Future of QI (2011-25)

The Benasque Quantum Information Workshops 2011 – 2025

compiled by Antonio Acín, Adán Cabello, and Géza Giedke

July 2025

Benasque QI Workshops

Future of QI (2011-25)

< B

Benasque QI Workshops

Future of QI (2011-25)

LE▶ E ∽ Q (July 2025 2/50

▲□▶ ▲圖▶ ▲国▶ ▲国≯

2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

+5 more...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

2013

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣

RUNNTUM INFORMATION THEORY POTCED UNDIST NPT BOUND ENTANGLEMENT - Quantum V. HeIrgleton = 0 - Characterization M-garl, entanglement + apps - Q. Discord ?? * Unn. D.c. with Q. Walks * Unifying Q. Correld = Discored * O.G. with little entany. - Charact. LOCC + POVM (measurementy) - Rôle ent, in Q.C. * Security Park indep ak) - General framework security devinty - Certification space-like separation devind - Example non-god Cit. Channels - PPT => E. Breaking

FOUNDATIONS OF QUANTIN PHYSICS * PBR THEOREM * Activation Q. non-locality - B.E.S violate B ineg - Beyond B. ineq. PRINCIPLAS FOR & CORRELATIONS ermo: Landower pple + 2^m law RATIN LOW. ENERGY PHILSICS - Firewall in BH. ARE LEGGETI - GARG INEQUALITIES USEFUE? -Decidability in QIT - MUNI- LUCALINY IN MANT. BODT PASSIES - MULT PRINCIPLES ENDUCH? - LIFE AFTER LOOPHOLE-FREE BI ? - TSIRELSON'S PROBLEM Da Co

MANY-BOPY PHYSICS * TIME - DEPENDENT , VARIATIONAL PRINCIPLE * CELITICALITY IN OPEN & STOTEMS - EFFICIENT SINULATION OF Q DYNAMICS - CLASS, PHASES HIGHER-D - Approxs (truncation) TN -Thermalization physical Syst - Non-eq, inequalities (Quantum) - Simulation TN HET - TN (=> AAS/CFT - Relations fluct-entanglement - LUND-ENIRGY EFFECTIVE THEOFIES - 1. I Self protecting Q.IM in D<4

QUANTUM OFTICS + IMPLEMENTIATION * GROUND STRIE OF NANOTECHANICAL REGINA - What is D-wave during - I TIPLETIENTATIONS OF DI * DETECTION LOOPHOLE FREE STUFF PHOTONIC EXPERIMENT - Def, entang, bosous/ferminos - LIMITATIONS OF & SIMULATION - Boson sampling (Limitations) * SUPERCONDICTING QUBITS * SIMULATION OF HIGH-ENEEGY PHYSICS IN OPTICAL LATTICES CHEAP QLD - SATELLITE-BASED & CONT. - CERTIFICATION OF Q SITULATI - LONG: DISTANCE ENT. BASED QC - EXP MPL OF IBE-LIKE THEODELLS? ANTI-N BARACA TI-N

2013: Achievements in the last few years

Quantum Info

- Universal qc w/ q walk
- Unifying q correlations
- QC w/ little entanglement
- security device-indep QKD

Foundations QP

- PBR Theorem
- activation of q nonlocality
- Q thermo: Landauer's principle & 2nd Laws

Q Optics & Implementations

- ground state nanomech syst
- detection-loophole-free photonic Bell exp
- superconducting qubits
- q sim.: high-energy physics in opt lattices
- q sim.: beating class comp

Many-Body Physics

- complexity of Hamiltonians
- criticality in open systems
- time-dependent variational principle

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Future of QI (2011-25)

2013: Open Problems I

Quantum Info

- NPT bound entanglement
- Q violation Ingleton ineq
- *m*-partite entanglement: characterization & applic
- Q discord ??
- LOCC: characterization
- rôle of entanglement in QC
- device-indep: general framework security; certification of spacelike sep
- non-additivity of EOF/class capacity: examples
- QC more powerful than CC?
- $PPT^2 \Rightarrow$ ent breaking

