling, PDE analysis, simulation, and optimization techniques,
on the basis of the applicant’s expertise in the area of control theory for networked nonlinear
hyperbolic systems.

The project focuses on developing novel methods and algorithms for solving large-scale
hyperbolic networks and their various control problems, with a specific emphasis on gas networks.
Key components of the proposed research include the utilization of the Random Batched Method
(RBM), Characteristic Method (CM), Domain Decomposition (DD) and stochastic algorithms to
enable efficient simulation and optimal control. The networked wave equations serve as a
prototypical example for the study, allowing for the development of a numerically efficient stochastic
approximation and convergence analysis. These methodologies will subsequently be applied
to general first-order hyperbolic systems. The effectiveness of the proposed methods will be
demonstrated through a series of numerical examples, showcasing their ability to address the
challenges associated with large-scale hyperbolic networks.

1 Starting Point

Start of the art and preliminary work.

Hyperbolic equations and their coupled systems on network structures are vital mathematical
models used to describe wave phenomena, propagation processes, and conservation laws. They
find extensive applications in fields like fluid mechanics, solid mechanics, and electromagnetics,
playing a crucial role in predicting phenomena such as nonlinear vibrations in gas flows or fluids,
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I Accurate and Fast Prediction of Numerical Solutions/ Optimal Control for
Networked PDEs is of significant interest for many scientific applications, say,
real-time capable methods and algorithms.

I Large scale networks may contain more than 20K edges, many nonlinear elements,
and complex topological structure, e.g. circles/loops inside.

I Recent success of stochastic methods (e.g. stochastic gradient descent) in
optimization and training large (neural) networks.
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Initial Motivation: Simulation and control of large interacting particle systems can
be computationally demanding.

There are N(N ≠ 1)/2 interaction forces between N particles.
∆ Computational cost grows rapidly when N is large.
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Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

I Divide the N particles randomly into batches of size P Ø 2.
I Consider only interactions between particles in the same batch.
I Do a simulation over a short time interval of length h.
I Repeat.
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Origins of the Random Batch Method | 4

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]
In formulas:

Main Results:
I the RBM-solution converges to the solution of the original problem as h æ 0.
I the RBM reduces the computational cost from O(N2) to O(PN).

I Divide the N particles randomly into batches of size P Ø 2.
I Consider only interactions between particles in the same batch.
I Do a simulation over a short time interval of length h.
I Repeat.
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Introduction The RBM in LQOC Numerical example Perspectives

In formulas

First-order particle dynamics: For each particle i ∈ {1, 2, . . . ,N}

ẋi (t) =
1

N − 1

N∑

j=1
j !=i

fij(xj(t)− xi (t)).

Random Batch Method.

1 Set k = 0 and set x̃i (0) for all i ∈ {1, 2, . . . ,N}.
2 Partition {1, 2, . . . ,N} into batches of size P ≥ 2, i.e.

{1, 2, . . . ,N} =
⋃̇N/P

b=1
Bk
b , |Bk

b | = P .

3 For each i , solve on [kh, (k + 1)h]

ẋh,i (t) =
1

P − 1

∑

j∈Bk
b(i), j !=i

fij(xh,j(t)−xh,i (t)), b(i) s.t. i ∈ Bk
b(i).

4 Set k ← k + 1 and go to step 2.

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain
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Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

I Divide the N particles randomly into batches of size P Ø 2.
I Consider only interactions between particles in the same batch.
I Do a simulation over a short time interval of length h.

I Repeat.
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RBM for Optimal Control | 5

I The RBM can speed up the solution of optimal control problems governed by
interacting particles systems [D. Ko, E. Zuazua, 2021] (only numerical experiments).

I The first convergence proof is given in [D.Veldman, E.Zuazua, 2022] for finite
dimensional linear-quadratic optimal control in the operator-splitting setting.

min
u

⁄ T

0
(|x(t) ≠ xd(t)|2) + |u(t)|2dt,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

I Whether this algorithm can accelerate the simulation and optimization of nonlinear
dynamics and networked infinite-dimensional systems, its convergence theory and
applications are still open issues! (A is unbounded operator).
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Introduction The RBM in LQOC Numerical example Perspectives

The Random Batch Method in Optimal Control

Instead of computing the minimizer u∗(t) of

J =

∫ T

0
f0(x(t), u(t)) dt,

subject to

ẋi (t) =
1

N − 1

N∑

j=1
j "=i

fij(xj(t)− xi (t))+
M∑

k=1

gik(xi (t))uk(t),

it is faster to compute the minimizer u∗h(t) of J subject to

ẋh,i (t) =
1

P − 1

∑

j∈Bk
b(i)

j "=i

fij(xh,j(t)− xh,i (t))+
M∑

k=1

gik(xi (t))uh,k(t).

[D. Ko, E. Zuazua, Math. Models Methods Appl. Sci., Vol. 31, No. 8, 2021].
Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain
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I The first convergence proof is given in [D.Veldman, E.Zuazua, 2022] for finite dimensional linear-quadratic
optimal control in the operator-splitting setting.

minu

s T

0
(|x(t) ≠ xd(t)|2) + |u(t)|2dt,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

I Convergence Results
> For a deterministic control u(t)

E[|xh(t) ≠ x(t)|2] Æ hVar[Ah](ÎAÎt2 + 2t)(|x0| + |Bu|L1 )2.

