“ X Partial differential equations, optimal design and humerics

Random Batch Methods

for Efficient Simulation and Optimal Control of Networked 1D Hyperbolic Systems

Yue Wang, * joint work with D.W.M. Veldman, E. Zuazua
22. August 2024

Friedrich-Alexander-Universitat Funded b

Erlangen-Niirnherg s

Z i) DF Deutsche
e CY NAMIC OhTFOL
k’;%@é—l ’ \ MACH NE LEARNH\G Forschungsgememschaft

”””””””””” an Research Foungation



http://benasque.org/2024pde/

Motivation: Networked 1D hyperbolic systems
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Motivation

» Accurate and Fast Prediction of Numerical Solutions/ Optimal Control for
Networked PDEs is of significant interest for many scientific applications, say,
real-time capable methods and algorithms.

» Large scale networks may contain more than 20K edges, many nonlinear elements,
and complex topological structure, e.g. circles/loops inside.

» Recent success of stochastic methods (e.g. stochastic gradient descent) in
optimization and training large (neural) networks.



Origins of the Random Batch Method

Initial Motivation: Simulation and control of large interacting particle systems can
be computationally demanding.

There are N(N — 1)/2 interaction forces between N particles.
= Computational cost grows rapidly when N is large.



Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]




Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

» Divide the N particles randomly into batches of size P > 2.
» Consider only interactions between particles in the same batch.

» Do a simulation over a short time interval of length h.



Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

o
/

» Divide the N particles randomly into batches of size P > 2.
» Consider only interactions between particles in the same batch.
» Do a simulation over a short time interval of length h.

» Repeat.



Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

In fOrmUIas: First-order particle dynamics: For each particle i € {1,2,..., N}
N

_ 1
i(8) = 5 O (1) = xi(1))
Random Batch Method. JJ;:A}

1 Set k =0 and set X;(0) for all i € {1,2,..., N}

2 Partition {1,2,..., N} into batches of size P > 2, i.e.

- N/P N=9, P=3
{1,2,..., N} = szl By, BE| = P.

3 For each i, solve on [kh, (k + 1)h]
- _ 3 A+ — x, - - - k
$9,i(t) = 5— > fGmi(t)=xni(t)),  b(i)s.t.i € By,
JEBYy, JFi

4 Set k + k +1 and go to step 2.

Main Results:

» the RBM-solution converges to the solution of the original problem as i — 0.
» the RBM reduces the computational cost from O(N?) to O(PN).



RBM for Optimal Control

» The RBM can speed up the solution of optimal control problems governed by
interacting particles systems [D. Ko, E. Zuazua, 2021] (only numerical experiments).

Instead of computing the minimizer u*(t) of
T
J= [ (o), u(e)
0
subject to
xi(t) = =— Z fij(xi(t) — xi(t))+ Zg:k(xl(t))tfk(t)

J#I
it is faster to compute the minimizer uj(t) of J subject to
xp,i(t) = 53— Z fij(Xnj(t) — Xh:(t))+zg:k(xl(t) up,k(t)-
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RBM for Optimal Control

» The first convergence proof is given in [D.Veldman, E.Zuazua, 2022] for finite dimensional linear-quadratic

optimal control in the operator-splitting setting.
ming [ (|2(t) = za(t)]?) + u(t)[2dt,
t(t) = Ax(t) + Bu(t), x=(0) = xo.

» Convergence Results

m for a deterministic control u(t)

Ef|xn(t) — x()]] < hVar[Ap]([|A]lt* + 2¢)(|x0| + [Bul1)?.

m for a stochastic control up(w, t) satisfying |Bup(w)|;2 < U
E[’Xh(t) — X(t)‘z] < C[T’HA”]/’IVar[Ah](Xo + U\/E)

m Optimality gap

E[|Jp(u}) — J(u*)]] < C (\/hVar[Ah] + hVar[Ah]> .
m Convergence in the controls

E[|u}, — u*|7>] < ChVar[Ay].

Step 1 Split the matrix A as

M
A= Z A
m=1

Step 2 Enumerate the 2M subsets of {1,2,...,M} as 51, S, ... S,m.
Assign to each subset S, a probability p,,.

Step 3 Divide [0,T] into K subintervals [tx_1, tx) of length < h. For
each [tx_1, tx), randomly choose an index wy € {1,2,...,2M}
according to the probabilities py. Set w = (w1, w2, ..., wk).