- Foundations QPbound ent violate Bell Ineq?
- beyond Bell Ineq
- principles for Q correlations
- relativity & QM in low-energy physics
- QI + relativity
- B.H. info paradox / firewall
- are Leggett-Garg Ineg useful?
- decidability in QIT
- non-locality in many-body phys
- Iife after loophole-free Bell Exp

▲ 圖 ▶ ▲ 国 ▶ ▲ 国

- Tsirelson's Problem
- Q chaos & entanglement

2013: Open Problems II

Many-Body Physics efficient sim of Q Dynamics

- classific phases higher D
- approx TN
- thermalization
- non-equilib inequalities (quantum)
- simulation TN HEP
- TN ⇔ AdS/CFT
- relation fluctuat \leftrightarrow entang.
- low-energy effective theories
- self-protect. Q Mem. D < 4?</p>
- robustness topolog memories

• What is D-Wave doing?

- implementations of QI stuff
- Q networks
- cheap QKD
- satellite-based Q Comm
- certification of Q Sim
- long-distance ent-based QC
- exp test of PBR-like theorems
- many-body state prep
- def ent of bosons/fermions
- limitations of Q simulations
- Boson Sampling (limitations)

2013 - Concluding Session

NE W ALG. POBUST TOPOLOGICA PERES - DISTANCE & COMM QC & TIETTORY (26) VALIDATION OF GENERATION) METROLOGY & NOISE D-WAVE ? -) BLACK- HOLE, RELATIVIT ·) EXAMPES Q PHENOTIENA IN BIOLOGY (15) HTIW (TENSOR NETWORKS) WILL SEE A WORKING (OMPUTER 6

July 2025 10/50

Future of QI (2011-25)

Benasque QI Workshops

2013 – Concluding Session

·) Loophole - FRE) FINITE MREUS (5) .) TIMESCALES PERES CONJECTURE HARIATIONAL E Q COMA : TRUE 1 ETHOD 102 BETTER QEC LERATION PRINCIPLES FOR ·) COMPLEKITS ES NATURAL MODEL CORRELATION ·) EXAMPES OF CHANNELS 6 COMPUTER 16 10/50

Benasque QI Workshops

Future of QI (2011-25)

July 2025

The Top 10 of Open QIS Challenges 2013

- Q computation more powerful than classical? (62)
- 2 New q algorithms (45)
- Oertification of q simulation (42)
- Black Holes, general relativity & q information (black hole information paradox) (41)
- Long-distance q communication (networks, satellites) (36)
- Principles for q correlations (36)
- Loophole-free Bell test (30)
- better QECC (29)
- robust topological QC & QMemory (26)
- timescales for thermalization (25)
- high-energy physics and QI (tensor networks) (25)

< < >> < <</p>

2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣

OPEN PROBLEMS SESSION

Benasque 2015

Adán Cabello & Géza Giedke

July 8th, 2015

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

208	INFORMATION/COMPUTATION
30	black holes & holography
30	demonstrate supremacy/speedup of QC
28	better quantum error correcting codes
21	multipartite entanglement
16	QFT and tensor networks
10	macroscopic qubits/QI
10	quantum artificial intelligence (machine learning, etc.)
10	the existence of NPT bound entanglement

176	FOUNDATIONS
28	principles for quantum correlations
26	encorporating time into the foundations of QT
19	quantum mechanics and relativity at low energies
17	experiment to rule out realist interpretation
15	role of causality
13	quantum thermo: work and heat?
12	are all states useful?
11	protocols using QT + relativity
4.0	

イロト イヨト イヨト イヨ

178	MANY-BODY PHYSICS
32	better numerical algorithms for simulation
24	Quantum PCP conjecture
19	understanding the interplay of equilibration/transport/localization
18	entanglement detection
18	variational methods/tensor networks for field theories/continuous models in >= 2D
14	uses for many-body phases
13	classifying topological phases in D=2 or higher
12	timescales of equlibration (also thermalization)
40	Leave the system of the contraction to the second sec