> For a stochastic control uh(Ê, t) satisfying |Buh(Ê)|L2 Æ U

E[|xh(t) ≠ x(t)|2] Æ C[T,ÎAÎ]hVar[Ah](x0 + U
Ô

t).
> Optimality gap

E[|Jh(uú
h) ≠ J(uú)|] Æ C

1
hVar[Ah] + hVar[Ah]

2
.

> Convergence in the controls
E[|uú

h ≠ uú|2L2 ] Æ ChVar[Ah],

where E[Ah(t)] = A (ensured) and Var[Ah] = E[ÎAh(t) ≠ AÎ2] =
q2M

Ê=1

..q
mœSÊ

Am

fim
≠ A

..2
pÊ .
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Theorem (D.V., E. Zuazua, Numerische Mathematik, 2022)

For a deterministic control u(t)

E[|xh(t)− x(t)|2] ≤ hVar[Ah](‖A‖t2 + 2t)(|x0|+ |Bu|L1)2.

For a stochastic control uh(ω, t) satisfying |Buh(ω)|L2 ≤ U

E[|xh(t)− x(t)|2] ≤ C[T ,‖A‖]hVar[Ah](x0 + U
√
t).

Optimality gap

E[|Jh(u∗h)− J(u∗)|] ≤ C
(√

hVar[Ah] + hVar[Ah]
)
.

Convergence in the controls

E[|u∗h − u∗|2L2 ] ≤ ChVar[Ah].

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain
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The RBM in linear-quadratic optimal control (1/2)

RBM to approximate the minimizer u∗(t) of

min
u∈L2(0,T ;Rq)

J(u) =

∫ T

0

(
|x(t)− xd(t)|2Q + |u(t)|2R

)
dt,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

Step 1 Split the matrix A as

A =
M∑

m=1

Am.

Step 2 Enumerate the 2M subsets of {1, 2, . . . ,M} as S1, S2, . . . S2M .
Assign to each subset Sω a probability pω.

Step 3 Divide [0,T ] into K subintervals [tk−1, tk) of length ≤ h. For
each [tk−1, tk), randomly choose an index ωk ∈ {1, 2, . . . , 2M}
according to the probabilities p". Set ω = (ω1,ω2, . . . ,ωK ).

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain
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The RBM in linear-quadratic optimal control (2/2)

Step 4 Define the matrix Ah(ω, t)

Ah(ω, t) =
∑

m∈Sωk

Am

πm
, t ∈ [tk−1, tk),

where πm is the probability that m is an element of the
selected subset, i.e.

πm =
∑

ω∈{ω|m∈Sω}

pω.

Step 5 Compute the minimizer u∗h(ω, t) of the ‘simpler’ LQR problem

min
u∈L2(0,T ;Rq)

Jh(ω, u) =

∫ T

0

(
|xh(ω, t)− xd(t)|2Q + |u(t)|2R

)
dt,

ẋh(ω, t) = Ah(ω, t)xh(ω, t) + Bu(t), xh(ω, 0) = x0.

Daniël Veldman IX workshop on Partial Differential Equation, Optimal Design, and Numerics 2022, Benasque, Spain
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RBM for PDEs?

RBM for Optimal Control | 7

I The RBM can speed up the solution of optimal control problems governed by
interacting particles systems [D. Ko, E. Zuazua, 2021] (only numerical experiments).

I The first convergence proof is given in [D.Veldman, E.Zuazua, 2022] for finite
dimensional linear-quadratic optimal control in the operator-splitting setting.

I Whether this algorithm can accelerate the simulation and optimization of nonlinear
dynamics and networked infinite-dimensional systems (A is unbounded
operator), its convergence theory and applications are still rather open! e.g. see
RBM for abstract evolution equations of parabolic type in A randomized operator splitting
scheme inspired by stochastic optimization methods, [M. Eisenmann, T. Stillfjord, Numerisch
Mathematik, 2024]
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RBM for Hyperbolic equations: Toy Example | 8

Consider the transport equation
yt(t, x) + v(x)yx(t, x) = 0, t œ (0, T ), x œ R,

y(0, x) = y0(x), x œ R,

where v(x) is bounded and Lipschitz, y0 is globally Lipschitz.
I We split the generator of the semi-group as

≠v(x) ˆ

ˆx¸ ˚˙ ˝
A

=
Mÿ

m=1
≠vm(x) ˆ

ˆx¸ ˚˙ ˝
Am

,

where the vm(x) are Lipschitz and bounded.
I In each time step, we randomly choose batch Bk, subset of {1, .., M}, of size P and consider the velocity

field as
vh(Ê, x) = M

P

ÿ

mœBk

vm(x), t œ [tk≠1, tk).
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Let  be the solution resulting from , then there exists a 
constant C such that 

yh(ω, t, x) vh(ω, t, x) h = maxk∈{1,...,K}tk − tk−1,
𝔼[ |yh(t, x) − y(t, x) |2 ] ≤ C[P,M,T,Lip]h .
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v(x) © 1 = v1(x) + v2(x)
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Figure 1: The velocity fields v1(x) and v2(x)

where µ is such that for t, !, x, and y

hx� y, vh(!, t, x)� vh(!, t, y)i  µ|x� y|2. (50)

