EXPONENTIAL AVERAGE TURNPIKE PROPERTY WITH AVERAGE OBSERVATION

Martín Hernández

joint work with M. Lazar and S. Zamorano. FAU, Department of Mathematics.
martin.hernandez@fau.de

08/2024

Overview

- 1. Random differential equation
- 2. Main results
- 3. Numerical Simulations and Comments

RANDOM DIFFERENTIAL EQUA-

TION

Model

Let us consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\omega \in \Omega$, $A(\omega) \in \mathcal{L}(\mathbb{R}^n)$ and $B(\omega) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$. Consider the RDE with random coefficients

$$\begin{cases} x_t(t,\omega) + A(\omega)x(t,\omega) = B(\omega)u(t), \\ x(t_0) = x_0 \in \mathbb{R}^n, \end{cases}$$

Model

Let us consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\omega \in \Omega$, $A(\omega) \in \mathcal{L}(\mathbb{R}^n)$ and $B(\omega) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$. Consider the RDE with random coefficients

$$\begin{cases} x_t(t,\omega) + A(\omega)x(t,\omega) = B(\omega)u(t), \\ x(t_0) = x_0 \in \mathbb{R}^n, \end{cases}$$

with $u(t) \in \mathbb{R}^n$ independent of ω .

Main Questions:

1. How do we define an optimal control problem in this context?

Let us consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\omega \in \Omega$, $A(\omega) \in \mathcal{L}(\mathbb{R}^n)$ and $B(\omega) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$. Consider the RDE with random coefficients

$$\begin{cases} x_t(t,\omega) + A(\omega)x(t,\omega) = B(\omega)u(t), \\ x(t_0) = x_0 \in \mathbb{R}^n, \end{cases}$$

with $u(t) \in \mathbb{R}^n$ independent of ω .

Main Questions:

- 1. How do we define an optimal control problem in this context?
- 2. Is it possible to prove the turnpike property when x^T and \overline{x} are random trajectories?

Let us consider the probability space $(\Omega, \mathcal{F}, \mu)$ with $\omega \in \Omega$, $A(\omega) \in \mathcal{L}(\mathbb{R}^n)$ and $B(\omega) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$. Consider the RDE with random coefficients

$$\begin{cases} x_t(t,\omega) + A(\omega)x(t,\omega) = B(\omega)u(t), \\ x(t_0) = x_0 \in \mathbb{R}^n, \end{cases}$$

with $u(t) \in \mathbb{R}^n$ independent of ω .

Main Questions:

- 1. How do we define an optimal control problem in this context?
- 2. Is it possible to prove the turnpike property when x^T and \overline{x} are random trajectories?
- 3. What is the meaning of the turnpike property in this context?

Problem formulation

In the following

$$L^2(\Omega;\mathbb{R}^n) := \left\{ x : \Omega \to \mathbb{R}^n \, : \, \mathbb{E}[\|x(\cdot)\|_{\mathbb{R}^n}^2] = \int_{\Omega} \|x(\omega)\|_{\mathbb{R}^n}^2 d\mu(\omega) < \infty \right\}.$$

Problem formulation

In the following

$$L^2(\Omega;\mathbb{R}^n):=\left\{x:\Omega\to\mathbb{R}^n\,:\,\mathbb{E}[\|x(\cdot)\|_{\mathbb{R}^n}^2]=\int_\Omega\|x(\omega)\|_{\mathbb{R}^n}^2d\mu(\omega)<\infty\right\}.$$

We consider the following evolutive optimal control problem with averaged observations

$$\min_{u \in L^{2}(0,T;\mathbb{R}^{m})} \left\{ J^{T}(u) = \frac{1}{2} \int_{0}^{T} \left(\|u(t)\|_{\mathbb{R}^{m}}^{2} + \|\mathbb{E}[C(\cdot)x(t,\cdot)] - z\|_{\mathbb{R}^{n}}^{2} \right) dt + \langle x(T,\cdot), \varphi_{T}(\cdot) \rangle_{L^{2}(\Omega;\mathbb{R}^{n})} \right\},$$

with $C(\omega) \in \mathcal{L}(\mathbb{R}^n)$ and $x = x(t, \omega) \in \mathbb{R}^n$ solving

$$\begin{cases} x_t(t,\omega) + A(\omega)x(t,\omega) = B(\omega)u(t), \\ x(t_0) = x_0. \end{cases}$$

