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RANDOM DIFFERENTIAL EQUA-
TION




Let us consider the probability space (2, F, u) with w € Q,
A(w) € L(R") and B(w) € L(R™,R"). Consider the RDE with random
coefficients

{xt(t, w) + A(w)X(t,w) = B(w)u(t),

X(to) =Xo € Rn,
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Let us consider the probability space (2, F, u) with w € Q,
A(w) € L(R") and B(w) € L(R™,R"). Consider the RDE with random

coefficients

Xi(t,w) + A(w)x(t,w) = B(w)u(t),
X(to) = x0 € R",

with u(t) € R” independent of w.
Main Questions:

1. How do we define an optimal control problem in this context?

2. Is it possible to prove the turnpike property when x” and x are
random trajectories?

3. What is the meaning of the turnpike property in this context?
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Problem formulation

In the following

@R = {0 R BN = [ X)) < oo
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Problem formulation

In the following

@R = {0 R BN = [ X)) < oo

We consider the following evolutive optimal control problem with
averaged observations

)
Jﬁm—éé(wm@wwmawmn—ﬂ@wt

+ (T, ) (i |-
with C(w) € L(R") and x = x(t,w) € R" solving

{xt(t, w) + A(w)X(t,w) = B(w)u(t),

X(to) = Xo.

min {
ueL2(0,T;Rm)
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Problem formulation

Also, consider the following minimization stationary problem

ueRm

mind (@) = 5 (IulBe + IEICCION - 218 ) |

with x(w) the solution of A(w)x(w) = B(w)u.
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Exponential turnpike property

Let us assume that

e (x",u): The optimal pair of the evolutive problem.
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Exponential turnpike property

Let us assume that

e (x",u): The optimal pair of the evolutive problem.
e (X,U): The optimal pair of the stationary problem.

We will say that the average turnpike property holds if
7 (6) = Rl2my + 107 (8) = Tllan < €(e0T0 1 e75%),
forallt € (O, T). In particular, the previous inequality implies
IEQ (1) — E®)lzo + [ (t) — Tl < € (70 + &%),

forallt e (O, 7).
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Optimality conditions for the evolutionary system

Assume that A, C € C(Q; L(R")) and B € C(Q; L(R™,R")), and are
uniformly bounded.
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Optimality conditions for the evolutionary system

Assume that A, C € C(Q; L(R")) and B € C(Q; L(R™,R")), and are
uniformly bounded.

Proposition:

There exist a unique optima control u” € L2(0, T; R™) for the evo-
lutive problem, and unique optimal state x” associated to u’. Fur-
thermore,

u'(t) = —E[B*'(t, )],
where o' solves

it w) + A" (@)p(t,w) = C*(w) (BICON (6, )] - 2), £ 0,
SD(T’ w) = @T(w)a
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MAIN RESULTS
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Assumption 2: There exists a feedback operator
Kg € CO(Q, L(R™; R™)) uniformly bounded and ag > O such that
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Energy estimation

Under the assumptions 1 and 2, there exists K, K>, K3, K4 > O
independent of T, such that we have the evolutive inequalities
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Energy estimation

Under the assumptions 1 and 2, there exists K, K>, K3, K4 > O
independent of T, such that we have the evolutive inequalities

t
Ibe(t, ) oy < K1 /O (1S3 + IELCC (s, IR ) s + [X0() Feqiney

and

le(t, )2 zr) < Kz /t ' (IEIB*()els, MIEn + IEICCx(s, )] - 2|3 ) s
+H90T(')||EZ(Q;]R")'
Also, we have the stationary inequalities
IVllL2(@rny < Ka([|AVII2(@re) + IE[CV]]|zn),
and
IVllL2(@rny < Ka([A™VI| 2@y + [E[B*V][[gr),
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Well-posedness of the stationary problem

Theorem (Uniqueness, existence and characterization of mini-
mizer)

Under the assumptions 1 and 2, there exists a unique optimal pair
(x,u). Moreover, U can be characterized as

u=-EB*()e(),
where 7 is the solution of

A (W)@ = C*(w) (B[COX()] = 2), )
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Main results

Theorem (Exponential Average turnpike property)

Under the assumptions 1 and 2, there exist two constants ', > O
independent of T such that

IXT(t, ) = X lez@mny + 17 (t ) = Bz (@mey + T (t) = Tllzm

<€ e (2
forevery t € [0, T],
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Proof (Sketch)

@ L. Grune and M. Schaller and A. Schiela (2019).
Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated
by Model Predictive Control.
SIAM Journal on Control and Optimization.
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@ L. Grune and M. Schaller and A. Schiela (2019).