Convergence of the proposed method of the proposed method can now be ob-
tained for classical solutions. By the mean value theorem

|yh(!, t, x)� y(t, x)| = |y0(⇠h(!, 0; t, x))� y0(⇠(0; t, x))|
 (⇠h(!, 0; t, x)� ⇠(0; t, x))|y00|1. (51)

Squaring the above inequality and taking the expectation, it follows that

E[|yh(t, x)� y(t, x)|2]  Chte
2µt|y00|21. (52)

Example 1. One could for example choose velocity fields v1(x) and v2(x) shown
in Figure 1 which are given by

v1(x) = v0

8
<

:

1 x < �",
1
2 � x

2" x 2 [�", "],
0 x > ",

(53)

v2(x) = v0

8
<

:

0 x < �",
1
2 + x

2" x 2 [�", "],
1 x > ",

(54)

for some " > 0.

Example 2. In this example, we consider the limit situation that ✏ ! 0 in
(72)-(73) at Example 1. In the time [0, T ], we invest the explicit solution in two
steps..... (to do).

11



Transport equation: VisualizationToy Example: Visualization h = 0.01 | 10

v(x) © 1 = v1(x) + v2(x)

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen

�" +"

0

v0

x

v

v1(x)
v2(x)

Figure 1: The velocity fields v1(x) and v2(x)

where µ is such that for t, !, x, and y

hx� y, vh(!, t, x)� vh(!, t, y)i  µ|x� y|2. (50)

Convergence of the proposed method of the proposed method can now be ob-
tained for classical solutions. By the mean value theorem

|yh(!, t, x)� y(t, x)| = |y0(⇠h(!, 0; t, x))� y0(⇠(0; t, x))|
 (⇠h(!, 0; t, x)� ⇠(0; t, x))|y00|1. (51)

Squaring the above inequality and taking the expectation, it follows that

E[|yh(t, x)� y(t, x)|2]  Chte
2µt|y00|21. (52)

Example 1. One could for example choose velocity fields v1(x) and v2(x) shown
in Figure 1 which are given by

v1(x) = v0

8
<

:

1 x < �",
1
2 � x

2" x 2 [�", "],
0 x > ",

(53)

v2(x) = v0

8
<

:

0 x < �",
1
2 + x

2" x 2 [�", "],
1 x > ",

(54)

for some " > 0.

Example 2. In this example, we consider the limit situation that ✏ ! 0 in
(72)-(73) at Example 1. In the time [0, T ], we invest the explicit solution in two
steps..... (to do).

11

h=0.001



Transport equation: Visualization (splitting at the node)Toy Example: Visualization h = 0.01 | 10

v(x) © 1 = v1(x) + v2(x)
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Networked Linear Hyperbolic Systems | 14

General hyperbolic system after rescaling on (t, x) œ (0, T ) ◊ (0, L)

ˆy
ˆt

(t, x) + �(t, x)ˆy
ˆx

(t, x) = G(t, x)y(t, x) + B(t, x)uint(t, x) + f(t, x),
yin(t) = K(t)yout(t) + P(t)ub(t) + g(t), y(0, x) = y0(x),

I y(t, x) := (y1
, ..., y

p

¸ ˚˙ ˝
y+

, y
p+1

, ..., y
n

¸ ˚˙ ˝
y≠

).

I The matrix �(t, x) is diagonal and its entries ⁄i(t, x) are Lipschitz continuous in x,
and real ⁄i(t, x) > 0(i = 1, ..., p), ⁄i(t, x) < 0(i = p + 1, ..., n).

I yin(t) =
C

y+(t, 0)
y≠(t, L)

D

, yout(t) =
C
y+(t, L)
y≠(t, 0)

D

,

Yue Wang RBM_hyper | Jilin 2024 FAU-Erlangen Nürnberg



Networked Linear Hyperbolic Systems | 14

General hyperbolic system after rescaling on (t, x) œ (0, T ) ◊ (0, L)

ˆy
ˆt

(t, x) + �(t, x)ˆy
ˆx

(t, x) = G(t, x)y(t, x) + B(t, x)uint(t, x) + f(t, x),
yin(t) = K(t)yout(t) + P(t)ub(t) + g(t), y(0, x) = y0(x),

I Compatibility condition and regularity assumptions are required.
> y0 œ Lip(0, L;Rn),
> g œ LŒ(0, T ; Lip(0, L;Rn◊n)),
> B œ LŒ(0, T ; Lip(0, L;Rn◊mint )),
> f œ LŒ(0, T ; Lip(0, L;Rn)),
> K œ Lip(0, T ;Rn◊n), P œ Lip(0, T ;Rn◊mb ), g œ Lip(0, T ;Rn).
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Randomized Splitting Scheme | 16

Step 1 Split the matrices �(t, x), G(t, x), and B(t) as

�(t, x) =
Mÿ

m=1
�m(t, x), G(t, x) =

Mÿ

m=1
Gm(t, x), B(t) =

Mÿ

m=1
Bm(t),

Step 2 Divide the time interval (0, T ) into K subintervals with maximal length h, i.e.