170	IMPLEMENTATIONS
25	experimental demonstration of a protocol enhanced by quantum error correction
25	a 2D topological (e.g. surface) code
24	a quantum computer
23	long-distance quantum teleportation
23	q. chemistry simulation
22	gravity tested in the lab
20	quantum repeaters
8	more efficient process tomography

イロト イヨト イヨト イヨ

2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

2017 Open Problems I

QI

- physical multipartite entanglement
- coherence theory and entanglement
- QI and gravity (ECC)
- Black Holes / holography
- (supreme) quantum machine learning
- new killer applications for QC
- resources for delegated QC
- q approach to nonlinear channels
- q speedup before QECC?
- NPT bound entanglement?

Foundations

- role of causality
- new reconstructions based on interpretations
- q thermodynamics
- network vs Bell nonlocality
- certification of randomness and quantumness in temporal correlations
- QT-exotic space-times connection
- falsifying sensitve collapse models
- why probabilities?

Future of QI (2011-25)

2017 Open Problems I

Many-body

- more applications tensor networks
- many-body localization
- applications of TN to: RNG, QFT, q learning, c learning
- quantum PCP conjecture
- efficient algorithms for gapless systems
- open q systems w non-Markovian effects

Implementations

- useful q metrology
- understanding Fermi-Hubbard model
- q thermo machines to use
- certifying q supremacy without (or with) universality
- q certification
- device-independent QKD
- q nanophotonics for QIP
- is FTQC really possible?
- is adiabatic QC really possible?
- make a surface code

Future of QI (2011-25)

A B F A B F

Bets over the years

- NPT bound entanglement? 2011 Ruskai: No
- general composable security proof for DI-QKD 2011 Winter: yes; Acín: 2 yrs
- Peres' Conjecture? 2011 Perez-García: False ✓ Vertesi and Brunner 2014
- optimal states for 1-mode Gaussian channels? 2011 García-Patrón: vacuum (✓)
- Ioophole-free Bell test
 2011 Kleinmann: > 2y ✓ 2013 Cabello: 2y, Weinfurter (✓)
 2015: Hensen et al; Giustina et al; Shalm et al
- D-wave QC? 2011 Cirac: No (2y) ✓
- q repeater better than direct transmission 2011 Brask Bohr: 3y
- q sim better than c sim Lewenstein: 2y; Cirac: > 1y
- the variational method? 2013 Cirac: PEPS (10y)
- business interest in QC will increase 2015 Latorre: yes (2y) ✓

Voted predictions

• a universal quantum computer within our lifetimes?

in 2013: **YES: 50**; NO: 16 in 2015: **YES: 60**; NO: 11; ABS: 5.

• predictions 2017 (for 2019):

quantum computers with X qubits and 10³ gates:
(A) > 100 qubits (3; 4%) (B) 50 - 100 (37; 58%) (C) < 50 (24; 38%)

• device-independent QKD:

(A) < 1km (3; 6%) (B) 1 – 10km (35; 71%) (C) > 10k (11, 23%)

- reliable phase diagram Hubbard model: (A) Yes (9; 29%) (B) NO (22; 71%)
- q metrology: commercial device using
 (A) only entanglement (24; 61%) (B) entanglement and (Q?)EC
 (2; 5%) (C) none (13, 33%)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2019

recent advances - major open problems - bets/predictions

Benasque QI Workshops

Future of QI (2011-25)

July 2025 20 / 50

< 🗇 🕨 < 🖃 >

Recent advances 2017-2019 Quantum infamation * Higher

Benasque QI Workshops

Future of QI (2011-25)

July 2025 21/50

Benasque QI Workshops

Future of QI (2011-25)

July 2025 21 / 50

イロト イ理ト イヨト イヨト

2019: Recent advances

Quantum Information

- Proof of DI QKD (Arnon-Friedman et al., '16)
- Q separation constant-depth circuit (Bravyi, Gosset, Koenig '18)
- Classical verification of QC (Mahadev, 2018)
- Simulation of Boson sampling
 Quantum foundations
- Wigner's friend (Frauchinger & Renner)
- Bell correlations (Slofstra 2017...)
- Emergence object. reality (Müller)
- Redundancy in Q postulates (Masanes, Galley, Müller 2018)