Step 4 Define the matrix Ap(w, t)

Am
Ap(w, t) = Z —, t € [tk—1, tk),

T
mEka m

where 7, is the probability that m is an element of the
selected subset, i.e.

Tm = Z Pw-

we{w|lmeS,, }

Step 5 Compute the minimizer uj(w, t) of the ‘simpler’ LQR problem

-
UEL2F(TP)EF7'I_;Rq) Jh(w’ U) — /O (’Xh(wa t) - Xd(t)|%\) + ‘U(t)‘%:\)) dt,

Xh(w, t) = Ah(w, t)xh(w, t) + Bu(t), xh(w, 0) = XQ.-

where E[A,(1)] = A (ensured) and Var[Ay] = E[|An(t) — A|2] =327 |3 o 2a — 4|%p,.

Tm



RBM for PDEs?

» Whether this algorithm can accelerate the simulation and optimization of nonlinear
dynamics and networked infinite-dimensional systems (A is unbounded
operator), its convergence theory and applications are still rather open! e.g. see
RBM for abstract evolution equations of parabolic type in A randomized operator splitting

scheme inspired by stochastic optimization methods, [M. Eisenmann, T. Stillfjord, Numerisch
Mathematik, 2024]



RBM tfor Hyperbolic equations: Toy Example

Consider the transport equation
ye(t, ) + v(x)y(t, x) =0, te(0,7),z €R,
y(0,2) = yo(x), r € R,

where v(x) is bounded and Lipschitz, yg is globally Lipschitz.
» We split the generator of the semi-group as

—v(:(;)% — Z —Um(ili)%,

where the v,,(x) are Lipschitz and bounded.
> In each time step, we randomly choose batch By, subset of {1, .., M}, of size P and consider the velocity
field as
M
o(w.1) = 5 3 e, e [t th)

me By,

,,,,,

constant C such that 0
-| ‘yh(ta x) — y(t, x) 7] < C[P,M,T,Lip]h :




Transport equation: Visualization

v(ix) =1=uvi(x)+ va(x)

i splitting of the velocity field

v
vZ
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1 r < —€,

vi(z) =voq 35— = T € |—¢,€l,
0 T > €,
0 r < —€,

va(z) =wvoQ 35+ = T € |—¢,€,
1 T > €,
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h=0.01
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Transport equation: Visualization (splitting at the node)

v(x) =1=uv(z)+ vo(x)

splitting of the velocity field

1.5

05

-0.5
-0.5 0 0.5




Networked Linear Hyperbolic Systems

General hyperbolic system after rescaling on (t,z) € (0,71 x (0, L)

)y (t,x) + B(t, v)u;(t, ) + £(t, x),
y(0,2) = yo(z),

» The matrix A(t,x) is diagonal and its entries \;(¢, x) are Lipschitz continuous in z,
and real \;(t,z) >0(i=1,...,p), \i(t,x) <O0(i=p—+1,...,n).

y*(t,0) _

(¢, L)
> ;Yin(t) — _'y_(t,L) : YOut(t) — if’_(t,()) :




Networked Linear Hyperbolic Systems

General hyperbolic system after rescaling on (t,z) € (0,71 x (0, L)

)y (t,x) + B(t, v)u;(t, ) + £(t, x),

y(0,7) = yo(z),

» Compatibility condition and regularity assumptions are required.
yo € Lip(0, L;R"),

g € L>(0,T;Lip(0, L; R"*™)),

B € L°°(0,T; Lip(0, L; R™*™int)),

f € L>(0,T; Lip(0, L; R™)),

K < Lip(0,T;R"*"™), P € Lip(0, T;R"*™"), g € Lip(0,T; R").

V. V. V. V V



Randomized Splitting Scheme

Step 1 Split the matrices A(t,x), G(t,x), and B(t) as

M M M
= > An(tz), Gt,z)=) Gupt,z), B()= ) B,(l),
Step 2 Divide the time interval (0,7") into K subintervals with maximal length h, i.e.
O:t()<t1<t2<...<tK_1<tK:T, h = max tr. — lr_q
ke{1,2,....K}

Step 3 In each time step, randomly choose batch By, C {1,..., M} of size P, and define
the randomized matrices

Ln(w,t,x) = —ZA (¢, ),

TTLEBk

and Gy, By, similarly, where w = (w1, ws, ..., wk ) recording the chosen batches.



