SA-NODEs and Universal Approximation of Dynamical Systems – Numeric Aspect

Ziqian Li

Department of Mathematics, Jilin University

Benasque, August 22, 2024

joint work with Kang Liu, Lorenzo Liverani and Enrique Zuazua

Contents

2 Training Strategies

Contents

2 Training Strategies

Neural ODEs

The neural ODEs (NODEs) (Chen et al. 2018) read

$$\begin{cases} \dot{\boldsymbol{x}} = \sum_{i=1}^{P} W_i(t) \circ \boldsymbol{\sigma}(A_i(t)\boldsymbol{x} + B_i(t)), & t \in [0,T], \\ \boldsymbol{x}(0) = x_0 \in \mathbb{R}^d. \end{cases}$$

Here \circ is the Hadamard product $(a, b) \circ (c, d) = (ac, bd)$, and P is the width of the neural network. The parameters $A_i(t)$, $W_i(t)$ and $B_i(t)$ depend on time.

- The number of parameters ((2d+1)MP) scales as the number of time steps $M \Rightarrow$ High complexity
- $\bullet\,$ Impossible to calculate the solution after T

SA-NODEs

The semi-autonomous neural ODEs (SA-NODEs) read

$$\begin{cases} \dot{\boldsymbol{x}} = \sum_{i=1}^{P} W_i \circ \boldsymbol{\sigma}(A_i^1 \boldsymbol{x} + A_i^2 t + B_i), \quad \boldsymbol{x} \in \mathbb{R}^d, t \in [0, T], \\ \boldsymbol{x}(0) = x_0. \end{cases}$$

Here the parameters W_i , A_i^1 , A_i^2 and B_i are constant matrixes.

- The number of parameters (Pd(d+3)) is independent of time steps. \Rightarrow Low complexity
- Able to calculate the solution after T

Universal Approximation Theory

To approximate an ODE system

$$\begin{cases} \dot{\boldsymbol{z}}(t) = f(\boldsymbol{z}(t), t), & t \in [0, T], \\ \boldsymbol{z}(0) = \boldsymbol{z}_0, \end{cases}$$

by SA-NODEs, we obtain the universal approximation theory

Theorem (Li, Liu, L., Zuazua, 2024)

Let f be uniformly Lipschitz in z with respect to t. For any compact set $K \subseteq \mathbb{R}^d$ and any $\varepsilon > 0$, there exists a constant $P_{\varepsilon,T,K,f}$ such that for any $P \ge P_{\varepsilon,T,K,f}$, there exist parameters $(W_i, A_i^1, A_i^2, B_i) \in \mathbb{R}^d \times \mathbb{R}^{d \times d} \times \mathbb{R}^d \times \mathbb{R}^d$, for $i = 1, \ldots, P$, such that

$$\|\boldsymbol{z}_{z_0}(\cdot) - \boldsymbol{x}_{z_0}(\cdot)\|_{\mathbb{L}^{\infty}([0,T];\mathbb{R}^d)} \le \varepsilon, \quad \forall z_0 \in K.$$

Approximation Rate

Further, we obtain the approximation rate with respect to the number of neurons ${\cal P}$

Theorem (Li, Liu, L., Zuazua, 2024)

Let $f \in \mathcal{H}^k_{\mathsf{loc}}(\mathbb{R}^d \times [0, T]; \mathbb{R}^d)$, for k > (d+1)/2 + 2. Fix any compact set $K \subseteq \mathbb{R}^d$. Then, for any $P \in \mathbb{N}_+$, there exist parameters $(W_i, A_i^1, A_i^2, B_i) \in \mathbb{R}^d \times \mathbb{R}^{d \times d} \times \mathbb{R}^d \times \mathbb{R}^d$, for $i = 1, \ldots, P$, such that

$$\sup_{t \in [0,T]} \int_{K} \|\boldsymbol{z}_{z_{0}}(t) - \boldsymbol{x}_{z_{0}}(t)\|^{2} dz_{0} \leq \frac{C_{T,K,f}}{P},$$

where $C_{T,K,f}$ is a constant independent of P.

