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Modern Cosmology

The current standard model of cosmology is based on 3 premises:

1) Gravitation is described by general relativity

2) The background metric of the Universe is described
by the cosmological principle

3) Before the hot big bang phase, the Universe
undertook an accelerated expansion phase called
Cosmological Inflation.



1) General relativity

Gravitation defined by Einstein’s general relativity. Therefore, Einstein
eqguations:

1 G
By — §R9W + Aguw = A L

We need to define the metric and the energy content of the Universe in
order to proceed
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2) Cosmological principle: FLRW metric

If we assume that at large-scales (> 100 Mpc) the Universe is:
- Isotropic: properties are the same in every direction
- Homogeneous: isotropic at every point.

Then we derive the Friedman-Lemaitre-Robertson-Walker metric

ds® = dt* — a*(t) [d}(2 + Si(x) d°Q ] .

siny sik>0(k=1)
Sk(x) =1 X si k=0
sinhy si k<0 (k=-1)

a(t): scale factor; y: comoving distance;



Friedmann equations

From FLRW metric we derive the Friedmann equations:

s E; kc? | Ac?
3 P~ 2 T 73

T
\V)
|
R
Q| &
N—
)
|

G: Newton constant

p: energy density

P: pressure
N\: cosmological constant

H: Hubble parameter

We need to describe each fluid contributing to the energy-momentum

tensor. Each fluid has a particular equation of state:

1 = (p + p/CQ)uuu,/ - PG

p=wp

Energy-
momentum
tensor of a
perfect fluid



Expansion of the Universe

We define the critical density for the k=0 case and without cosmological constant, then
we can describe three different curvature cases:

3H QX pX

8 G

pcrit =

Q<1: k>0. Closed Universe
Q=1: k=0. Flat Universe

Q>1: k=0. Open Universe

Closed Open Flat

The evolution of each energy component depends on its equation of state.

D= wp Matter: w= 0
. —3(1+w)  Radiation: w= 1/3
0 X a -
P ¢ W= -
p+3(p+ )= =0 A=
¢ da Dark Energy w< -1/3

Quintaessence: w=wo+Wa(1+2)



Universe expansion

Physical distance related with comoving distance: r()=a()x.

By setting today, r=y, then we normalise the value of a: a(t) =1 .

. . . d da , a
Velocity of a comoving particle: v(r, t) = ar(t) = X=dx=-r= Hor,
a

Due to the expansion, 2 comoving observers will measured the emitted light by the
other with a different frequency than the emitted one, given by redshift z.
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Cosmological distances

We can estimate the distances in the Universe using this formalism so we
can directly study the energy content

H? = Hg [Qm a + Q. oat+ O a? + Qppa 30w ]

C z dz

(2) = /ﬂ=1 da &
. <
X Hy Jom(it V Qpa + QO + Qa + Qaal Hy Jo E(z)

d = cz/H,y Local distance
D = x(z) Comoving distance .
Dy = x(2)/(1+ 2) Angular diameter distance =g,
Dy, = x(z) (1+2)=Dy/a’ Luminosity distance b, = 4:F0
dy = / d_ Particle horizon
In optical photom 1/ we use magnitudes: m, = —2.5logy, (]5“’0 )
[ E/m -~ ]Vé: S5log Dy (z) + 25 Distance modulus

Apparent magnitude absolute magnitude



Universe history eras

The dynamics of the Universe and the growth of structure depend on which
energy component is dominating at each time of history in the Universe

n X a—S(l—I—w)
Matter: w= 0

Radiation: w= 1/3
N\ w= -1
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Observational tests of cosmology

We need to study all cosmology at all times and all scales.

Study transient objects in the sky and the distribution of matter using
different wavelengths.

Principal observational methods

Time-domain cosmology Large-scale structure of the Universe

1100




Cosmography

Using the luminosity or the angular diameter distance we can test the
cosmological background model.