0 = t0 < t1 < t2 < . . . < tK≠1 < tK = T, h = max
kœ{1,2,...,K}

tk ≠ tk≠1

Step 3 In each time step, randomly choose batch Bk µ {1, ..., M} of size P , and define
the randomized matrices

Lh(Ê, t, x) = M

P

ÿ

mœBk

�m(t, x),

and Gh, Bh similarly, where Ê = (Ê1, Ê2, ..., ÊK) recording the chosen batches.
Yue Wang RBM_hyper | Jilin 2024 FAU-Erlangen Nürnberg



Question 1: Is  a good approximation of  for  sufficiently small?yh(ω, t, x) y(t, x) h

ˆy
ˆt

(t, x) + �(t, x)ˆy
ˆx

(t, x) = G(t, x)y(t, x) + B(t, x)uint(t, x) + f(t, x),
yin(t) = K(t)yout(t) + P(t)ub(t) + g(t), y(0, x) = y0(x),

» RBM (STEPs 1,2,3) »
Randomized-System

ˆyh

ˆt
(Ê, t, x)+Lh(Ê, t, x)ˆyh

ˆx
(Ê, t, x)=Gh(Ê, t, x)yh(Ê, t, x)+Bh(Ê, t, x)uint(t, x) +f(t, x),

yh,in(Ê, t) = K(t)yh,out(Ê, t) + P(t)ub(t) + g(t), yh(Ê, 0, x) = y0(x),

where E[Lh(t, x)] = �(t, x), E[Gh(t, x)] = G(t, x), E[Bh(t)] = B(t).
Question 1: Is yh(Ê, t, x) a good approximation of y(t, x) for h su�ciently small?
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Randomized Optimal Control Problem

Randomized Optimal Control Problem | 18

min
uint,ub

Jh(Ê, uint, ub) =
⁄ L

0
|yh(Ê, T, x) ≠ yT (x)|2 dx +

⁄ T

0

⁄ L

0
|yh(Ê, t, x) ≠ yd(t, x)|2 dx dt

+
⁄ T

0

⁄ L

0
|uint(t, x)|2 dx dt +

⁄ T

0
|ub(t)| dt,

where yh(Ê, t, x) is the solution of

ˆyh

ˆt
(Ê, t, x)+Lh(Ê, t, x)ˆyh

ˆx
(Ê, t, x)=Gh(Ê, t, x)yh(Ê, t, x)+Bh(Ê, t, x)uint(t, x) +f(t, x),

yh,in(Ê, t) = K(t)yh,out(Ê, t) + P(t)ub(t) + g(t), yh(Ê, 0, x) = y0(x).

The minimizer (for a fixed Ê) is denoted by (uú
h,int(Ê, t, x), uú

h,b(Ê, t)).
Question 2: Does (uú

h,int(Ê, t, x), uú
h,b(Ê, t)) approximate (uú

int(t, x), uú
b(t)) for h small?

Yue Wang RBM_hyper | Jilin 2024 FAU-Erlangen NürnbergQuestion 2: Does  approximate for  small?(u*h,int(ω, t, x), u*h,b(ω, t)) (u*int(t, x), u*b (t)) h

min
uint,ub

Jh(ω, uint, ub) =
1
2

∥yh(ω) − yd∥2
L2(Q) +

s0

2
|uint |

2
W1,2(Q) +

s1

2
|ub |2

W1,2(0,T)

min
uint,ub

J(uint, ub) =
1
2

∥y − yd∥2
L2(Q) +

s0

2
|uint |

2
W1,2(Q) +

s1

2
|ub |2

W1,2(0,T)

ˆy
ˆt

(t, x) + �(t, x)ˆy
ˆx

(t, x) = G(t, x)y(t, x) + B(t, x)uint(t, x) + f(t, x),
yin(t) = K(t)yout(t) + P(t)ub(t) + g(t), y(0, x) = y0(x),

» RBM (STEPs 1,2,3) »
Randomized-System

ˆyh

ˆt
(Ê, t, x)+Lh(Ê, t, x)ˆyh

ˆx
(Ê, t, x)=Gh(Ê, t, x)yh(Ê, t, x)+Bh(Ê, t, x)uint(t, x) +f(t, x),

yh,in(Ê, t) = K(t)yh,out(Ê, t) + P(t)ub(t) + g(t), yh(Ê, 0, x) = y0(x),

where E[Lh(t, x)] = �(t, x), E[Gh(t, x)] = G(t, x), E[Bh(t)] = B(t).
Question 1: Is yh(Ê, t, x) a good approximation of y(t, x) for h su�ciently small?

Yue Wang RBM_hyper | Jilin 2024 FAU-Erlangen Nürnberg

where  is the solution ofy(t, x)

The minimizer is denoted by .(u*int(t, x), u*b (t))



   Theorem 1

Convergence Results

For  and , there exists a constant  
independent of the considered time grid such that for all 


              

uint(t, x) ∈ L∞(0,T; Lip(0,L; ℝmint)) ub(t) ∈ Lip(0,T; ℝmb) C
t ∈ [0,T]

𝔼[ |yh(t) − y(t) |2
L∞(0,L;ℝn) ] ≤ Ch log(h−1) .

.

   Theorem 2

Remark: Ch log(h−1) ≤
C
ϵe

h1−ϵ, ∀ϵ > 0.

D.W.M. VELDMAN, Y. WANG, E. ZUAZUA 2024. Efficient Simulation and Optimal Control of Networked Linear Hyperbolic Systems by the Random Batch Method 
(proceeding). 