Many-body

- Fermi Hubbard (Corboz et al.)
- Constructions from free fermions
- Frustrated q spin models not tractable by Q Monte Carlo
 Implementations
- Many-body localization in 2d (Bloch)
- Quasicrystals in optical lattices (Bloch?)
- Tweezer technology (Lukin)
- Scaling up to 50 qubits (ions, atoms, and sc qubits)
- Satellite (Micius)

Benasque QI Workshops

Future of QI (2011-25)

2019: Open problems I

Quantum information

- verification & benchmarks of QC
- quantum machine learning
- NPT bound entanglement?
- Can QC break post-q crypto?
- Resources to break position-based crypto
- Q supremacy proof
- Problems useful for QML
- Multipartite entanglement
- QEC: Higher-threshold error correcting codes with less overhead

Many-body

- TNs and QFT
- Proof of MBL phase
- Out-of-equilibrium dynamics
- Foundations of QFT
- TN investigations of strong correlations
- Experiment theory corrections
- Classification of topological phases in 3D
- Applications of TNs outside QMB physics

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Finite temperature results

2019: Open problems II

Foundations

- Unified Framework for temporal and spatial Q correlations
- Principles (and bounds) for Q correlations
- Why are Q correlations for bell scenarios not closed?
- Indefinite causal order
 Business & Societal
- large investments (financial, chemical,...)
- ethics?
- q bubble? and consequences?
- open access publishing

Implementations/Experiment

- Room-temp SC
- QSim of Q gravity
- detection of Q Gravity effects
- Proof of Q supremacy
- Commercial devices for metrology and sensing
- DI QKD

Will it be shown within 2 years that ...?

- QC is better than CC YES: 9; No: 30
- q supremacy proof without depth restrictions YES: 9; NO: 7
- Slofstra "problem" is not a problem: YES: Adán, Alex, Barbara; NO: David, Pepe
- usable DI-QKD (> 1Mbit/s) YES: 8; NO: 23
- QECC-corrected (& improved) qubit: YES: 30; NO: 8

- q supremacy YES: 20; NO: 23
- reliable algorithm for simulating dynamics (≥ 1d): YES: 8; NO: 21
- major qtech investment
 (≥ 100MEUR) by European company? YES: 28; NO: 7
- will investment hurt the way we do science? YES: 26; NO: 17

A fault-tolerant scalable QC within your lifetime? YES: 40; NO: 12

2023

recent advances - major open problems - (bets/predictions)

Benasque QI Workshops

Future of QI (2011-25)

July 2025 26/50

< 同 > < ∃ >

ADVANCES 2019-20230 Q MANY - BODY) SITURNION OF ENTANGETES .) UNDERSTANDING APPOF OF PRINCIPLE -) Q REPERENCE FRAMES

< B.

< < >> < <</p>

Future of QI (2011-25)

July 2025 27/50

< ロ > < 同 > < 回 > < 回 >

2023: Recent advances

Quantum Information

- MIP* = RE; Tsirelson prob [Ji et al.]
- dequantization, noise and classical simulation (Aharonov et al.)
- classical and quantum LDPC codes [Panteleev and Kalachev]
- shadow tomography [Huang et al.]
- q singular value decomposition / grand unification of q algorithms [Gilyén et al.]
- growth of circuit complexity [Haferkamp et al.]
- proofs of quantumness [e.g., Brakerski et al.]
- entropy accumulation theorems [e.g., Metger et al.]
- recoverability & rel entropy in v
 Neumann algebras/QET [Faulkner et
 Benasque QI Workshops
 Future of QI (2011-25)

Quantum foundations

- simulation of entanglement [Renner et al.]
- q reference frames [Giacomini et al.] (2017)
- "real and complex" [Renou et al.]
- q causal models [Barrett et al.]
- certification of indefinite causal order [van der Lugt et al.]