Standard candles Standard rulers

From WiggleZ Collab.
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Cosmic distance ladder

Most distance measurements are carried using the distance
ladder technique.
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Hubble-Lemaitre law

Standard candles: If we know luminosity -> We measure distance
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We observe galaxies “receding” at a velocity proportional to the distance to them

Universe expands,
confirming FLRW metric
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Expansion of the Universe (beginning)

During the 1920s, thanks to Vesta Slipher redshift measurements, Henrietta
Leavitt cepheids period-luminosity relation, Georges Lemaitre found Friedmann’s
solution and compared with data, funding the expansion but then with more data
Edwin Hubble measured the distance-redshift relation.
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Velocity-Distance Relation among Extra-Galactic Nebulae.

One of Lemaitre conclusions was to formulate the primeval atom of the Universe
In which going back on time, the Universe must have been in a dense state.



Thermal history

According to the Big Bang model, there should be a remnant radiation
cooled down to a few K today.

Observing this radiation -> significant support of the model

—_—
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The evolution of the CMB temperature has been measured with redshift,
agreeing with the expected result.



Thermal History (Primordial nucleosynthesis)

We can predict the abundances of light elements, depending on the
amount of baryons in the Universe. The abundances given by the
observed baryon density at present agree with astrophysical abundances
of this elements.
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Thermal history (recombination & decoupling)

- At high redshitts, photons and electrons are tightly coupled through Thompson
scattering:

y+e =y+e
CNpOr 5 - 1072151

The scattering rate is: 1" = cn, o0 = T = . (where we assumed
a a

n, =n, = ng)and ng = p,$2,/m,

As long as 1" > H the particles will remain tightly coupled. -> Hint for decoupling.

- Before decoupling, recombination happens when atoms are formed through:

27

Taking the ratio to cancel the chemical potentials and assuming m,, ~ my > > m,

- Maxwell-Boltzmann equation determine number densities: n; = g;

H+~yvZp+e
fy p <m’T) e—(mi_ﬂi)/T

we reach the Saha equation: Ny Me —3/2 Q
— ( 7 27’(’) er

NpTe

where Q = m, +m, —my ~ 13.6 eV



Thermal history (recombination & decoupling)

- It Is really important to define the ionisation fraction:

Tp _np_np_x(t)
— — — e
Ny, + Ny ng ng
Rearranging the equation and introducing the baryon to photon ratio 17, we can

have something solvable (using T = Tj/a)
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Thermal history (recombination & decoupling)

- For decoupling, we can just estimate when the interaction rate becomes smaller than

the Hubble rate so we can set

- We need to include the effect of recombination in 1" = cn,o7 =

F(Zdec) — H(Zdec)

C”BUT 5.107%151

a’ a’

by including the ionisation fraction: I' =5 - 10_21xe(z)(1 + 2)°

- By the recomibination, the Universe is already in the matter domination phase so

H(z) = HO\/Qm(l + 7)? and if we use the proper solution for x,(z) we get

To summarize:

Zdec — 1090
Phase oz T T
_Matter-radiation equality | 3250 | 50000yrs Q000K
Recombination 1275 | 290000 yrs 3500 K

.........................................................................................................................................................................

Decoupling 1090 380000 yrs 3000 K




Thermal history (reionization)

- After decoupling, a 5% of CMB photons get lost (which will impact in the amplitude of
the power spectrum) because of reionization.

- First stars and quasars produce the ionisation of electrons in the intergalactic media
around z=11. The freed electrons will produce again some Thompson scattering with
the CMB photons.

- The direct impact of reionisation in the ACDM model is through the optical depth of
the reionization called 7 which is given by:

. / Lt

treion

The impact in the amplitude of the power spectrum is given by Ase_zf. It has a
similar type of nuisance as the galaxy bias when studying the clustering of
galaxies.