Convergence in controls: 

. limh→0𝔼[ |u*h,int − u*int |
2
L2((0,L)×(0,T);ℝmint) + |u*h,b − u*b |2

L2(0,T;ℝmb) ] = 0



Sketch of proof for Theorem 1 | 20

I Consider the characteristics terminating at (t, x) for s œ [0, t]
›̇h,i(Ê, s; t, x) = ¸h,i(Ê, s, ›h,i(Ê, s; t, x)), ›̇i(s; t, x) = ⁄i(s, ›i(s; t, x)),
›h,i(Ê, t; t, x) = ›i(t; t, x) = x.

(t, x)

0 x L

tin,h,i(Ê, t, x)

tin,i(t, x)

›i(s; t, x)

›̄i(s; t, x) ›h,i(Ê, s; t, x)

›̄h,i(Ê, s; t, x)

s
(t, x)

0 x L

tin,h,i(Ê, t, x)

tin,i(t, x)

›i(s; t, x)

›̄i(s; t, x)

›h,i(Ê, s; t, x)
›̄h,i(Ê, s; t, x)

yi(t, x) =
⁄ t

tin,i(t,x)
[Gy + Buint + f ]i(s, ›i(s; t, x)) ds +

;
y0,i(›i(0; t, x)) if tin,i(t, x) = 0,

[Kyout + Pub + g]i(tin,i(t, x)) if tin,i(t, x) > 0.

Yue Wang RBM_hyper | Jilin 2024 FAU-Erlangen Nürnberg



Sketch of proof for Theorem 1 | 20

I Consider the characteristics terminating at (t, x) for s œ [0, t]

›̇h,i(Ê, s; t, x) = ¸h,i(Ê, s, ›h,i(Ê, s; t, x)), ›̇i(s; t, x) = ⁄i(s, ›i(s; t, x)),
›h,i(Ê, t; t, x) = ›i(t; t, x) = x.

I We show that there is a constant C such that for s œ [0, t]

E[|›h,i(s; t, x)≠›i(s; t, x)|2] Æ Ch, E[|›h,i(s; t)≠›i(s; t)|2LŒ(0,L;Rn)] Æ Ch log(h≠1).

I Let th,in,i(Ê, t, x) and tin,i(t, x) denote the values of s for which (s, ›h,i(Ê, s; t, x))
and (s, ›i(s; t, x)) leave (0, T ) ◊ (0, L). We then show there is a constant C s.t.

E[|th,in,i(t, x)≠tin,i(t, x)|2] Æ Ch, E[|th,in,i(t)≠tin,i(t)|2LŒ(0,L;Rn)] Æ Ch log(h≠1).

I Integrating yh,i(Ê, s, ›h,i(Ê, s; t, x)) and yi(s, ›i(s; , t, x)) along characteristics and
some cumbersome calculations, we arrive at Theorem 1.

Yue Wang RBM_hyper | Jilin 2024 FAU-Erlangen Nürnberg
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Diamond Directed Graph

(j 2 {1, 2, . . . , |V |}), E the set of edges ei enumerated as ei (i 2 {1, 2, . . . , |E|}), and
L = R|E| the vector of edge lengths `ei . The set of edges connected to the vertex vj 2 V
is denoted by E(vj) and the degree of vj is |E(vj)|. We assume that |E(vj)| > 1 for all
vertices vj . The set of edges is then also described by the incidence matrixD 2 R|V |⇥|E|

with the element defined as

Dji =

8
><

>:

�1, if node vj is the start point of edge ei;

1, if node vj is the end point of edge ei;

0, otherwise,

(1)

Example 2.1. (Diamond directed Graph) Consider the diamond network in Figure
1 with vertices V = {v1, v2, ..., v6} and edges E = {e1, ..., e7}. With the directions for
the edges as in Figure 1, we obtain the incidence matrix

D =

2

6666664

�1 0 0 0 0 0 0
1 �1 �1 0 0 0 0
0 1 0 �1 �1 0 0
0 0 1 1 0 �1 0
0 0 0 0 1 1 �1
0 0 0 0 0 0 1

3

7777775
. (2)

v1

v2

v5v3

v4

v6

e1

e2

e3

e4

e5

e6

e7

Figure 1. The diamond graph considered in Example 2.1

On each edge ei, we introduce a coordinate x 2 [0, `ei ] for which x = 0 corresponds
to the starting point and x = `ei corresponds to the end point. The transversal dis-
placement of the string on the edge ei 2 E is denoted yei : [0,1) ⇥ [0, `ei ] 7! R. The
solutions yei(t, x) satisfy the following equations

8
>>>>>><

>>>>>>:

yei
tt
(t, x)� c2eiy

ei
xx(t, x) = 0 ei 2 E,

X

ei2E(vj)

Djiceiy
ei
x (t, vj) = ūvj (t) vj 2 V,

yei(t, vj) = yek(t, vj), 8ei, ek 2 E(vj), vj 2 V,

yei(0, x) = yei0 (x), yei
t
(0, x) = yei1 (x), ei 2 E,

(3)

3Net

Vertices:  
Edges:    
Incidence Matrix: 