Transport Equations

The transport equation of divergence form:

$$\begin{cases} \partial_t \rho(x,t) + \operatorname{div}_x(f(x,t)\rho(x,t)) = 0, \quad (x,t) \in \mathbb{R}^d \times [0,T], \\ \rho(x,0) = \rho_0(x), \quad x \in \mathbb{R}^d. \end{cases}$$

The characteristic system of the transport equation is

$$\begin{cases} \frac{d}{dt} \begin{pmatrix} X\\ \rho \end{pmatrix} = \begin{pmatrix} f(X,t)\\ -\operatorname{div}_x(f(X,t))\rho \end{pmatrix}, & t \in [0,T], \\ \begin{pmatrix} X(0)\\ \rho(0) \end{pmatrix} = \begin{pmatrix} x_0\\ \rho_0(x_0) \end{pmatrix}. \end{cases}$$

Transport Equations

The approximated characteristic system:

$$\begin{cases} \frac{d}{dt} \begin{pmatrix} X_{\Theta} \\ \rho_{\Theta} \end{pmatrix} = \begin{pmatrix} f_{\Theta}(X_{\Theta}, t) \\ -\operatorname{div}_{x}(f_{\Theta}(X_{\Theta}, t))\rho_{\Theta} \end{pmatrix}, & t \in [0, T], \\ \begin{pmatrix} X_{\Theta}(0) \\ \rho_{\Theta}(0) \end{pmatrix} = \begin{pmatrix} x_{0} \\ \rho_{0}(x_{0}) \end{pmatrix}. \end{cases}$$

The corresponding neural transport equation:

$$\begin{cases} \partial_t \rho_{\Theta}(x,t) + \operatorname{div}_x \left(f_{\Theta}(x,t) \rho_{\Theta}(x,t) \right) = 0, \quad (x,t) \in \mathbb{R}^d \times [0,T], \\ \rho_{\Theta}(x,0) = \rho_0(x), \quad x \in \mathbb{R}^d. \end{cases}$$

4

Transport Equations

We obtain the approximation theory of transport equations

Theorem (Li, Liu, L., Zuazua, 2024)

Let ρ_0 be a probability measure supported in a compact set K such that $\rho_0 \in \mathbb{L}^2(K)$. Then, for any $P \in \mathbb{N}_+$, there exist parameters $\Theta = \{(W_i, A_i^1, A_i^2, B_i)\}_{i=1}^P$ such that

$$\sup_{e \in [0,T]} \mathbb{W}_1(\rho(\cdot, t), \rho_{\Theta}(\cdot, t)) \le \frac{C_{T,f,\rho_0}}{\sqrt{P}},$$

where C_{T,f,ρ_0} is a constant independent of P, $\mathbb{W}_1(\cdot, \cdot)$ is the Wasserstein-1 distance, and $\rho(\cdot, t)$ (resp. $\rho_{\Theta}(\cdot, t)$) is the solution of the transport equation (resp. the Neural transport equation) at the time $t \in [0,T]$.

Contents

Numerical Experiments

Approximating ODEs: Workflow

Exact Solution

Neural Network

Approximating ODEs: Training Dataset

For an ODE system

$$\begin{cases} \dot{\boldsymbol{z}}(t) = f(\boldsymbol{z}(t), t), & t \in [0, T], \\ \boldsymbol{z}(0) = \boldsymbol{z}_0. \end{cases}$$

Data: N trajectories $\mathcal{D} = \{ \boldsymbol{z}_k(\cdot) \}_{k=1}^N \subset C([0,T]; \mathbb{R}^d).$ In practice: $\mathcal{D} = \{ \boldsymbol{z}_k(t_l) \}_{k,l} \subset \mathbb{R}^d$, for $k = 1, \dots, N$, $l = 1, \dots, M$.

Approximating ODEs: Lipschitz Constant

For an SA-NODE system

$$\begin{cases} \dot{\boldsymbol{x}} = f_{\Theta}(\boldsymbol{x}(t), t), & t \in [0, T] \\ \boldsymbol{x}(0) = x_0, \end{cases}$$

where $\Theta = (W_i, A_i^1, A_i^2, B_i)_{i=1}^P$ and the approximated vector field

$$f_{\Theta} = \sum_{i=1}^{P} W_i \circ \boldsymbol{\sigma} (A_i^1 \boldsymbol{x} + A_i^2 t + B_i),$$

 f_{Θ} is uniformly Lipschitz continuous in x with the estimate:

$$\|f_{\Theta}(x,t) - f_{\Theta}(y,t)\| \le \left\|\sum_{i=1}^{P} |W_i| \circ \|A_i^1\|_{\ell^2}\right\| \|x - y\|.$$