DXt 2) + At 2) 22 (¢, 1) = G(t, 2)y(t, ) + B(t, ) (t, 2) + £(t,7),
yin(t) = K(t)yout () + P()up(?) +&(1),  y(0,2) =yo(2),

|} RBM (STEPs 1,2,3) |}
Randomized-System

}.:C (Cd, t) CIZ’) :gh(W, ta x)Yh(wv ta $)+Bh(W, ta gj)uint(ta $) _I_f(ta CU),

P(t)ub(t) + g(t)v Yh(wv 0, x) — YO(x)a

where E|Ly(t,x)] = A(t,x), E|Gr(t,z)| = G(t,z), E[By(t)] = B(t).

Question 1: Is y,(w, 1, x) a good approximation of y(¢, x) for /1 sufficiently small?



Randomized Optimal Control Problem
' 30 2 51 2
WUy,

where y(, x) is the solution of

4 N

g—}tf(t’ r) + Alt, x)g—Z(t, r) = G(t,2)y(t, z) + B(t, v)uin (¢, x) + £(¢, x),
Yin(t) = K()yous (1) + P(H)us(t) +g(t),  y(0,2) = yo(),

The minimizer is denoted by (u¥ (¢, x), wj(?)).

. 50 2 51 2
l{Illllll Jh(a)a u;, . ub) — 5 Hyh(w) — yd”%z(Q) + ? ‘ Wt ‘Wlaz(Q) + 3 ‘ Uy ‘Wl’z(O,T)
nt-Up

int?
where yp,(w, t, x) is the solution of

P (wa t, ZE)—I_'Ch(w? t, ZE)%(W, t, LI;’) :gh(wv t, x)Yh(wa t, x)—l_Bh(w? t, x)uint(ta $) —|_f(t7 ZIZ'),

Yh,in(wa t) — K(t)Yh,out(wa %E) + P(t)ub(t) + g(t)v Yh(wa O? '77) — YO( )

The minimizer (for a fixed w) is denoted by (uj, ;,;(w,t,x), u}, ,(w,1)).

Question 2: Does (u; . (w,?,x),u;,(w, )) approximate (u? (7, %), u;f(t))for h small?
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Convergence Results o e

ili D.WM. VELDMAN, Y. WANG, E. ZUAZUA 2024. Efficient Stmulation and Optimal Control of Networked Linear Hyperbolic Systems by the Random Batch Method
(proceeding).

Theorem 1

Foru, (#,x) € L*(0,T; Lip(0,L; R™n)) and u,(¢) € Lip(0,7; R"™), there exists a constant C
independent of the considered time grid such that for all t € [0,7]

C
Remark: Chlog(h™!) < —h'~¢, Ve > 0.
ce

Theorem 2

Convergence in controls:

' Tl — a2 kg |2 _
iy, o B LG, = W . nxonmmn + 15, = 5 1201y | = 0



Sketch of proof for Theorem 1

» Consider the characteristics terminating at (¢, x) for s € |0, t]

éh,i(w, S;t,ZC) — Zh,i(wa 87€h,i(w7 S,t,l’)), fz(S,t,iU) — )\Z(S,ffL(S,t,Qj)),
fh,i(w,t; t,l’) — €Z<t7 t, ZC) — &

(t, )

- tin,i(t,a’;)
tin,h,i(w,t,x) —
- tin,h,i(w,t,az)
tin,i(t,az) —

Y0,: (& (05, x)) if tin i(t,x) =0,

t
yi (t, @) = Gy + Buin:t +fi(s,&i(s;t,z)) ds + |
/t [KYOut + Puy + g]i(tin,@‘(t, .’,U)) if tin,i(t7 x) > 0.

in,2 (t7m>



Sketch of proof for Theorem 1

» Consider the characteristics terminating at (¢, x) for s € |0, {]

gh,i(wa S;t,Q?) — gh,i(wa Sagh,i(w7 S,t,Q?)), gz(S,t,Q?) — )\Z(S,gz(S,t,ZU)),
Enilw, it ) =&(tt,x) = .

» We show that there is a constant (' such that for s € |0, ¢
L i(8:8)=&(838) [T (0.L.mmy] < Chlog(h™).

> Let ¢y, in.i(w,t, ) and ¢, ;(t, ) denote the values of s for which (s, &, ;(w, s;t, x))
and (s,&(s;t,x)) leave (0,7) x (0, L). We then show there is a constant (' s.t.

U |[thini(t, ) —timi(t, 2)|7] < Ch, | Eh,in,g (8) —tin,i (1 )|Loo(0LRn)] < Chlog(h™").