Universe timeline

Event Time Redshift Temp (eV) Temp (K)
Inflation 107%°s 77 7 7 7
Baryogenesis 7 7 ~ 100 GeV 77 7
QCD phase transition 10 ps 1.5 x 10*2 150 MeV 102
Dark-matter freezeout ? 7 ~ 100 MeV 77 7
Neutrino decoupling 0.7s 6 x 10” 1 MeV 10
Electron—positron annihilation 2s 3 x 10? 0.5 MeV 6 x 10°
Big Bang nucleosynthesis 2 min 5 x 10° 0.1 MeV 10°
Matter-radiation equality 50,000 yr 3500 0.8eV 9000
Recombination 290,000 yr 1275 0.3eV 3500
Photon decoupling 380,000 yr 1090 0.25eV 3000
Dark energy dominates 10 Gyr 0.3 3.1 x107%eV 3.6
Present day 13.8 Gyr 0 2.35 x 107 *eV 2.725




Cosmic Microwave Background radiation

Discovery in 1965 by Penzias and Wilson. Decoupled from matter at 3000K
(decoupling). Blackbody distribution with a temperature close to 3K with huge
precision.
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CMB observations: COBE

FIRAS DMR
Measurement of Blackbody Differential measurement of
spectrum of CMB -> power with a 60 degree angle
Interferometry made with a In the sky.

reference blackbody

FoV of 7 degrees and cooling Detection of anisotropies
systemat 1.5 K
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CMB observations: Planck

The Cosmic Microwauve Background as seen by Planck and WMAP

1.5 meters diameter with 2
instruments, high frequency (>
100 GHz) and low frequency
(<100 GHz)
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CMB observations: Planck

Observation made in multiple frequencies

to reduce the impact of systematic
emissions

857 GHz

Intensity

CMB Spectrum
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CMB observations: Systematics

Systematic signals have different behaviours with frequency (and they are also
smooth.)

40 60 B8O 100 200
Frequency (GHz)



Cosmic Microwave Background radiation anisotropies

Once the observations are cleaned, the measured angular power spectrum
of CMB anisotropies contains cosmological information. Basis to establish

ACDM model
AT 2
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CMB anisotropies power spectrum

There are 3 main contributions to the temperature anisotropies that lead to
the power spectrum:

6T 1 X o b
?(H) = Z5fy+¢ — (- vp)s + dn(¢” + ')
* *
SW Doppler ISW (0 if potential is constant)
6000 —————r . -
i VAT === SW + Doppler
...... Doppler ISW
5000 == SW + Doppler | = SW + Doppler + ISW /\
4000
¢
= 3000 i |
o~ B
2000 s .
1000 .

........
. .
., -
. .*
. -
., -
-------
------------




CMB anisotropies power spectrum

Cosmological model success to predict the CMB power spectrum

Role of dark energy at time on early Universe small, important for
secondary effects on the photons (integrated Sachs-Wolfe effect)
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CMB anisotropies as cosmological probe

Position of first peak clear indicator of flatness of the Universe (k=0)

Relation between peaks gives us relation between total matter density ana
bayrons density.
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Dark matter (more detail in D. Blas lectures 13/09)

In parallel to all these, another mysterious component of the Universe has
been proposed, dark matter.

- In the 30s, F. Zwicky showed that the galaxies in the Coma cluster are
moving much faster than they should according to the gravity from the
visible matter in the cluster. He named the matter component holding the
cluster “dunkle materie” (dark matter)

- Then in the 60s and 70s, Vera Rubin measured the rotational curves of
spiral galaxies, finding a flat profile at large radii when according to the
distribution of matter in the center of the galaxy the profile should fall.
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Dark matter

Once we started observing the cosmic web, also the presence of DM is
needed to glue it and get the structures to growth up to what we see today.