V = {v1, v2, . . . , v6}
E = {e1, . . . , e7}

(j 2 {1, 2, . . . , |V |}), E the set of edges ei enumerated as ei (i 2 {1, 2, . . . , |E|}), and
L = R|E| the vector of edge lengths `ei . The set of edges connected to the vertex vj 2 V
is denoted by E(vj) and the degree of vj is |E(vj)|. We assume that |E(vj)| > 1 for all
vertices vj . The set of edges is then also described by the incidence matrixD 2 R|V |⇥|E|

with the element defined as

Dji =

8
><

>:

�1, if node vj is the start point of edge ei;

1, if node vj is the end point of edge ei;

0, otherwise,

(1)

Example 2.1. (Diamond directed Graph) Consider the diamond network in Figure
1 with vertices V = {v1, v2, ..., v6} and edges E = {e1, ..., e7}. With the directions for
the edges as in Figure 1, we obtain the incidence matrix

D =

2

6666664

�1 0 0 0 0 0 0
1 �1 �1 0 0 0 0
0 1 0 �1 �1 0 0
0 0 1 1 0 �1 0
0 0 0 0 1 1 �1
0 0 0 0 0 0 1

3

7777775
. (2)
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Figure 1. The diamond graph considered in Example 2.1

On each edge ei, we introduce a coordinate x 2 [0, `ei ] for which x = 0 corresponds
to the starting point and x = `ei corresponds to the end point. The transversal dis-
placement of the string on the edge ei 2 E is denoted yei : [0,1) ⇥ [0, `ei ] 7! R. The
solutions yei(t, x) satisfy the following equations

8
>>>>>><

>>>>>>:

yei
tt
(t, x)� c2eiy

ei
xx(t, x) = 0 ei 2 E,

X

ei2E(vj)

Djiceiy
ei
x (t, vj) = ūvj (t) vj 2 V,

yei(t, vj) = yek(t, vj), 8ei, ek 2 E(vj), vj 2 V,

yei(0, x) = yei0 (x), yei
t
(0, x) = yei1 (x), ei 2 E,

(3)

3

Coupled Wave Equations on Diamond Networks



Coupled Wave Equations on Diamond Networks

v1

v2

v5v3

v4

v6

e1

e2

e3

e4

e5

e6

e7

Diamond Directed Graph

Riemann Variables for Each Wave Equation

Wt − ΛWx = 0, where Λ = (
−c1 0 . . . . . .

0 c1 . . . . . .
. . . . . . . . . . . . )

+ B.C. in the form of

where cei > 0 is the velocity of propagation on edge ei,

ūvj (t) =

(
�uvj (t), vj 2 VC ,

0 vj 2 V \VC

(4)

is the external Neumann (force) control acting only on vertices vj 2 VC ✓ V , and
yei0 (x) and yei1 (x) are the initial conditions for edge ei 2 E. The conditions in the
second line are of Kircho↵-type and the conditions in the third line assure continuity
at the nodes and is also called the geometric multiple node condition [7].

It is well-known that the second-order wave equatios in (3) for each edge ei can be
transformed into a first-order system in terms of the Remainn invariants

w
ei(t, x) =

✓
wei
�
(t, x)

wei
+ (t, x)

◆
=

✓
yei
t
(t, x) + ceiy

ei
x (t, x)

yei
t
(t, x)� ceiy

ei
x (t, x)

◆
(5)

as
(
wei
�,t

(t, x)� ceiw
ei
�,x

(t, x) = 0,

wei
+,t

(t, x) + ceiw
ei
+,x

(t, x) = 0.
(6)

In the other words, dwei
�
= 0, wei

�
= const along ⇠ei

�
: dx

dt = �cei , while dw
ei
+ = 0, wei

+ =

const along ⇠ei+ : dx
dt = cei , where ⇠

ei
�

and ⇠ei+ are the characteristic lines on edge ei 2 E.
In the meanwhile, the boundary conditions at each vertex vj 2 V are rewritten as

X

ei2E(vj)

Dji

wei
�
(t, vj)� wei

+ (t, vj)

2
= ūvj (t) (7)

and the continuity constraint at the junction

wei
�
(t, vj) + wei

+ (t, vj) = wek
�
(t, vj) + wek

+ (t, vj), ei, ek 2 E(vj), i 6= k. (8)

Furthermore, for each ei 2 E(vj), the value of Riemann invariant leaving or entering
the domain [0, lei ] at the vertex vj is set as

wei
out(t, vj) = yei

t
(t, vj) +Djiceiy

ei
x (t, vj), (9a)

or wei

in(t, vj) = yei
t
(t, vj)�Djiceiy

ei
x (t, vj), (9b)

respectively. Hence, combining the boundary/transmission conditions (7) and (8), each
’entering-flow’ wei

in
can be explicitly represented by all ’leaving-flows’ wek

out
at each

vertex vj in the form of wei

in
(t, vj) = F (wek

out
(t, vj), ūvj (t)), ek 2 E(vj), where F is a

continuous function. To be specific, from (7) and (8) we obtain

wei

in(t, vj) = �wei
out(t, vj) +

2

|E(vj)|

0

@
X

ek2E(vj)

wek

out,j(t, vj)� ūvj (t)

1

A .

4



RBM Scheme for Coupled Wave Equations on Diamond Networks

① Enumerate the subsets of  as . Assign to each subset  a probability .