» Integrating yp ;(w, s, &ni(w, s;t,x)) and y;(s, &i(s;, L, x)) along characteristics and
some cumbersome calculations, we arrive at Theorem 1.

i(sit,x)=&(s;it,2)]P] < Ch,  E|




Coupled Wave Equations on Diamond Networks

(%) | |
/‘ v (t,x) — ¢ ysi(t,x) =0 e; € B,

) > Djice,ys (t,v5) = " (t) vi €V,
/ e, €E(vj)
(;< es yei(t,vj) :yek(t,vj), Vei,ek - E(Uj),?}j - V,
€9 €4 €g yei (07 CU) — y(e)’b (Qj), ytez (07 CC) — yi’b (QE), 62 E E?
el/c>7 Vertices: V = {v{, Vy, ..., Vg

Edges: E = {e,...,e7}
Incidence Matrix:

_ _ -1 0 0 0 0 0 O]
Diamond Directed Graph 1 -1 -1 0 0 0 O
0 1 0 -1 -1 0 0

D=19 0o 1 1 0 -1 o0

o 0 0 0 1 1 -1

0 0 0 0 0 0 1




Coupled Wave Equations on Diamond Networks

o4

g

€2 €4 €6

/@97 €3>@D

Diamond Directed Graph

€1

€7

Riemann Variables for Each Wave Equation

we(t2) = (U62)) < (Vo2 + it (62)

w(j—i (ty ‘T) yfi (ta CL‘) o ceiyae:i (ta :1:)

+ B.C. in the form of

wis (t,v5) = —wgi (t,v5) -

1‘ —Cq 0 |
- Wim AW =0 whereA={ o o . ] |

iL - _ R —



RBM Scheme for Coupled Wave Equations on Diamond Networks

(D Enumerate the subsets of Eas E,, E,, ..., E, 5. Assign to each subset S_ (v € {1,2,.. .,2|E|} a probability p, > 0.

@  Divide[0,T] into K subintervals (t,_;, t,] with A = ) {Iln221X ‘o t, — t,_. For each(t,_;, t,], randomly choose an index w, € {1,2,...,2/f}
e l,2,...,

according to the probabilities p . Set vector w = (w, ®,, ..., Wg) .

1, e,€L,,
@  Weintroduce y,(w) = , r, =Ly ]= Z Do
| 0, ¢ € E,. | !
w€e{w|e,EE,}
where z, € [0,1] represents the probability that an edge e¢; is an element of the selected subset. Define the new propagation speed as
l Ce,
Cpe (@0, 1) 1= ﬂ—)(e,-(a)k)» t€ (G-, 1l

e.

l

ei ei —
wh_,t(a), f,X) — ch,el_(a), t)wh_’x(a), t,x) =0,
ei ei —
wh+,t(a), t,x)+ ch,ei(a), t)wh+’x(a), t,x) =0,
\

(
2
. ei —_ el‘ e . —). . .
@y Compute the solutionto  (RD) wh,in(a), V) = wh’out(a), t, vj) + EO)] Z wh’kout,j(a), t, vj) ii(t) |, and its optimal control problems
J

\ ekEE(vj) )

W;i_(a),O,X) — ylel(x) + Ceiy(iix(x)a

W (@.0.%) = Y1) — ¢,y (¥)



Numerical lllustration
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(a) Subgraph (Vy7,Eq, L) (b) Subgraph (Vo, Eo, Log) (C) Subgraph (V3, E3, Lg) (d) Subgraph (V4, E4, Ly)

*  Split the velocity field per edge.
+* P=3 of M= 7 edges are active simultaneously.

* On each time interval, we randomly choose one of the subgraphs with

the same possibility p,, = Z(a) = 1,...,4), and compute the solution.

4c.

1°

for ie{l,7}nS,
Ch,l — 2Cl’ fOr i E {2,3,4,5,6} n Sa)k
0, i¢S,

|

velocily

]
R L I e I AN ]

-

solution Yy

¥

05 1.5 2 2 el

x Y

2
%E’I— —]

A W
0.5 ‘5 By —

| 2 2.5 ! Y

X

vy V¥V V¥V V¥V V¥

h = 0.005, dx = 0.05

Full model (black): 1.7s
RBM-Sim. Time (orange): 1.1s
Reduction: 37%

Error: 33%



Numerical lllustration

g % = — 5
p=1 p: P=5
Full sim RBM sim | Reduction
%
X n v time* time* |in time* [%] " OF L7

