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Abstract damped wave equations

o (H,(-,-),|l - ||) Hilbert space
e A:D(A) C H— H strictly positive selfadjoint operator
o f:o(A)C (0,00) = [0,00) continuous function
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Abstract damped wave equations

,{-,), 1| - ]|) Hilbert space
D(A) C H — H strictly positive selfadjoint operator

(H
A:
f:o(A) C (0,00) — [0,00) continuous function

ii(t) + 2f (A)a(t) + Au(t) = 0 (W)

f(A) is the selfadjoint operator constructed via the functional
calculus of A

F(A) = / OIS

being E4 the spectral measure of A
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Examples

o Q C R"” bounded domain with smooth boundary 092
o A= —A with D(-A) = H*(Q) N H}(Q) C L3(Q)
o f(s)=s’ withd e R
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Examples

o Q C R"” bounded domain with smooth boundary 092
o A= —A with D(-A) = H*(Q) N H}(Q) C L3(Q)
o f(s)=s’ withd e R

We get the wave equation with fractional damping

8ttu + 2(—A)98tu —Au=0
Upa =0

— for § = 0 weakly damped wave equation (Telegrapher's Equation)
— for 8 = 1 strongly damped wave equation

Beam and plate equations with fractional damping can be obtained
in a similar way choosing A = A? with

D(A%) = {u e H*(Q)NHHQ): Aue H* Q)N Hy(Q)}
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The solution semigroup

e Product space H =D A%) x H
o Linear operator G : ©(G) C H — H defined as

© (5) - (—2f(A;v - Au>
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The solution semigroup

@ Product space H = ’D(A%) x H
o Linear operator G : ©(G) C H — H defined as

© (:) - (—2f(A;v - Au>

Setting u = (u, v) we can rewrite (W) as
u(t) = Gu(t)

The operator G can be shown to be the infinitesimal generator of a

contraction Cp-semigroup
S(t)=e®:H > H

— for every ug € H the unique (mild) solution u(t) to (W) with
initial condition u(0) = ug is given by

u(t) = S(t)uo
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Exponential stability

S(t) is said to be exponentially stable if there exist w > 0 and C > 1
such that
IS(8)ll () < Ce™*
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Exponential stability

S(t) is said to be exponentially stable if there exist w > 0 and C > 1
such that
IS(8)ll () < Ce™*

For the semigroup S(t) = e'® generated by (W) exponential stabil-
ity occurs if and only if

inf f(s)>0 and sup fs) < 0o (EXP)
sea(A) s€o(A) S
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Exponential stability

S(t) is said to be exponentially stable if there exist w > 0 and C > 1
such that

IS(8)ll () < Ce™*

For the semigroup S(t) = e'® generated by (W) exponential stabil-
ity occurs if and only if

inf f(s) > and sup fs) < 00 (EXP)
SEO’(A) SEO’(A) S

We define the exponential decay rate as

wy = sup{w >0: [|S(t)]| ) < Ce™* for some C = C(w) > 1}
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The SDG condition

Much easier to detect is the spectral bound of G

o« = sup Rel
Ao (G)

related to w, through the (possibly strict) inequality

Wy < —0y
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The SDG condition

Much easier to detect is the spectral bound of G

o« = sup ReA
Ao (G)

related to w, through the (possibly strict) inequality
Wy < —0y
S(t) satisfies the spectrum determined growth (SDG) condition if

Wy = —O0x
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The SSDG condition

Even if S(t) fulfills the SDG condition this does not mean that
IS(E) Iy < Cem*
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The SSDG condition

Even if S(t) fulfills the SDG condition this does not mean that
IS(E) Iy < Cem*

Example (Damped pendulum ODE)

i+2a0+u=0
— particular instance of (W) for H=R?, A=1and f=a>0

e (aVa-1t 4 o e—(atva-1)t a>1

u(t) =< cre t + cotet a=1

cie ¥ sin[(V1 — a?)t] + ce ?* cos[(V1 — a2)t] a<l
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The SSDG condition

Even if S(t) fulfills the SDG condition this does not mean that
IS(E) Iy < Cem*

Example (Damped pendulum ODE)
i+2au+u=20
— particular instance of (W) for H=R?, A=1and f=a>0
e (aVa-1t 4 o e—(atva-1)t a>1
u(t) =< cret + cote™t a=1

cie ¥ sin[(V1 — a?)t] + ce ?* cos[(V1 — a2)t] a<l

when a = 1 the norm of the solution reads

1S(0) (o, vo) 1zt = /1 + @ + 2(u8 — vB)t +2(uo + vo)212 €75

7/21



Problem 12 (R. Nagel). Let (T'(t)):>0 be a Cy-semigroup whith growth bound
wo =inf{w e R: [|T(®)|| £ M¥ - e for t > 0}
Find condition such that wy is minimum, i.e.,
IT@)|| < My - e for t >0

Comments. This corresponds to a characterization of boundedness for semigroups.