Problem formulation

Also, consider the following minimization stationary problem

$$\min_{u\in\mathbb{R}^m} \left\{ J^{s}(u) = \frac{1}{2} \left(\|u\|_{\mathbb{R}^m}^2 + \|\mathbb{E}[C(\cdot)x(\cdot)] - Z\|_{\mathbb{R}^n}^2 \right) \right\},$$

with $x(\omega)$ the solution of $A(\omega)x(\omega) = B(\omega)u$.

Let us assume that

• (x^T, u^T) : The optimal pair of the evolutive problem.

Let us assume that

- (x^T, u^T) : The optimal pair of the evolutive problem.
- $(\overline{x}, \overline{u})$: The optimal pair of the stationary problem.

Let us assume that

- (x^T, u^T) : The optimal pair of the evolutive problem.
- $(\overline{x}, \overline{u})$: The optimal pair of the stationary problem.

We will say that the average turnpike property holds if

Let us assume that

- (x^T, u^T) : The optimal pair of the evolutive problem.
- $(\overline{x}, \overline{u})$: The optimal pair of the stationary problem.

We will say that the average turnpike property holds if

$$\|x^{T}(t) - \overline{x}\|_{L^{2}(\Omega;\mathbb{R}^{n})} + \|u^{T}(t) - \overline{u}\|_{\mathbb{R}^{m}} \leq \mathscr{C}(e^{-\delta(T-t)} + e^{-\delta t}),$$

for all $t \in (0, T)$.

Let us assume that

- (x^T, u^T) : The optimal pair of the evolutive problem.
- $(\overline{x}, \overline{u})$: The optimal pair of the stationary problem.

We will say that the average turnpike property holds if

$$\|x^{T}(t) - \overline{x}\|_{L^{2}(\Omega;\mathbb{R}^{n})} + \|u^{T}(t) - \overline{u}\|_{\mathbb{R}^{m}} \leq \mathscr{C}(e^{-\delta(T-t)} + e^{-\delta t}),$$

for all $t \in (0, T)$. In particular, the previous inequality implies

$$\|\mathbb{E}(x^{\mathsf{T}}(t)) - \mathbb{E}(\overline{x})\|_{\mathbb{R}^n} + \|u^{\mathsf{T}}(t) - \overline{u}\|_{\mathbb{R}^m} \le \mathscr{C}(e^{-\delta(\mathsf{T}-t)} + e^{-\delta t}),$$

for all $t \in (0, T)$.

Optimality conditions for the evolutionary system

Assume that $A, C \in C(\Omega; \mathcal{L}(\mathbb{R}^n))$ and $B \in C(\Omega; \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n))$, and are uniformly bounded.

Optimality conditions for the evolutionary system

Assume that $A, C \in C(\Omega; \mathcal{L}(\mathbb{R}^n))$ and $B \in C(\Omega; \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n))$, and are uniformly bounded.

Proposition:

There exist a unique optima control $u^T \in L^2(0,T;\mathbb{R}^m)$ for the evolutive problem, and unique optimal state x^T associated to u^T .

Optimality conditions for the evolutionary system

Assume that $A, C \in C(\Omega; \mathcal{L}(\mathbb{R}^n))$ and $B \in C(\Omega; \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n))$, and are uniformly bounded.

Proposition:

There exist a unique optima control $u^T \in L^2(0,T;\mathbb{R}^m)$ for the evolutive problem, and unique optimal state x^T associated to u^T . Furthermore,

$$u^{\mathsf{T}}(t) = -\mathbb{E}[B^*\varphi^{\mathsf{T}}(t,\cdot)],$$

where φ^T solves

$$\begin{cases} -\varphi_t(t,\omega) + A^*(\omega)\varphi(t,\omega) = C^*(\omega) \left(\mathbb{E}[C(\cdot)x^T(t,\cdot)] - z \right), & t > 0 \\ \varphi(T,\omega) = \varphi_T(\omega), \end{cases}$$