② Divide  into  subintervals  with  . For each , randomly choose an index 

according to the probabilities . Set vector 


③ We introduce    

where  represents the probability that an edge  is an element of the selected subset.  Define the new propagation speed as 

  


④ Compute the solution to       and its optimal control problems

E E1, E2, …, E2|E| Sω(ω ∈ {1,2,…,2|E|} pω ≥ 0

[0,T ] K (tk−1, tk] h = max
k∈{1,2,…,K}

tk − tk−1 (tk−1, tk] ωk ∈ {1,2,…,2|E|}

pω ω = (ω1, ω2, …, ωK) .

χei
(ω) = {1, ei ∈ Eω,

0, ei ∉ Eω .
, πei

:= 𝔼[χei
] = ∑

ω∈{ω∣ei∈Eω}

pω,

πei
∈ [0,1] ei

ch,ei
(ω, t) :=

cei

πei

χei
(ωk), t ∈ (tk−1, tk] .

(RD)

wei
h−,t(ω, t, x) − ch,ei

(ω, t)wei
h−,x(ω, t, x) = 0,

wei
h+,t(ω, t, x) + ch,ei

(ω, t)wei
h+,x(ω, t, x) = 0,

wei
h,in(ω, t, vj) = − wei

h,out(ω, t, vj) +
2

|E(vj) | ∑
ek∈E(vj)

wek
h,out,j(ω, t, vj) − ūvj(t) ,

wei
h−(ω,0,x) = yei

1 (x) + cei
yei

0,x(x),

wei
h+(ω,0,x) = yei

1 (x) − cei
yei

0,x(x)



Numerical Illustration

p=3

 


 Full model (black): 1.7s


 RBM-Sim. Time (orange): 1.1s


 Reduction: 37%


 Error: 33%

h = 0.005, dx = 0.05
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(a) Subgraph (V1, E1, L1)

v2

v5v3

v4

e2 e4

e5

(b) Subgraph (V2, E2, L2)

v2

v5v3

v4e3

e4 e6

(c) Subgraph (V3, E3, L3)

v5v3

v4

v6

e5

e6

e7

(d) Subgraph (V4, E4, L4)

Split the velocity field per edge.
P=3 of M= 7 edges are active simultaneously.

ch,i =

4ci, for i ∈ {1,7} ∩ Sωk

2ci, for i ∈ {2,3,4,5,6} ∩ Sωk

0, i ∉ Sωk
.

On each time interval, we randomly choose one of the subgraphs with  

the same possibility , and compute the solution. pω =
1
4

(ω = 1,...,4)



Numerical Illustration

p=1

dx h P Full sim 
time*

RBM sim 
time*

Reduction 
in time* [%] Error* [%]

0.05 0.005 1 1.7 1.1 31 67
0.05 0.005 2 1.7 1.0 34 43
0.05 0.005 3 1.7 1.1 37 37
0.05 0.005 4 1.7 1.2 29 29
0.05 0.005 5 1.7 1.4 14 19

*Reported are the averages values over 20 simulations

P=5p=3



   Theorem 3

Convergence Results 

: original solution

: solution to randomized system

y
yh

D.W.M. VELDMAN, Y. WANG, E. ZUAZUA 2024. A Stochastic Algorithm for the Efficient Simulation and Optimal Control of Networked 1-D Wave Equations (proceeding). 

vv

   Theorem 4
min

u
J(u) =

1
2

∥y − yd∥2
L2(Q) +

s0

2
|u |2

L2(0,T) +
s1

2
|ut |

2
L2(0,T)

If , then    
s1 > 0 lim
h→0

𝔼[ |u*h − u* |L2(0,T);ℝ|VC| ] = 0.

If the initial conditions  are such that  and  with compatibility conditions, 

then

(y0, y1) yei
0 ∈ H2(0,ℓei

) yei
1 ∈ H1(0,ℓei

)

If the initial conditions  are such that  and  with compatibility conditions, 

and the control , there exists constants  and  independent of  such that

(y0, y1) yei
0 ∈ C2(0,ℓei

) yei
1 ∈ C1(0,ℓei

)

u ∈ C1(0,T; ℝ|VC|) C ≥ 1 μ > 0 h

𝔼[ |yei
h (t) − yei(t) |2

C1(0,ℓei)
] ≤ Cht2eμt .

• Remark: Markovs inequality ℙ[X ≥ a] ≤
𝔼[X]

a

: optimal control to original system

: optimal control to randomized system

u*
u*h



Sketch of proof for Theorem 3

(t, x)

0 x lei

tei+,in(t, x)

tei
h+,in(!, t, x)

⇠ei
h+(!, s; t, x)

⇠ei+ (s; t, x)

(a) t
ei
h+,in(!; t, x) > t

ei
+,in(t, x)

(t, x)

0 x lei

tei
h+,in(!, t, x)

tei+,in(t, x)

⇠ei+,in(s; t, x)
⇠ei
h+,in(!, s; t, x)

(b) t
ei
h+,in(!, t, x) < t

ei
+,in(t, x)

Figure 3. The characteristics ⇠
ei
+ (s; t, x) and ⇠

ei
h+(!, s; t, x) with a positive characteristic velocity cross the

boundary x = 0 at times t
ei
+,in(t, x) and t

ei
h+,in(!, t, x), respectively.