Many-body

- understanding the Hubbard model [Review by Qin et al.]
- no low-energy trivial states [Anshu et al.]
- slow thermalization, many-body scars (review), many-body localization
- tensor-network simulations of 3d materials
- dual unitaries [Bertini et al.]

Experiments

- proof-of-principle DI-QKD [Nadlinger et al. and Zhang et al.]
- q "advantage" experiments [Arute et al.]
- logical qubit better than physical [Ryan-Anderson et al.]
- max-cut and spin-liquids in Rydberg atoms [Ebadi et al., Semeghini et al.]
- error mitigation [Review by Cai et al.]
- single-atom cluster-state generation [Thomas et al.]

< ロ > < 同 > < 回 > < 回 >
Most popular advances 2019-23 acc. to SciRate I

- 287 MIP*=RE, Ji *et al.*, arXiv:2001.04383 (✓)
- 197 Exponential quantum speedup in simulating coupled classical oscillators, Babbush *et al.*, arXiv:2303.13012
- 183 NLTS Hamiltonians from good quantum codes, Anshu *et al.*, arXiv:2206.13228 (✓)
- 179 Information-theoretic bounds on quantum advantage in machine learning, Huang *et al.*, arXiv:2101.02464
- 171 The Complexity of NISQ, Chen et al., arXiv:2210.07234
- 162 Predicting Many Properties of a Quantum System from Very Few Measurements, Huang *et al.*, arXiv:2002.08953 (✓)
- 162 A polynomial-time classical algorithm for noisy random circuit sampling, Aharonov *et al.*, arXiv:2211.03999 (✓)
- 156 Fault-Tolerant Operation of a Quantum Error-Correction Code, Egan *et al.*, arXiv:2009.11482

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Most popular advances 2019-23 acc. to SciRate II

- 150 Provably efficient machine learning for quantum many-body problems, Huang *et al.*, arXiv:2106.12627
- 148 Linear growth of quantum circuit complexity, Haferkamp *et al.*, arXiv:/2106.05305 (✓)
- 146 The Quantum Fourier Transform Has Small Entanglement, Chen *et al.*, arXiv:2210.08468
- 146 Building a fault-tolerant quantum computer using concatenated cat codes, Chamberland *et al.*, arXiv:2012.04108
- 143 Quantum advantage in learning from experiments, Huang *et al.*, arXiv:2112.00778
- 142 Efficient tensor network simulation of IBM's kicked Ising experiment, Tindall *et al.*, arXiv:2306.14887
- 142 Efficient classical simulation of random shallow 2D quantum circuits, Napp *et al.*, arXiv:2001.00021

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 137 Exponentially tighter bounds on limitations of quantum error mitigation, Quek *et al.*, arXiv:2210.11505
- 137 The Power of Adiabatic Quantum Computation with No Sign Problem, Hastings, arXiv:2005.03791
- 137 Dissipative ground state preparation and the Dissipative Quantum Eigensolver, Cubitt, arXiv:2303.11962
 - (list leaves out review articles...)

- E 🕨

2023: Open problems I

Quantum information

- q Stein's lemma
- NPT bound entanglement
- mutually unbiased bases
- EoF for Gaussian states
- ent-assisted q comm complexity
- lower bounds on ent for non-local computation
- PPT² conjecture
- barren plateaus and expressivity
- stabilizer rank
- advantage in QML
- CC[?]chQC[?]CNISQ[?]FQC
- corr noise in QEC
- interpolation error mitigation error correction

Many-body

- new tensor-network algorithms, time-ev, chiral PEPS (d>1)
- classific of gen. topolog. phases
- Iocal observables of "typical" systems
- chaos ⇔ complexity
- advantage for ground-state problems?
- thermalization and time scales; ETH
- dynamical and complexity phase transitions
- simulations of 3d, T > 0 systems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2023: Open problems II

Foundations

- physical consequences of solution of Tsirelson's problem
- Bell-type theorems for physical(?) theories
- entanglement ⇒ Bell violation?
- q causal models for QFT
- bounds on correlations in process framework
- entanglement and entropies in QFT
- q marginal problem