%/ 31.25Mpchh
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This same evidence is why the theoretical fit to the CMB anisotropies need
the existence of DM as the largest component of matter to



Dark matter

And also we can see the dark matter component is colisiones (cold) by
comparing the distribution of a weak lensing image of the Bullet cluster
(mapping all matter) with the hot gas distribution after the collision of the 2
clusters




Dark matter

In summary, there are several astrophysical indirect evidences of DM but
we still need to find the nature of this component.
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Standard candles at high redshift

The most successful standard candle in the last decades
have been the type la SN (produced by a red giant-
white dwarf binary)

We need first to classify the SN by using the SN
spectrum (which can also give us the redshift) and we
also need the photometric like curves
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Expansion of the Universe (standard candles)

Comparing the distance modulus (measured from light curves) and the
redshift, we can determine which geometry of the Universe explains the
data better.
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Universe accelerated expansion
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The existence of
dark energy and
dark matter is
verified. Current
effort is focused on |
understanding their -
nature
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Type la SN showed (with 2sigma) that the expansion of the Universe is
accelerating. This implies either the Einstein equations have to include the
cosmological constant or that we need to modify gravitation theory. If the
acceleration is produced by a university fluid, then we denominate it dark
energy.



Baryonic acoustic oscillations (BAO)

Sky angle
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Galaxies form in the overdense regions

Mostly, where the initial overdensities were

However, there is a 1% enhancement in the regions T
1 150 Mpc away from these initial overdensities. =
F Hence, there should be an small excess of galaxies 3
150 Mpc away from other galaxies, as opposed to 120 ]
or 180 Mpc. We can see this as a single acoustic peak
in the correlation function of galaxies.
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We can determine 1 either with CMB or BBN and then compare with extragalactic
surveys measurements



Expansion of the Universe (standard rulers)

Current results agree quite well with ACDM model
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Now we have the new DESI data but we leave them for the last part of the lectures.



3x2pt probes

- Even new probes like weak lensing ones seem to confirm ACDM model

Joint constraints

Combining all these data sets we find: g ol AC;M — Fd 32t |
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3) Inflation

- Inflation consists on an accelerated phase of the Universe in the early stages. In terms of
geometry there are 2 main problems:
- Flatness problem (without inflation the Universe has to be really well fine tuned)
- Horizon problem (without inflation it would be impossible for far apart regions to
be causally connected)

- Problems are solved with a decreasing Hubble radius in the early Universe
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Initial conditions (aka inflation)

Currently, the theory more used by the community to explain the initial

conditions is cosmic Inflation

It consists on an accelerated phase at the
beginning of the Universe which allows us to
explain the smoothness of the Universe.

Indirectly, it also provides a prediction for the
initial distribution of matter:
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Not directly proven, this spectrum is one of the most successful predictions
from inflation. A detection of the primordial B-modes of the CMB

polarisation would be a much better detection.



Inflationary predictions

Observations from Planck agree with the almost invariant initial power
spectrum predicted by inflation
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Concordance model

- The combination of the different datasets gives us a great significance of the model
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ACDM model

We can describe the Universe with only 6 parameters:

(Qb, Qm, ns, As, T, HO)

At least 2 of these components are still known known unkwowns.
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ACDM model best fit (Plik TTTEEE lowl lowE BAO)

Parameter name Symbol Measured value Fiducial value
Spatial curvature Q. 0.001 = 0.002 0
Matter density rel. to critical 3V 0.310 & 0.007 0.30
Baryon density Qph? 0.0224 + 0.0002 0.0224
Hubble constant Hy (67.9+0.7)km/s/Mpc  67km/s/Mpc™”
P(k) amplitude at kpiy = 0.05 A (2.10 £ 0.03) x 1077 2.1 x 1077
Scalar spectral index N 0.966 & 0.005 0.966
Age of universe to (13.76 + 0.08) Gyr derived
Amplitude of mass fluctuations oS 0.810 4 0.007 derived
CMB temperature To (2.7255 £+ 0.0006) K 2.725 K
Photon density nyh2 derived from Ty 247 x 107°
Assumed-massless neutrino density Qy,reth derived from Tjy 1.68 x 107°
Equation of state of dark energy w —1.04 +0.06 —1

Credit: D. Huterer from Aghanim et al. 2020 (Planck Collaboration)
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rowth of structure (perturbations)

- In order to study the inhomogeneous Universe, we need to study
the evolution of perturbations of the metric and the energy
distributions + initial conditions
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Growth of structure (newtonian perturbations)