Approximating ODEs: Loss Function

Data:
$$\mathcal{D} = \{ \boldsymbol{z}_k(t_l) \}_{k,l} \subset \mathbb{R}^d$$
, for $k = 1, \dots, N$, $l = 1, \dots, M$.
Lipschitz Constant: $\left\| \sum_{i=1}^P |W_i| \circ \|A_i^1\|_{\ell^2} \right\|$

Loss Function:

$$L(\Theta) = \frac{1}{NM} \sum_{k=1}^{N} \sum_{l=1}^{M} (\boldsymbol{z}_{k}(t_{l}) - \boldsymbol{x}_{k}(t_{l}, \Theta))^{2} + \lambda \left\| \sum_{i=1}^{P} |W_{i}| \circ \|A_{i}^{1}\|_{\ell^{2}} \right\|$$

 \rightsquigarrow Stochastic gradient descent

Numerical Experiments

Approximating Transport: Workflow

Exact Solution

Approximating Transport: Workflow

Approximating Transport: Data & Loss Function

Data:
$$\mathcal{D} = \{x_k(t_l), \rho_k(t_l)\}, k = 1, 2, \cdots, N, \ l = 1, 2, \cdots, M.$$

Loss Function:

$$L(\Theta) = \frac{1}{NM} \sum_{k=1}^{N} \sum_{l=1}^{M} \left((x_k(t_l) - x_k(t_l, \Theta))^2 + (\rho_k(t_l) - \rho_k(t_l, \Theta))^2 \right) + \lambda \left\| \sum_{i=1}^{P} |W_i| \circ \|A_i^1\|_{\ell^2} \right\|,$$

Contents

2 Training Strategies

ODEs: Autunomous & Nonlinear Case

Approximate autonomous and nonlinear ODE system:

$$\begin{cases} \dot{z}_1 = z_2, \\ \dot{z}_2 = -\sin(z_1). \end{cases}$$

Figure: SA-NODEs and exact solution

Figure: Errors

ODEs: Non-Autunomous & Nonlinear Case

Approximate non-autonomous and nonlinear ODE system:

$$\begin{cases} \dot{z}_1 = z_2, \\ \dot{z}_2 = z_1 - z_1^3 + \delta \cos(\omega t). \end{cases}$$

Figure: SA-NODEs and exact solution

Figure: Errors

Numerical Experiments

Comparison with Vanilla NODEs

Approximate autonomous and linear ODE system:

<

$$egin{array}{lll} \dot{z}_1 = z_2, \ \dot{z}_2 = -2z_1 - 3z_2. \end{array}$$

Figure: Vanilla NODEs, SA-NODEs and exact solution

Ziqian Li (Jilin University)

Comparison with Vanilla NODEs

Approximate autonomous and linear ODE system:

$$\begin{cases} \dot{z}_1 = z_2, \\ \dot{z}_2 = -2z_1 - 3z_2. \end{cases}$$

Figure: Testing Errors

Comparison with Vanilla NODEs

Approximate autonomous and linear ODE system:

$$\begin{cases} \dot{z}_1 = z_2, \\ \dot{z}_2 = -2z_1 - 3z_2. \end{cases}$$

P	Neural ODEs	$e_{\sf max}$	e_T	DoF
100	Vanilla NODEs	2.60e-01	1.79e-01	50000
	SA-NODEs	4.65e-02	3.29e-03	1200
500	Vanilla NODEs	1.91e-01	9.21e-02	250000
	SA-NODEs	2.16e-02	3.83e-04	6000
1000	Vanilla NODEs	1.38e-01	4.34e-02	500000
	SA-NODEs	1.58e-02	3.42e-04	12000

Table: Comparison of errors and degrees of freedom (DoF) between vanilla NODEs and SA-NODEs on autonomous ODEs.