Business & Societal

ethics of q tech

Experiment

- practical q advantage
- practical DI-QKD
- q repeater
- Wigner's friends
- tests of collapse models
- practical q sensing advantage

< 回 ト < 三 ト < 三

- qudit processing
- Majoranas
- q gravity experiments

Open Problems Session (3rd week) I

Benasque QI Workshops

Future of QI (2011-25)

July 2025 35/50

イロト イ団ト イヨト イヨト

Open Problems Session (3rd week) II

Quantum Computing

- proof of q advantage
- new q algorithms
- relevant problems for limited QC
- error corrected QC
- develop annealing
- q advantage in machine learning
- physically reasonable def of fault-tolerance
- q heuristic algorithms and tools
- hybrid classical-q computing

QIT

- q Stein's lemma
- q separability
- mutually unbiased bases
- security of multi-server homomorphic encryption

Quantum Measurement/Sensing

- connecting sensors & QC
- optimal q states
- better clocks, gravimeters

Open Problems Session (3rd week) III

Quantum Simulation & many-body

- reasonable relevant Hamiltonians
- q sim of chemistry/materials
- complexity classification
- optimal mapping fermions \rightarrow qubits
- explaining high-T_c superconductivity
- design materials
- transition $q \rightarrow c$

Quantum Communication

- noisy q comm
- multiplex protocols
- q network protocols
- daylight/free-space q channel
- converting comp to comm qubits
- inter-city device-independent QKD

A (10) > A (10) > A (10)

practical q advantage

Open Problems Session (3rd week) IV

Quantum Foundations

- macro superpositions (exp)
- basic principles for QM
- q nature of gravity (exp)
- q causal inference
- fundamental limits to macro superpos?
- entanglement \leftrightarrow non-locality
- implication of sol to Tsirelson's problem
- foundation of q advantage

Other

- q autonomous machines (exp)
- connecting to society
- ethics/regulations
- o deal w/ q bubble
- energy costs
- q inspiration
- q bio & neuro science

Open Problems Session (3rd week; ranked) I

Quantum Computing

- error corrected QC (86)
- new q algorithms (77)
- proof of q advantage (76)
- relevant problems for limited QC (65)
- q heuristic algorithms and tools (39)
- hybrid c-q computing (19)
- q advantage in machine learning (11)
- physically reasonable def of fault-tolerance (9)
- develop annealing (3)

QIT

- mutually unbiased bases (22)
- q separability (19)
- q Stein's lemma (15)
- security of multi-server homomorphic encryption (3)

Quantum Measurement/Sensing

- better clocks, gravimeters (32)
- connecting sensors & QC (27)

・ロト ・ 同ト ・ ヨト ・ ヨ

optimal q states (19)

Open Problems Session (3rd week; ranked) II

Quantum Simulation & many-body

- q sim of chemistry/materials
 (54)
- complexity classification (52)
- reasonable relevant Hamiltonians (47)
- design materials (46)
- explaining high-*T_c* supercond (39)
- transition $q \rightarrow c$ (22)
- optimal mapping fermions \rightarrow qubits (5)

Quantum Communication

- noisy q comm (51)
- converting comp to comm qubits (26)
- q network protocols (16)
- practical q advantage (16)
- inter-city device-independent QKD (9)
- multiplex protocols (8)
- daylight/free-space q channel
 (8)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Open Problems Session (3rd week; ranked) III

Quantum Foundations

- q nature of gravity (exp) (73)
- basic principles for QM (46)
- entanglement ↔ non-locality (42)
- macro superpositions (exp) (30)
- foundation of q advantage (30)
- fundamental limits to macro superpos? (18)
- implication of sol to Tsirelson's problem (15)
- q causal inference (5)

Other

- deal w/ q bubble (73)
- connecting to society (45)
- ethics/regulations (31)
- q inspiration (26)
- energy costs (22)
- q bio & neuro science (17)
- q autonomous machines (exp)(3)

- ∢ ∃ ▶

The 2025 Quantum Information Workshop

2025

recent advances - major open problems - (bets/predictions)