- By considering these 3 classical equations:

g’; -V - (pv) =0 Continuity equation
ov 1

Y | (V - V)V = —;Vp — Vo Euler equation
V2 = ArGp Poisson equation

and the equation of state: P = p(p)

we can solve the equationsto get p, V, ¢, 9,



Growth of structure in a expanding Universe
(newtonian perturbations)

- We detine the background as the smooth and homogenous
Universe, given by:

p = p(t) r=a(t)x v =H(t)r
- To perturbe the equations, we need to define the perturbed
guantities:

Perturbed density:  p(x,t) = p(t) +dp(x,t) = p(1 4+ d(x, 1))
Perturbed pressure: p = p + 0p

Perturbed velocity: v = a(t)x + v

Perturbed potential: ¢ = ¢ 4+ d@(x, t)




Growth of structure in a expanding Universe
(newtonian perturbations)

- Introducing the perturbations in the 3 dynamical equations:

p(x;t) = p(1+0(x,1t)) %—I—V-(pv):()

p=p+0p v 1
v=a(t)y +0v EJF(VOV)V:_;Vp_vgb
b=+ 66(x, 1 Ve = dnGp

we reach (considering only linear terms as the perturbations are
small):

xpanding Univer 1
dop  _ Epéd 9 Unhverye <@>—|——V5V:O
E + pV5V + V(5PV) — 0 Coordinates: V, = ZV% ot a
>
DoV 2 OOV -

- HOv + 2V6 4+ Vép = 0
ot 0

V266 — 4rGop V36d = 4nGa?s

r +v(V)ov 4 (0vV)v + %Vép + Vg =0



Growth of structure in a expanding Universe
(newtonian perturbations)

- Now, combining these equations and also changing to
coordinates that move with the expansion we can obtain the
growth history for density perturbations in an expanding Universe:

. . 2
5+ 2HG — %v% — 47Gpo
In Fourier space:
S(x.t) = Y O(t)e™™

L —

k
1 . .,
O (t) = V/c?(m,t) e R Py
k<

(SA -+ 2[—[&, — (47TG/)()(?L> — _)”) 0. For baryonic matter
a-

Ok + 2H oy, — A7 Gy, (1), = 0 For dark matter



Some regimes of LSS

The newtonian approximation is fine to describe the non-relativistic evolution of sub-horizon modes.
As they are second order ODEs, we define the 2 solutions in terms of the linear growth function D(¥):

5(k,t) = 04 (k) Dy (t) + 6_ (k) D_(t)
Matter fluctuations in a matter-dominated Universe:

Om + 2H b,y — AT G Py 6y = 0

In matter domination: D_(f) 13 xa & D_(f) x t~' « a=>?. It can be proved the
growth function applies to both CDM and baryons. This solution means ¢ o cnt

CDM fluctuations in a radiation-dominated Universe:

bc + 2H, — ATGY " paby =0 > 5. + 2HO,. — AnGp.b,. = 0

During radiation domination: D_ = cnt & D (f) « Int o Ina. This means that ¢ a2

Matter fluctuations in a DE-dominated Universe (H is constant)

Om + 2H b,y — A7 G Py Oy, = 0

During DE domination: D_ = a~? & D, (1) «x cnt. This means that ¢ a”!
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The full treatment (relativistic)

- It we want to do the full treatment, we need to do the
perturbations (assumed small) in the frame of General Relativity
and the tlat FLRW metric:

ds* = [Vgup + 8gup(x?)] dx*dx”

- This produces a set of scalar, vector and tensor fluctuations. The
tensor fluctuations are relevant for gravitational waves and
polarisation of the CMB photons but we focus on the scalar one.
We choose the Newtonian gauge in which:

ds* = a*[(1 + 2¢)dn* — (1 — 2¢;)8;;dx'dx’ |

The reason we choose this gauge is that because also the 2
potentials are the same, reducing to the standard Newtonian

potential.