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated
by Model Predictive Control.

SIAM Journal on Control and Optimization.

e Stepl: Letm =x" —xandn = ¢’ — . We write the system
that satisfy m,n in a matrix structure

—C*(W)E[C(-)-] —&+A"(w) 0
0 Er my\ | nr

4L AW)  BWEB*()] ( n ) o |’
Eo (6] =z mo
A y

where Eom := m(0) y Ern := n(T).
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Proof (Sketch)

@ L. Griine and M. Schaller and A. Schiela (2019).

Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated
by Model Predictive Control.
SIAM Journal on Control and Optimization.

e Stepl: Letm =x" —Xxandn = ¢’ — %. We write the system
that satisfy m, n in a matrix structure

NZ=).

\We prove that A=t is well defined and that there exists K > O
independent of the time horizon such that

IN 2a@mnyz (2 < K,

where X = C([0, T]; L?(Q; RM)).
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Proof (Sketch)

e Step 2: We consider a new variable change

. m . n
M= o500y g0t "= g=o(7-0 4 g-o’

12/18



Proof (Sketch)

e Step 2: We consider a new variable change

. m . n
M= o500y g0t "= g=o(7-0 4 g-o’

and we prove that there exist K > O independent of the time
horizon such that

IMlx + [1A]lx <K,

12/18



Proof (Sketch)

e Step 2: We consider a new variable change

. m . n
M= o500y g0t "= g=o(7-0 4 g-o’

and we prove that there exist K > O independent of the time
horizon such that

IMlx + [1A]lx <K,

X = C([O, T]; L3(Q; R")).

12/18



Proof (Sketch)

e Step 2: We consider a new variable change

. m . n
M= o500 y g0t "= g=o(7-0 4 g-o’

and we prove that there exist K > O independent of the time
horizon such that

M)z rey + 17O |2 rey < [1Mllx + (1A]lx <K,

X = C([0, T]; L?(; R")). We conclude the proof by returning to
the original variables.
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NUMERICAL SIMULATIONS AND
COMMENTS



Numerical Simulations

\We consider

2 -5

A =a@) (3 o3). 8w =5 (3). c=(§ o). 2= (4):

Using Gekko library in Python, we obtain the following simulations

05 0ol =
—— Average Trajectory of x](t)
-=- Average Trajectory of 1
0.0 -02
—— Evolutive Control u'(t)
Stationary Control T
4 2 4 6 8 10 [ 2 4 6 8 10
0.4 —— Average Trajectory of x(t) 40 — |ET(6) — EG| + ||uT(6) — 7|
--- Average Trajectory of %, — Cle~% + e~T- i)
0.2
20
0.0
—0.2 0l N
4 2 4 6 8 10 0 2 4 6 8 10
Time Time
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Comments

In the paper ! was shown that the "simultaneous” OCP

)
min  {JT(W) =2 /O (a2 +E[ICCI(E ) = 2I0] )t

uel?(0,T;Rm)
+ (T, ) er(egamn b

subject to x = x(t,w) € R" solving

xt(t, w) + A(w)x(t, w) = B(w)u(t),
X(to) = X0.

(and the associated stationary system) satisfies

17 () = Xlle2@pry + U7 (£) = Ullge < € (€779 +€7), te(0,T).

M. Hernandez and R. Lecaros and S. Zamorano (2023). Averaged turnpike
property for differential equations with random constant coefficients. Mathematical
Control and Related Fields.
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Numerical Comparison with the Current Work

Using the same matrices for the "average” and "simultaneous”
observation OCP

ae) =a) (3 53) 8= (5). c= (9 5). z=(3).

We obtain the following simulations

—— Average Trajectory of x(t) — Average Trajectory of x(t)
-=- Average Trajectory of X ~-- Average Trajectory of

0.0 5 }

0 2 4 6 8 10 0 2 4 6 8 10
1
0.4 —— Average Trajectory of x](t) —— Average Trajectory of x}(t)
~=- Average Trajectory of %, ~=- Average Trajectory of %,
0.2 0
0.0
-1
-02
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
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Open problems

1. Exponential average turnpike (average observation) for random
PDE.
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Open problems

1. Exponential average turnpike (average observation) for random
PDE.

2. Connection between exponential stability-detectability
hypotheses with average control
(find u such that E[x(-, T)] = x1).

3. Riccati theory on average.

4. Hypotheses that guarantee the turnpike property for
IE[xT(t)] — E[X]||zr, but not for the [[x7 (t) — X||2(q.xn)-
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Finally

Thanks for your attention.
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