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.
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S(t) satisfies the strong spectrum determined growth (SSDG) con-
dition if the decay rate w, = —o, is attained, that is if

1S(t) )|y < Cem*f

holds for some C > 1
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Previous contributions. Under some assumptions which prevent f(s)
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thors [2012-2014] obtained sharp exponential decay estimates for
trajectories originating from sufficiently regular initial data
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S(t) satisfies the strong spectrum determined growth (SSDG) con-
dition if the decay rate w, = —o, is attained, that is if

1S(t) )|y < Cem*f

holds for some C > 1

Previous contributions. Under some assumptions which prevent f(s)
to grow at infinity faster than s with 6 < % J. Goldstein and coau-
thors [2012-2014] obtained sharp exponential decay estimates for
trajectories originating from sufficiently regular initial data

— they cannot generally exhibit the decay rate of the semigroup
Our results. Within the sole assumption (EXP) we show that S(t)

fulfills the SSDG condition except in some particular resonant cases
where the term e “*t is penalized by a factor t

— this result is optimal and the decay rate is the best possible
allowed by the theory
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The Spectrum of G

For every fixed s € o(A) we introduce the pair of complex numbers

E —f(s) £i\/s — %(s) if f(s) <+/s

S

—f(s)£4/f%(s)—s if f(s)> /s
which are nothing but the solutions to the second order equation

A2 4 2f(s)A+5s=0
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The Spectrum of G

For every fixed s € o(A) we introduce the pair of complex numbers

E —f(s) £i\/s — %(s) if f(s) <+/s

S

—f(s)£4/f%(s)—s if f(s)> /s
which are nothing but the solutions to the second order equation
A2 4 2f(s)A+5s=0

We also consider the (possibly empty) set

f(sn 1
/\:{/\<O:Els,,€a(A):s,,—>ooand lim (S):——}

n—oo S, 2\
The spectrum of G reads
o(G)= | J {A}un
sco(A)
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We introduce the continuous function ¢ : o(A) — (0, c0)
f(s) if f(s) <+/s
¢(s) = _
f(s) —+\/f%(s)—s if f(s) >+/s
along with the number

m selzrrl(A) ¢(S)
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We introduce the continuous function ¢ : o(A) — (0, c0)
f(s) if f(s) <+/s
¢(s) = _
f(s) —+\/f%(s)—s if f(s) >+/s
along with the number

m sEIQ(A) ¢(S)

The following hold
em,>0

@ 04 = —My

Definition

S(t) is said to be resonant if there exists s, € o(A) such that
my = ¢(sx) and f(ss) = /s
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Statement of the result

There exists a constant C > 1 such that

o [|S(t)llLz) < Ce™™*t if S(t) not resonant

o [|S(t)llee) < C(1+t)e~™* if S(t) resonant
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Statement of the result

Theorem

There exists a constant C > 1 such that

o [|S(t)llLz) < Ce™™*t if S(t) not resonant

o [|S(t)llee) < C(1+t)e~™* if S(t) resonant

Since 0, = —m, the latter yields

Corollary

e If S(t) is not resonant then it fulfills the SSDG condition

e If S(t) is resonant then it fulfills the SDG condition but not
the SSDG one
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Application: wave equations with fractional damping

i(t) +2aA%(t) + Au(t) = 0 a>0 and 6c]0,1]
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Application: wave equations with fractional damping
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0 c [0,%)

0=0 6€(0,3)

The function ¢ is increasing and thus

my = ¢(sp) where so = mino(A) >0
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Application: wave equations with fractional damping

i(t) +2aA%(t) + Au(t) = 0 a>0 and 6c]0,1]

0 c [0,%)

0=0 6€(0,3)
The function ¢ is increasing and thus
my = ¢(s0) where so = mino(A) >0