The full treatment

- In this gauge, then the equations of scalar perturbations are:

A® — 3H(P' + HP) = 4w Ga’de,
(@®); = 4w Ga*(go + po) du,,,
" +3HP' +(2H' + H*)® = 4w Ga’Sp.
- Combining them we get:

" +3(1 +c})H® — AP +(2H +(1 +3c2) H*)® =0



Boltzmann equations

- In order to study the cosmic distribution of photons and matter
iInhomogeneities, we can use the Boltzmann equations in the
phase space

ds® = a*|[(1 + 2¢)dn* —(1 — 24)8;;dx'dx’] @
d
d—{ = C[f] @\

Compton

Scattermg / \
- >
Coulomb
Scattering

where C|[f] accounts for the collisions, in case there are some.




Boltzmann equations for photons

- We need to solve the Boltzmann equations for the different
components of the Universe are for the zero-order and the perturbations
on the equilibrium distribution

ﬁ_@f - Of dzt  Of dp’ - df dp

dt Ot Oxt dt  Opt dt  Op dt
Using the metric perturbations:

d _of p*of  Of dp

dt Ot a drt  Op dt

df _of pof Of[, 00 oY

it ot  aox Top|T ot adr




Boltzmann equations for photons

- We need to address the photon distribution where the zero-th order is
the Bose-Einstein distribution function:

f(f7p7ﬁ7t) —

:‘”““p (T(tm +%<f, 7,0) ) .

- Zero- order equation (collision-less):

| = H — > —
dt], Ot Py " g
- First- order equation:
00  p'oe  0p Pl oy
ot  a Ozt Ot a O

- And in Fourier space and conformal time:

O+ ikud + & + ikpl = —7 [éo—é+u5b]

(Compton scattering)

= Ne0oT |09 — O + P - Uy




Boltzmann equations for dark matter and baryons

- Similar derivation but for DM no collision term while for baryons there is
the Coulomb scattering proton-electron and the Compton scattering of
the electron-photons coupling. For both components, the zero-order

equation is just the same one as the density of both fluids in the
background model

O + tku®© = —d — tkuV — 7 [90 — O+ pvp — %Pz(ﬂ)ﬂ]

I = O +Opy +Opg Photons

: 1
©Op +tkuOp = —7 [—ep + 5(1 — Pg(u))n]

Final set of eqgs is:

6+ ikv = —3&
DM
v+ -C-Z-’U = —1kW¥
a
by + tkvy, = —3P
Baryons

Vb + EL-’Ub = —1kW¥ + I- [vb -+ 3i91]
a R

Initial conditions are set in the early Universe (adiabatic modes)



Linearized Boltzmann - Einstein equations

- Similar derivation for DM but no collision term while for baryons there is the Coulomb scattering pro
electron and the Compton scattering of the electron-photons coupling. For both components, the zero-o
equation is just the same one as the density of both fluids in the background model.

- Here is the full set of coupled ODEs with the initial conditions set in the early times.

(© + ikp® = —® — ikpV — 7 [09 — © + pvp — 2P (p)N] [+ = —neoTal
[1=024 Opy + Opg

Qp + ikp®p = =7 [-Op + 3 (1 = P2(w))]

6 + ikv = =30

V4 2v = —ikV

op + tkvy, = =3

Vb + Byp = —ikW + Z (vb + 3i01) [R = 3pp/4p+]

N + ikpN = —d — ikpV

k?d + 33 (CD — g ) = 4w Ga® (pcd + ppdp + 4p~©0 + 4pu o)

k2 (¢ + W) = —327wGa? (p, 02 + puN2)
L ha +22ho + k?hg =0 [a = +, X]

N

®(k,mi) = —W(k,ni) = 209(k, ni) = 2No(k,ni) = ®p(k)

Initial conditions {6(k,n,-) = 85k, mi) = 3p(k) | B
@1(/(, T’,) = N]_(k, ’I’)I) = M — ’Vb(g»"?i) - _63_’5

Note: 4G)O T 5’7' 4N0 oy, —3i@1 “A Ve, —3iN1 “Nvy,

Credit: S. Vangozzi & Modern Cosmology (Dodelson)



Numerical solutions

- For the current model, the system of Einstein-Boltzmann
equations have to be solved numerically.