MAIN RESULTS

Necessary hypotheses

Motivated by the notions of exponentially stabilizable and detectable, we assume two hypotheses

Necessary hypotheses

Motivated by the notions of exponentially stabilizable and detectable, we assume two hypotheses

Assumption 1: There exists a feedback operator $K_C \in C^0(\Omega, \mathcal{L}(\mathbb{R}^n))$ uniformly bounded and $\alpha_C > 0$ such that

$$(Av + \mathbb{E}[K_CCv], v)_{L^2(\Omega; \mathbb{R}^n)} \ge \alpha_C ||v||_{L^2(\Omega; \mathbb{R}^n)}^2,$$

for every $v \in L^2(\Omega; \mathbb{R}^n)$.

Necessary hypotheses

Motivated by the notions of exponentially stabilizable and detectable, we assume two hypotheses

Assumption 1: There exists a feedback operator $K_C \in C^0(\Omega, \mathcal{L}(\mathbb{R}^n))$ uniformly bounded and $\alpha_C > 0$ such that

$$(Av + \mathbb{E}[K_CCv], v)_{L^2(\Omega; \mathbb{R}^n)} \ge \alpha_C ||v||_{L^2(\Omega; \mathbb{R}^n)}^2,$$

for every $v \in L^2(\Omega; \mathbb{R}^n)$.

Assumption 2: There exists a feedback operator $K_B \in C^0(\Omega, \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n))$ uniformly bounded and $\alpha_B > 0$ such that

$$(A^*v + \mathbb{E}[K_B B^*v], v)_{L^2(\Omega; \mathbb{R}^n)} \ge \alpha_B ||v||_{L^2(\Omega; \mathbb{R}^n)}^2,$$

for every $v \in L^2(\Omega; \mathbb{R}^n)$.

Energy estimation

Under the assumptions **1** and **2**, there exists K_1 , K_2 , K_3 , $K_4 > 0$ independent of T, such that we have the evolutive inequalities

Energy estimation

Under the assumptions **1** and **2**, there exists K_1 , K_2 , K_3 , $K_4 > 0$ independent of T, such that we have the evolutive inequalities

$$\|x(t,\cdot)\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq K_1 \int_0^t \Big(\|u(s)\|_{\mathbb{R}^m}^2 + \|\mathbb{E}[C(\cdot)x(s,\cdot)]\|_{\mathbb{R}^n}^2\Big) ds + \|x_0(\cdot)\|_{L^2(\Omega;\mathbb{R}^n)}^2,$$

and

$$\|\varphi(t,\cdot)\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} \leq K_{2} \int_{t}^{T} \left(\|\mathbb{E}[B^{*}(\cdot)\varphi(s,\cdot)]\|_{\mathbb{R}^{m}}^{2} + \|\mathbb{E}[C(\cdot)x(s,\cdot)] - z\|_{\mathbb{R}^{n}}^{2} \right) ds + \|\varphi_{T}(\cdot)\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}.$$

Also, we have the stationary inequalities

$$\|v\|_{L^2(\Omega:\mathbb{R}^n)} \leq \mathcal{K}_3(\|Av\|_{L^2(\Omega;\mathbb{R}^n)} + \|\mathbb{E}[Cv]\|_{\mathbb{R}^n}),$$

and

$$||v||_{L^{2}(\Omega:\mathbb{R}^{n})} \leq K_{4}(||A^{*}v||_{L^{2}(\Omega;\mathbb{R}^{n})} + ||\mathbb{E}[B^{*}v]||_{\mathbb{R}^{n}}),$$

Well-posedness of the stationary problem

Theorem (Uniqueness, existence and characterization of minimizer)

Under the assumptions **1** and **2**, there exists a unique optimal pair (\bar{x}, \bar{u}) . Moreover, \bar{u} can be characterized as

$$\overline{u} = -\mathbb{E}[B^*(\cdot)\overline{\varphi}(\cdot)],$$

where $\overline{\varphi}$ is the solution of

$$A^*(\omega)\overline{\varphi} = C^*(\omega) \left(\mathbb{E}[C(\cdot)\overline{\chi}(\cdot)] - z \right), \tag{1}$$

Main results

Theorem (Exponential Average turnpike property)