2
— S(t) is resonant if and only if sp = a1-2
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2
@ ¢ increasing for s < aT=20
2 2
@ ¢ decreasing for s € (aT-27, s,), Sy = min{¢(s) : s > a2}

@ ¢ increasing and diverging to infinity for s > s,
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o¢(s):asfors<§

@ ¢ reaches its maximum value % and then it is decreasing and
1
converges to 5
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o¢(s):asfors<§

@ ¢ reaches its maximum value % and then it is decreasing and
1
converges to 5

— resonance cannot occur except in the trivial case o(A) = {a%}
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Sketch of the proof

There exists a constant C > 1 such that

o [|S(t)llLr) < Ce™™* if S(t) not resonant

o [|S(t)llee) < C(1+t)e~™* if S(t) resonant
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Sketch of the proof

For K > 2 and ¢ € (0,1) we decompose o(A) into the disjoint union

o(A)=o09Uo1UorUos

where
O'OZ{SGU(A): ):([SS)>K}
01:{560(A): f(\/?gl—s}
02:{560(/4): 1+€§f\(/5§)§K}
03:{560(A): 1—e<i([s’5)<1—|—5}
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@ Given any trajectory
(u(t), u(t)) = 5(t)(wo, o) € D(G)
we define the energy

E(t) = Az u(t)1? + [[a(e)]?
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@ Given any trajectory
(u(t), u(t)) = 5(t)(wo, o) € D(G)
we define the energy

E(t) = Az u(t)1? + [[a(e)]?

e We split E(t) into the sum

3
E(t) = ) Ei(t)

1=0

where

E() = [|A2Ea(0,)u(t)|? + [|Ea(o) (1)
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@ Given any trajectory
(u(t), u(t)) = 5(t)(wo, o) € D(G)
we define the energy

E(t) = Az u(t)1? + [[a(e)]?

e We split E(t) into the sum
3
E(t) = ) Ei(t)
1=0

where
E.(t) = [|AZ Ea(0,)u(t)[2 + || Ealoy) ()]

—E, =0ifo, =0
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For every K > 2 large enough we have the inequality
Eo(t) < 3Eo(0)e 2™t
For every € € (0,1) we have the inequality

2—¢

El(t) < 6

E1(0)e 2™t

For every € € (0,1) and every K > 2 we have the inequality
9K2 —2myt
Eg(t) < 7E2(O)e *
€
For every € € (0, %) such that o3 # () we have the inequality

E5(1) < DEs(0)e 240
3

where m3 = im(:s€cr3 ¢(S)
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1S(t)[|L(zy < Ce™™* if S(t) not resonant
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Using the fact that S(t) is not resonant we show that for all £ small

m3 > my
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1S(E)|l L) < Ce=™F if S(t) not resonant
Using the fact that S(t) is not resonant we show that for all £ small
ms > m,
Since mj3 is a decreasing function of € we can fix € > 0 so small that
m3(1—4ye) > m,
This leads to the estimate

8
Es(t) < gEg(O)e_2'"*t
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1S(E)|l L) < Ce=™F if S(t) not resonant
Using the fact that S(t) is not resonant we show that for all £ small
m3 > my
Since mj3 is a decreasing function of € we can fix € > 0 so small that
m3(1 - 4\/5) > my
This leads to the estimate
3 —2myt
E3(t) < 7E3(0)e *
€

We conclude that

3
E(t) =) E,(t) < ME(0)e ™"
1=0
for some M = M(K,s) >0 0
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1S(E)lL(2) < C(1 4 t)e~™F if S(t) resonant
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Now we have the equality
m3 = My

for every £ € (0, %) and thus

2
E(t) < % E(o)e*2m*(174ﬁ)t
£
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Now we have the equality
ms3 = my

for every £ € (0, %) and thus
2
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Fixing an arbitrary e, € (0, ;) we choose
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5:5(t):(1+t)2
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1S(E)lL(2) < C(1 4 t)e~™F if S(t) resonant

Now we have the equality
ms3 = my

for every £ € (0, %) and thus
2
E(t) < %E(O)ef2m*(174ﬁ)t
€
Fixing an arbitrary e, € (0, ;) we choose

Ex

5:5(t):(1+t)2

This leads to
E(t) < M(1 + t)?E(0)e 2!

for some M = M(K, e, my) >0
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Thank you for your attention
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