Benasque QI Workshops

Future of QI (2011-25)

July 2025 42/50

< 同 > < ∃ >

The 2025 Quantum Information Workshop

Benasque QI Workshops

Future of QI (2011-25)

Open Problems Session 2025 (ranked) I

Quantum Computing

- physical limits of q error correction (52)
- foundations of q advantage (50)
- structure in super-quadratic speedups (36)
- scalability & interconn. (34)
- q computations beyond "heroic"; non-lin q comp (17)
- Al for q compilation & error correction (17)
- representation theory of Clifford (16)

- modular q software (13)
- Gaussian permanent conjecture (6)
- cost of QRAM (9)
- q recursion (5)
- security by design w/ q comp
 (3)

QIT

- q magic (16)
- usefulness of PPT ent (13)
- PPT constraints: analytical bounds (10)
- intrinsic randomness (arb no of parties and meas) (9)

Open Problems Session 2025 (ranked) II

Quantum Foundations

- exp signatures of q gravity (48)
- gravitationally mediated ent signature of q gravity? (33)
- gap between tensor & commuting correlations (31)
- relation non-locality \leftrightarrow ent (31)
- non-local games in q field theory (19)
- are <u>all</u> ent states associated to some non-locality (16)
- games w/ fermionic or anyonic advantage (16)
- algorithmic characterization of comm. corr. beyond Bell (14)

Quantum Simulation & many-body

- robust q simulation (54)
- complexity of q chemistry (40)
- tensor network states for volume-law systems (25)
- area law in any dimension (16)

Quantum Sensing

- q sensing for high-energy physics & tests beyond std model (21)
- practical q advantage in NMR

Benasque QI Workshops

Future of QI (2011-25)

Open Problems Session 2025 (ranked) III

Quantum Communication

- long-distance, large-rate, robust DI-QKD (25)
- multi-party crypto and sensing: applications (17)
- contextuality: applications (9)

Other

- implications of q comp for society (56)
- q ethics policy (ethical society of physicists) (40)
- energy advantage (32)
- unbiased predictions o q tech (15)

IQOQI-List of Open Problems in Quantum Information

Open Quantum Problems

Show	50 v entries			Search:	
Nr 0	Title :	Contact	Date (Y/M/ D)	Last Progress (Y/M/D)	Categories
1	All the Bell Inequalities	R.F. Werner	1999/10/25	5 2010	Quantum foundations
2	Undistillability implies ppt?	D. Bruß	2000/03/02	2006/08/16	Entanglement theory
5	Maximally entangled mixed states	K. Audenaert	2001/11/08		Entanglement theory
8	Qubit formula for Relative Entropy of Entanglement	J. Eisert	2003/06/20		Entanglement theory
12	Bell Inequalities for long range vacuum correlations	R. Verch	2002/01/22		Quantum foundations
13	Mutually unbiased bases	BG. Englert	2003/01/31	2004/01/07	Quantum communication
14	Tough error models	E. Knill	2003/01/31		Quantum computation
15	Separability from spectrum	E. Knill	2003/01/31	2013/09/08	Entanglement theory
16	Complexity of product preparations	E. Knill	2003/01/31		Quantum computation
20	Reversible entanglement manipulation	M. Plenio	2005/02/08	2023/01/23	Entanglement theory
23	SIC POVMs and Zauner's Conjecture	D. Gross	2005/02/13		Quantum communication
24	Secret key from all entangled states	P. Horodecki	2005/03/15		Quantum communication
25	Lockable entanglement measures	P. Horodecki	2005/03/15		Entanglement theory
26	Bell inequalities holding for all quantum states	R. Gill	2010/04/19		Quantum foundations
27	The power of CGLMP inequalities	R. Gill	2006/02/28		Quantum foundations
29	Entanglement of formation for Gaussian states	O. Krüger	2005/04/20		Entanglement theory