Numerical Experiments

Comparison with Vanilla NODEs

Approximate non-autonomous and linear ODE system:

$$\begin{cases} \dot{z}_1 = t - z_2, \\ \dot{z}_2 = z_1 - t. \end{cases}$$

Figure: Vanilla NODEs, SA-NODEs and exact solution

Ziqian Li (Jilin University)

Numerical Experiments

Comparison with Vanilla NODEs

Approximate non-autonomous and linear ODE system:

$$\begin{cases} \dot{z}_1 = t - z_2, \\ \dot{z}_2 = z_1 - t. \end{cases}$$

Comparison with Vanilla NODEs

Approximate non-autonomous and linear ODE system:

$$\begin{cases} \dot{z}_1 = t - z_2, \\ \dot{z}_2 = z_1 - t. \end{cases}$$

P	Neural ODEs	$e_{\sf max}$	e_T	DoF
100	Vanilla NODEs	3.66e+00	3.16e+00	50000
	SA-NODEs	7.78e-02	7.13e-02	1200
500	Vanilla NODEs	2.54e+00	2.08e+00	250000
	SA-NODEs	7.35e-02	6.94e-02	6000
1000	Vanilla NODEs	2.37e+00	7.87e-01	500000
	SA-NODEs	6.73e-02	6.47e-02	12000

Table: Comparison of errors and degrees of freedom (DoF) between vanilla NODEs and SA-NODEs on non-autonomous ODEs.

Transport: Non-Autonomous Case

For the non-autonomous transport equation:

$$\begin{cases} \partial_t \rho(x, y, t) + \operatorname{div}\left(\left(\frac{\sin(x)}{1+t^2}, \frac{\sin(y)}{1+t^2}\right)\rho(x, y, t)\right) = 0,\\ \rho(\cdot, 0) = \rho_0. \end{cases}$$

Initial measure for training:

$$\rho_0^{\mathsf{train}}(x,y) = e^{-(x^2 + y^2)}.$$

Initial measure for testing:

$$\rho_0^{\text{test}}(x,y) = e^{-\frac{x^2 + y^2}{4}}.$$

Error for testing:

$$e_{\text{test}}(t) = \frac{\|\rho_{\Theta}(\cdot, t) - \rho(\cdot, t)\|_{\mathbb{L}^1(\mathbb{R}^2)}}{\|\rho(\cdot, 0)\|_{\mathbb{L}^1(\mathbb{R}^2)}}.$$

Transport: Non-Autonomous Case

For the non-autonomous transport equation:

$$\begin{cases} \partial_t \rho(x, y, t) + \operatorname{div}\left(\left(\frac{\sin(x)}{1+t^2}, \frac{\sin(y)}{1+t^2}\right)\rho(x, y, t)\right) = 0, \\ \rho(\cdot, 0) = \rho_0. \end{cases}$$

Figure: SA-NODEs and exact solutions

Transport: Non-Autonomous Case

For the non-autonomous transport equation:

$$\begin{cases} \partial_t \rho(x, y, t) + \operatorname{div}\left(\left(\frac{\sin(x)}{1+t^2}, \frac{\sin(y)}{1+t^2}\right)\rho(x, y, t)\right) = 0,\\ \rho(\cdot, 0) = \rho_0. \end{cases}$$

Figure: Training and testing errors

Ziqian Li (Jilin University)

Transport: Doswell Frontogenesis

For the Doswell frontogenesis:

$$\begin{cases} \partial_t \rho(x, y, t) + \operatorname{div}\left(\left(-yg(r(x, y)), xg(r(x, y))\right)\rho(x, y, t)\right) = 0, \\ \rho(\cdot, 0) = \rho_0, \end{cases}$$

where

$$g(r(x,y)) = \frac{1}{r(x,y)} \ \overline{v} \ \mathrm{sech}^2(r(x,y)) \tanh{(r(x,y))},$$

with $r(x,y) = \sqrt{x^2 + y^2}$ and $\overline{v} = 2.59807$. The initial measures for the training and testing are set as:

$$\rho_0^{\mathsf{train}}(x,y) = \tanh\left(y\right), \quad \rho_0^{\mathsf{test}}(x,y) = \tanh\left(10\,y\right).$$

Transport: Doswell Frontogenesis

For the Doswell frontogenesis:

$$\begin{cases} \partial_t \rho(x, y, t) + \operatorname{div}\left((-yg(r(x, y)), xg(r(x, y))\right)\rho(x, y, t)\right) = 0, \\ \rho(\cdot, 0) = \rho_0, \end{cases}$$

Figure: SA-NODEs and exact solutions

Transport: Doswell Frontogenesis

For the Doswell frontogenesis:

$$\begin{cases} \partial_t \rho(x, y, t) + \operatorname{div}\left(\left(-yg(r(x, y)), xg(r(x, y))\right)\rho(x, y, t)\right) = 0, \\ \rho(\cdot, 0) = \rho_0, \end{cases}$$

Figure: Training and testing errors

Ziqian Li (Jilin University)

Thank you!