and raising the inequalities on the RHS to the power four shows that

|t⇤
h
(!, t)� t⇤(t)|2

L1(0,`ei )
> ⌧ ) |⇠ei

h+(!, s+; t)� ⇠ei+ (s+; t)|
4
L1(0,`ei )

> c4ei⌧
2

or |⇠ei
h+(!, s�; t)� ⇠ei+ (s�; t)|

4
L1(0,`ei )

> c4ei⌧
2. (50)

By Markov’s inequality,

P[|t⇤
h
(t)� t⇤(t)|2

L1(0,`ei )
> ⌧ ]  P[|⇠ei

h+(!, s+; t)� ⇠ei+ (s+; t)|
4
L1(0,`ei )

> c4ei⌧
2]

+ P[|⇠ei
h+(!, s�; t)� ⇠ei+ (s�; t)|

4
L1(0,`ei )

> c4ei⌧
2]


E[|⇠ei

h+(s+; t, x)� ⇠ei+ (s+; t, x)|4] + E[|⇠ei
h+(s�; t, x)� ⇠ei+ (s�; t, x)|4]

c4ei⌧
2


2C1h2(t� s)2Var[cei ]

c4ei⌧
2

, (51)

where it has been used that s± 2 [s, t]. Because a probability can never exceed one, it
follows that

F (⌧)  min

⇢
1,

2C1h2(t� s)2Var[ch,ei ]

c4ei⌧
2

�
. (52)

Inserting this estimate into (47) and writing G = (t� s)
p

2C1Var[ch,ei ]/c
2
i
for clarity,

it follows that

E[|t⇤
h
� t⇤|2] 

Z
1

0
min

⇢
1,

G2h2

⌧2

�
d⌧ =

Z
Gh

0
d⌧ +

Z
1

Gh

G2h2

⌧2
d⌧ =

3Gh

2
. (53)

This yields (46) with C2 =
3
2

p
2C1Var[ch,ei ]/c

2, where c = mini ci > 0.

4.2. Convergence of the solution

To make the result also applicable to the analysis of optimal control problems in the
next section, we replace the deterministic control u(t) by a stochastic control uh(!, t)

14

① Consider the characteristics terminating at  for 




② Let  We show that  




③ Let  and   denote the values of  for which the characteristics  and  leaving the 

domain . We then show there exists a constant  independent of  s.t. 




④ Integrating  and  along characteristics and some cumbersome calculations, we arrive at 

, which implies to Theorem 3.

(t, x) s ∈ [0,T ]
dξei±

ds
(s; t, x) = ± cei

,
dξei

h±

ds
(ω, s; t, x) = ± ch,ei

(ω, s), ξei
±(t; t, x) = ξei

h±(ω, t, t, x) = x .

Var[ch,ei
] = c2

ei

2M

∑
ω=1 (

χei
(ω)
πei

− 1)
2

pω .

𝔼 [ |ξei
h±(s; t) − ξei

±(s; t) |2
L∞(0,ℓei) ] ≤ h(t − s)Var[ch,ei

], ∀0 ≤ s ≤ t .

tei
h±,in(ω, t, x) tei

±,in(t, x) s ξei
h±(ω, s; t, x) ξei±(s; t, x)

(0,T ) × (0,lei
) C h

𝔼[ | max{tei
h±,in(t), s} − max{tei

±,in(t), s} |2
L∞(0,ℓei)

] ≤ C2h(t − s), ∀0 ≤ s ≤ t ≤ T .

wei
h±(ω, s, ξei

h±(ω, s; t, x)) wei
±(s, ξei

±(s; t, x))

𝔼[ |wh+(t) − w+(t) |2
L∞(Ω) + |wh−(t) − w−(t) |2

L∞(Ω) ] ≤ Ch



Summary and Perspectives 

The application of the RBM to (networked) hyperbolic PDEs combines 
(1)  operator splitting for PDEs 
(2)  stochastic methods for large-scale optimization 
(3)  characteristic method for 1d Hyperbolic type PDEs. 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(2)  stochastic methods for large-scale optimization 
(3)  characteristic method for 1d Hyperbolic type PDEs. 

We efficiently approximate  the solution to networked linear hyperbolic equations and associated optimal 
control problems, and obtain the convergence results 
(1)    converges to  for  (in expectation). 
(2)  Convergence in the optimal controls can be proven along the lines of [E.Zuazua, D.Veldman 2022], but 
some regularity properties need to be verified. 

Extensions to nonlinear setting:  
Semi-linear case is straight forward, e.g.  with   Lipschitz in . 
Quasi-linear case for 1d hyperbolic systems in the framework of semi-global classical solution (Discussion 
with Tatsien Li, Shanghai).

For networked case, extension to non-overlapping domain decomposition on complex spatial structures 
(Discussion with Günter Leugering) and XPINNs.

What is the best splitting strategy/pattern for cutting sub-nets from a network with circles inside?


yh(ω, t) y(t) h → 0

yt + Λyx = f(t, x) f x



Thank you! 
22 August, 2024 
@ Benasque



https://dcn.nat.fau.eu/events/cin-pde-2024/ 
 
https://mod.fau.eu/events/cin-pde-2024/ 
 
Organizers: • Yue Wang (FAU), Peng QU (FDU), Qi LÜ (SCU) 
Scientific Committee: • Enrique Zuazua • Günter Leugering • Tatsien Li • Zhen Lei 
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