- Most used public software:
- CAMB: https://camb.info/ (Fortran)
Python wrapper: https://camb.readthedocs.io/en/latest/

Fast and widely used but difficult to modity from
theoretical point of view

- CLASS: https://lesgourg.qgithub.io/class public/
class.html

C++ code (also with python wrapper).

Fast, modular and with several theoretical model
implementations.


https://camb.info/
https://camb.readthedocs.io/en/latest/
https://lesgourg.github.io/class_public/class.html
https://lesgourg.github.io/class_public/class.html
https://lesgourg.github.io/class_public/class.html

Transfer function

- The transfer function describes the impact on the growth of denisity perturbations during the transition from
a radiation dominated Universe to a matter dominated Universe.

- The primary effect is a turnover around k = 0.02hMpc=".

proportational to the particle horizon2.

The perturbations are both inversely

Qeq a 6 t’l, — ] f k < ke
1 a® radiation era e (a) Gegq k(ti) or q
0 X X k() o< | N2 e
(aH)? a  matter era (aeq) ( a;) - Ok(t;) for k > k.
\
)
1 for k < keq

Transfer function: T(k) —

\(keq/k)Q for k > kegq

Akq Aoy Qeq Ak k4 k. ko o



Matter power spectrum

- The theoretical cosmological function we mostly use for the analysis of large-
scale structure is the power spectrum:

P(k,t) = D(t)*T(k)* P (t;)
Asymptotically:

kns for k < ke,

P(k) =
F) =\ s for k > ke

- We need to obtain the transfer function through the Boltzmann - Einstein
equations. For scales that cross the horizon at matter dominated time, there is an
overall decrease in the potential but for the modes that enter during radiation
dominated phase, the potential changes because of the interaction with the
radiation (photons or neutrinos)

- The growth during matter domination is decoupled from this and grows only
depending on the scale factor



Growth of structure

For scales larger than 10 Mpc, we can assume linear theory and estimate the growth for

different times

Universe dominated by matter:

Grows with

scale factor

0 = + B(a)t ™!

Universe dominated by radiation

5k(t) — A+ Blnt

Suppressed growth

We can only predict the statistical properties of the
distribution -> power spectrum P(k)

A

<5(/€)5*(E’)> — (27)* P(k)p (/Z - /2)

We model P(k) and growth of structure with the
transfer function T(k)

N log (6
9(©) // (Qenter /aeq)2
/
/
/
/
/
/
/
/
// /
i/ < a
oC a2

Qenter Aeq log (a)

Fig.7.5. A density perturbation that enters the horizon dur-
ing the radiation-dominated epoch of the Universe ceases to
grow until matter starts to dominate the energy content of the
Universe. In comparison to a perturbation that enters the hori-
zon later, during the matter-dominated epoch, the amplitude of
the smaller perturbation is suppressed by a factor (aeq /acmcr)z,
which explains the qualitative behavior (7.29) of the transfer
function

Po(k) = A K" T?(k)
—

Espectro inicial



Role of DM

If 0 ~ t23, and decoupling fluctuations size (z~1100) are of the order of 10-5, we

couldn’t reach the current amplitude. We need DM

DM ﬂuctuatiOnS Start L L) B L) L L BN LD B DL B B B ) L

1 LSS

growing before decoupling ¥
at: z~3300 o _q
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= i
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. i
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5 |
O
A
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i
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This 1s another evidence for the existence of DM



Large-scale structure

Universe filled with density
fluctuations

Structure only only visible
through galaxies (distribution)
and photons (weak lensing)

Galaxies and photons here are
functioning as test particles -
tracing out the gravitational
field

Most low-redshift surveys have
measured the transfer
function.

Need very large volumes to
measure primordial power
spectrum and determine initial
conditions (independently
from CMB)
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Large-scale structure

- Universe filled with density
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Initial conditions

- Besides the equations that describe the evolution of metric perturbations and energy
perturbations, we need to set the initial conditions.