Under the assumptions **1** and **2**, there exist two constants $\mathscr{C}, \delta > 0$ independent of T such that

$$||x^{T}(t,\cdot) - \overline{x}(\cdot)||_{L^{2}(\Omega;\mathbb{R}^{n})} + ||\varphi^{T}(t,\cdot) - \overline{\varphi}(\cdot)||_{L^{2}(\Omega;\mathbb{R}^{n})} + ||u^{T}(t) - \overline{u}||_{\mathbb{R}^{m}}$$

$$\leq \mathscr{C}(e^{-\delta(T-t)} + e^{-\delta t}), \quad (2)$$

for every $t \in [0, T]$,

L. Grüne and M. Schaller and A. Schiela (2019).

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control.

SIAM Journal on Control and Optimization.

L. Grüne and M. Schaller and A. Schiela (2019).

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control.

SIAM Journal on Control and Optimization.

• **Step 1:** Let $m = x^T - \overline{x}$ and $n = \varphi^T - \overline{\varphi}$. We write the system that satisfy m, n in a matrix structure

L. Grüne and M. Schaller and A. Schiela (2019).

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control.

SIAM Journal on Control and Optimization.

• **Step 1**: Let $m = x^T - \overline{x}$ and $n = \varphi^T - \overline{\varphi}$. We write the system that satisfy m, n in a matrix structure

$$\underbrace{\left(\begin{array}{ccc} -C^*(\omega)\mathbb{E}[C(\cdot)\cdot] & -\frac{d}{dt} + A^*(\omega) \\ & O & & E_T \\ & \frac{d}{dt} + A(\omega) & B(\omega)\mathbb{E}[B^*(\cdot)\cdot] \\ & E_O & O \end{array}\right)}_{\Lambda} \underbrace{\left(\begin{array}{c} m \\ n \\ \end{array}\right)}_{\mathcal{Z}} = \underbrace{\left(\begin{array}{c} O \\ n_T \\ O \\ m_O \end{array}\right)}_{\mathcal{Y}},$$

where $E_0 m := m(0)$ y $E_T n := n(T)$.

L. Grüne and M. Schaller and A. Schiela (2019).

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control.

SIAM Journal on Control and Optimization.

• **Step 1:** Let $m = x^T - \overline{x}$ and $n = \varphi^T - \overline{\varphi}$. We write the system that satisfy m, n in a matrix structure

$$\Lambda \mathcal{Z} = \mathcal{Y}$$
.

We prove that Λ^{-1} is well defined and that there exists K>0 independent of the time horizon such that

$$\|\Lambda^{-1}\|_{\mathcal{L}((L^2(\Omega;\mathbb{R}^n))^2,(\mathcal{X})^2)}<\mathcal{K},$$

where $\mathcal{X} = C([0,T]; L^2(\Omega; \mathbb{R}^n))$.

• Step 2: We consider a new variable change

$$\hat{m} = \frac{m}{e^{-\delta(T-t)} + e^{-\delta t}}, \ \hat{n} = \frac{n}{e^{-\delta(T-t)} + e^{-\delta t}},$$

• Step 2: We consider a new variable change

$$\hat{m} = \frac{m}{e^{-\delta(T-t)} + e^{-\delta t}}, \ \hat{n} = \frac{n}{e^{-\delta(T-t)} + e^{-\delta t}},$$

and we prove that there exist $\mathcal{K}>0$ independent of the time horizon such that

$$\|\hat{m}\|_{\mathcal{X}} + \|\hat{n}\|_{\mathcal{X}} \le K,$$

• Step 2: We consider a new variable change

$$\hat{m} = \frac{m}{e^{-\delta(T-t)} + e^{-\delta t}}, \ \hat{n} = \frac{n}{e^{-\delta(T-t)} + e^{-\delta t}},$$

and we prove that there exist ${\it K}>0$ independent of the time horizon such that

$$\|\hat{m}\|_{\mathcal{X}} + \|\hat{n}\|_{\mathcal{X}} \le K,$$

$$\mathcal{X} = C([0,T]; L^2(\Omega; \mathbb{R}^n)).$$

• Step 2: We consider a new variable change

$$\hat{m} = \frac{m}{e^{-\delta(T-t)} + e^{-\delta t}}, \ \hat{n} = \frac{n}{e^{-\delta(T-t)} + e^{-\delta t}},$$

and we prove that there exist ${\cal K}>0$ independent of the time horizon such that

$$\|\hat{m}(t)\|_{L^2(\Omega,\mathbb{R}^n)} + \|\hat{n}(t)\|_{L^2(\Omega,\mathbb{R}^n)} \le \|\hat{m}\|_{\mathcal{X}} + \|\hat{n}\|_{\mathcal{X}} \le K,$$