0.05 0.005 1 1.7 1.1 31 67
0.05 0.005 2 1.7 1.0 34 43
0.05 0.005 3 1.7 1.1 37 37
0.05 0.005 4 1.7 1.2 29 29
0.05 0.005 5 1.7 14 14 19

*Reported are the averages values over 20 simulations
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Convergence Results

Y=

|I D.W.M. VELDMAN, Y. WANG, E. ZUAZUA 2024. A Stochastic Algorithm for the Efficient Simulation and Optimal Control of Networked 1-D Wave Equations (prc

Theorem 3
If the initial conditions (Y, ¥) are such that ygi S C2(O,z/”ei) and y,’ € Cl(O,fei) with compatibility conditions,

and the control u € C1(0,T; R!Vcl), there exists constants C > 1 and u > 0 independent of & such that

ELy(0) = Y0 g0 )] < ChiPet.

EF[X] y: original solution
* Remark: Markovs inequality - FLA > al < a y;,- solution to randomized system
Theorem 4

min J(u) = —[ly = Yl2s0, + [0 2o 1y + = 0, |2
u 9 dll L2(Q) o L20.1) * 5 ' Tr1L20,1)

If the initial conditions (Y, ¥;) are such that ygi S Hz(()fei) and ylei S Hl((),fei) with compatibility conditions,
then

1 [E % _ ik _
If s; > 0, then lim [\uh u |L2(O,T);R|Vc|] = 0.
h—0
u’*: optimal control to original system

u;lk: optimal control to randomized system



Sketch of proof for Theorem 3

(1  Consider the characteristics terminating at (¢, x) for s € [0,7T] == EmnEmmEm=—

des Ay, . ; : :

—(s; tx)=+c (w, s; tx)=+che(a) S), cf+l(t;t,x)=éjhl+(a),t,t,x)=x. I I

ds ds B = 0 ; w,s;t,x) 0

W) t—|— 1n(t 'CE) ]

I I

M )(e(a)) 2 | Y 4 th—l— m(w t x>|

@  Let Var[c, ,] = c? : 1 . We show that 0 i
h,e; e; T P ;

_ l- I

o=l ) [ 0 L le, i

1600550 = £ D oo )| < M= 9)Varlgy, ], VO <s <t

@  Let th; 1n(co f,x)and ¢ +l ln(t x) denote the values of s for which the characteristics & (@, s; ¢, X) and £{i(s; ¢, X) leaving the

domain (0,7°) X (0,1, _). We then show there exists a constant C independent of / s.t.

E[ | max{¢ l_m(t) s} — max{t l (t) s} |L°°(Of )] < Gh(t—s), VOL<s<t<T.

4  Integrating wei:(a), S, 5;;(0), s;1,x)) and wii(s, fi"(s; t, x)) along characteristics and some cumbersome calculations, we arrive at

E[|w, (1) — w_(?) |I%°°(Q) + |w,_(£) —w_(?) |im(g)] < Ch, which implies to Theorem 3.



Summary and Perspectives

® The application of the RBM to (networked) hyperbolic PDEs combines
(1) operator splitting for PDEs
(2) stochastic methods for large-scale optimization Splitting

(3) characteristic method for 1d Hyperbolic type PDEs.  Jg\7/s=T¢e ] (1w REM
ﬁ
PDEs

Unbounded operator-

Method of Characteristics

Characterics Classic RBM

ODEs >




Summary and Perspectives

Hyperbolic
PDEs
The application of the RBM to (hetworked) hyperbolic PDEs combines .
(1) operator splitting for PDEs
(2) stochastic methods for large-scale optimization
(3) characteristic method for 1d Hyperbolic type PDEs.

We efficiently approximate the solution to networked linear hyperbolic equations and associated optimal
control problems, and obtain the convergence results

(1) y,(w, 1) converges to y(¢) for h — O (in expectation).

(2) Convergence in the optimal controls can be proven along the lines of [E.Zuazua, D.Veldman 2022], but
some regularity properties need to be verified.

Extensions to nonlinear setting:

Semi-linear case is straight forward, e.g. y, + Ay, = f(, x) with f Lipschitz in x.
Quasi-linear case for 1d hyperbolic systems in the framework of semi-global classical solution (Discussion
with Tatsien Li, Shanghai).

For networked case, extension to non-overlapping domain decomposition on complex spatial structures
(Discussion with Gunter Leugering) and XPINNSs.

What is the best splitting strategy/pattern for cutting sub-nets from a network with circles inside?
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