- The initial distribution of scalar perturbations is almost scale invariant and inflationary
models tend to predict some deviations from the pure scale-free spectrum.

- These modes leave the horizon and then they enter the Universe later on in radiatior
and matter dominated phases depending on the scale.

— — — v— — — -

ng—1
k S
P, (k) = A, (—) .
ksO

ik, 6TH /k2(P+p)

SR

Horizon Crossing Inflation Ends

Time -



Inflationary constraints from CMB

- Nns=1 has been ruled out by Planck.

- Inflation also predicts an initial spectrum for tensor modes of the
metric perturbations -> GW imprint and primordial polarisation of
CMB would be a direct probe of inflation.

Natural inflation

o
a
= c ' ' v W TT,TE,EE+lowE-+lensing
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Q , I E, owE+-lensing
v \ B K15
G, \ TT,TE,EE+lowE+lensin
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Hilltop quartic model
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Power-law inflation

Tensor-to-scalar ratio (79.002)
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\ e N.=50
\ @ N.=60
\
(- \
S ' s
< 0.94 0.96 0.98 1.00

Primordial tilt (n;) Planck Collaboration 2018



Correlation function

- The Fourier transtorm of the power spectrum is given by the
correlation function:

£(r) = (2‘;)3 / 5] 2e Tk

- For an isotropic Universe this is:

-V sinkr =,
E(r) = 273 /P(k) . Amk*dk

- The physical meaning is that it measures the excess with respect
to a uniform distribution.









Galaxy bias

A particular problem i1s that we observe
galaxies as tracers of the matter field, but
the distribution of baryonic matter is Millenn Simulaton
biased with respect to the total matter '
field (dominated by dark matter).

Galaxies grow in the peaks of the density
field.

We parametrize linearly the bias with:

0g(k,2z) = b(k,2z)D(2)d(k)

Bias 1s degenerated with the
growth factor D(z). % Y
1. ‘ ‘ ‘ vy ‘ s B ¥

Galaxies




Linear redshift space distortions

Actual
shape

their peculiar velocities.
Kaiser 1987 . Ap parent
shape
(viewed from
gal(k “) — b5ma83(k) —|—p, GmasS(k) below)

- 3D maps of the Universe are in redshift
space where galaxy redshift positions
differ from the real space positions due to
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Linear redshift space distortions

- RSD introduce an anisotropy we should include in the power spectrum or correlation
function:

§(o,m) = &o(s)Po(p) + Ea(s)Pa(p) + &a(s)Pa(pt)

+1
where 66(3) = 26;— L B f(ﬂ,a)Pg(N)du,
fo(s) = b <1+?+%> £(s) .
’ 2 r) = r’ T'2d'r’,
bals) = ¥ (% + %) £(s) — &(s)] <) 7'53 0. )
i = = 3 ) = — E(r' '
als) = B 66)+ 560 - 58] () = 5] €0)

OO0

Monopole Quadrupole @ Hexadecapole



Linear redshift space distortions

Amplitude
§(r5’ rjt)
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- W e can
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Linear redshift space distortions

- RSD offer us a great GR test as we can measure the growth rate of structure for
several populations.

0.8
SDSS MGS
0.7 1
06 - SDSS LRG FastSound
BOSS ¢ VIPERS
e o5 J251 | o
£ 0.5 40t
|
0.4
6dFGS CAMA
2] WiggleZ
0.2

o0 02 04 06 08 10 12 14 1.6
Z



Non-linear evolution

- When using the information from small scales, we need to include the information
from non-linear evolution of the growth of structures.

- This can be done with non-perturbative methods but usually done with N-body
simulations.

- Once the simulation is done, we can try
to produce fitting formulas to include in
our theory (e.g, Halofit).

- Also, ensemble of simulations for
different cosmological and astrophysical
parameters allows us to create emulators
as we sample the space of simulations

- Simulations + Artificial intelligence can
allow us to determine the best model
without the need of fitting -> likelihood
free inference