 $\mathcal{X} = C([0, T]; L^2(\Omega; \mathbb{R}^n))$. We conclude the proof by returning to the original variables.

Numerical Simulations and

COMMENTS

Numerical Simulations

We consider

$$A(\omega) = \alpha(\omega) \begin{pmatrix} 2 & -5 \\ 5 & 0.1 \end{pmatrix}, \quad B(\omega) = \beta(\omega) \begin{pmatrix} 5 \\ 7 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad z = \begin{pmatrix} 4 \\ 4 \end{pmatrix}.$$

Using Gekko library in Python, we obtain the following simulations

Comments

In the paper ¹ was shown that the "simultaneous" OCP

$$\min_{u \in L^{2}(0,T;\mathbb{R}^{m})} \left\{ J^{T}(u) = \frac{1}{2} \int_{0}^{T} \left(\|u(t)\|_{\mathbb{R}^{m}}^{2} + \mathbb{E} \left[\|C(\cdot)x(t,\cdot) - z\|_{\mathbb{R}^{n}}^{2} \right] \right) dt + \langle x(T,\cdot), \varphi_{T}(\cdot) \rangle_{L^{2}(\Omega;\mathbb{R}^{n})} \right\},$$

subject to $x=x(t,\omega)\in\mathbb{R}^n$ solving

$$\begin{cases} x_t(t,\omega) + A(\omega)x(t,\omega) = B(\omega)u(t), \\ x(t_0) = x_0. \end{cases}$$

(and the associated stationary system) satisfies

$$\|x^{T}(t) - \overline{x}\|_{L^{2}(\Omega;\mathbb{R}^{n})} + \|u^{T}(t) - \overline{u}\|_{\mathbb{R}^{m}} \le \mathscr{C}(e^{-\delta(T-t)} + e^{-\delta t}), \quad t \in (0,T).$$

¹M. Hernández and R. Lecaros and S. Zamorano (2023). Averaged turnpike property for differential equations with random constant coefficients. *Mathematical Control and Related Fields*

Numerical Comparison with the Current Work

Using the same matrices for the "average" and "simultaneous" observation OCP

$$A(\omega) = \alpha(\omega) \begin{pmatrix} 2 & -5 \\ 5 & 0.1 \end{pmatrix}, \quad B(\omega) = \beta(\omega) \begin{pmatrix} 5 \\ 7 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad z = \begin{pmatrix} 4 \\ 4 \end{pmatrix},$$

We obtain the following simulations

1. Exponential average turnpike (average observation) for random PDE.

- Exponential average turnpike (average observation) for random PDF.
- 2. Connection between exponential stability-detectability hypotheses with average control

- 1. Exponential average turnpike (average observation) for random PDE.
- 2. Connection between exponential stability-detectability hypotheses with average control (find u such that $\mathbb{E}[x(\cdot,T)]=x_1$).

- 1. Exponential average turnpike (average observation) for random PDF.
- 2. Connection between exponential stability-detectability hypotheses with average control (find u such that $\mathbb{E}[x(\cdot,T)]=x_1$).
- 3. Riccati theory on average.

- 1. Exponential average turnpike (average observation) for random PDF.
- 2. Connection between exponential stability-detectability hypotheses with average control (find u such that $\mathbb{E}[x(\cdot,T)]=x_1$).
- 3. Riccati theory on average.
- 4. Hypotheses that guarantee the turnpike property for $\|\mathbb{E}[x^T(t)] \mathbb{E}[\overline{x}]\|_{\mathbb{R}^n}$, but not for the $\|x^T(t) \overline{x}\|_{L^2(\Omega;\mathbb{R}^n)}$.

Finally

Thanks for your attention.