https://oqp.iqoqi.oeaw.ac.at/open-quantum-problems

31	Individual measurement strategies on geometrically uniform states	J. Bae	2005/10/06		Quantum communication
32	Bell inequalities: many questions, a few answers	N. Gisin	2007/02/02	2016/12/01	Quantum foundations
34	The geometry of quantum nonlocality	W. Slofstra and M. Navascués	2017/04/26		Quantum foundations
35	Existence of absolutely maximally entangled pure states	F. Huber	2017/05/19		Quantum computation
36	Composition of decoherence functionals	M. Navascués	2017/05/19		Quantum foundations
37	Stronger submultiplicativity for the diamond norm	D. Reeb	2017/05/19		Quantum communication
38	The PPT-squared conjecture	M. Christandl	2017/05/19		Quantum communication
39	Steering bound for qubits and POVMs	R. F. Werner	2017/05/19		Entanglement Theory
40	Refinement of the Bessis- Moussa-Villani conjecture	D. Hägele	2017/05/19		Many-Body Quantum Information Theory
41	All rank inequalities for reduced states of quadripartite quantum states	M. Huber, N. Linden and A. Winter	2017/05/20		Entanglement theory
42	Reversible dynamics on composite systems	B. Dakic and M. Müller	2017/05/20		Quantum foundations
43	Are all extensibly causal processes purifiable?	M. Araújo and C. Brukner	2017/05/22		Quantum foundations
44	Complexity of the separability problem	Henry Yuen	16/01/2023		Quantum complexity theory
45	Single-prover interactive proofs for quantum computations	Henry Yuen	16/01/2023		Quantum complexity theory
46	Thermodynamic implementation of Gibbs-Preserving Maps	Philippe Faist	16/01/2023		Quantum thermodynamics
47	Is there bound information?	Matthias Christandl	20/04/2023		Quantum cryptography
Showi	ing 1 to 32 of 32 entries				∢Previous Next ≥

Benasque QI Workshops

Future of QI (2011-25)

Most popular advances 2023-25 acc. to SciRate I

- 316 Quantum error correction below the surface code threshold, Acharya et al., 2408.13687
- 242 How to factor 2048 bit RSA integers with less than a million noisy qubits, Gidney et al., 2505.15917
- 239 Random unitaries in extremely low depth, Schuster et al., 2407.07754
- 232 Magic state cultivation: growing T states as cheap as CNOT gates, Gidney et al., 2409.17595
- 219 Logical quantum processor based on reconfigurable atom arrays, Bluvstein et al., 2312.03982
- 207 A polynomial-time classical algorithm for noisy quantum circuits, Schuster et al., 2407.12768

206 A complete theory of the Clifford commutant, Bittel et al., 2504.12263

A (10) A (10)

Most popular advances 2023-25 acc. to SciRate II

- 205 How to Construct Random Unitaries, Ma and Huang, 2410.10116
- 201 High-threshold and low-overhead fault-tolerant quantum memory, Bravyi et al., 2308.07915
- 198 Certifying almost all quantum states with few single-qubit measurements, Huang et al., 2404.07281
- 183 How much entanglement is needed for quantum error correction?, Bravyi et al., 2405.01332
- 181 Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories, Hayashi and Yamasaki S3, 2408.02722
- 179 Local minima in quantum systems, Chen et al., 2309.16596
- 174 An Efficient Quantum Factoring Algorithm, Regev, 2308.06572
- 167 Learning quantum Hamiltonians at any temperature in polynomial time, Bakshi et al., 2310.02243

< ロ > < 同 > < 回 > < 回 >

Most popular advances 2023-25 acc. to SciRate III

- 161 A quantum algorithm for estimating the determinant, Giovannetti et al., 2504.11049
- 156 Learning shallow quantum circuits, Huang et al., 2401.10095
- 155 Pseudomagic Quantum States, Gu et al., 2308.16228
- 148 Classical and quantum algorithms for characters of the symmetric group, Bravyi et al., 2501.12579
- 143 High-Temperature Gibbs States are Unentangled and Efficiently Preparable, Bakshi et al., 2403.16850
- 141 Few Single-Qubit Measurements Suffice to Certify Any Quantum State, Gupta et al., 2506.11355
 - (list leaves out review articles an perspectives...)