Rainbow chains and numerical RG for conformal spectra

0 $2 \times \frac{1}{16}$ Scaled entanglement spectrum 6 \diamond 2 odd even topo. Fermion parity / phase Attila Szabó

University of Zürich

Entanglement in Strongly Correlated Systems

Benasque, 24 February 2025

arXiv:2412.09685

Universität Zürich^{v™}

Outline

- Entanglement spectrum
 - in topological order
 - in CFTs
- Conformal transformations and rainbow chains
- Example 1: Transverse-field Ising model
- Numerical RG
- Example 2: Three-state Potts model
- Outlook

Entanglement spectrum

Entanglement spectrum

$$\rho_A = \sum_{\alpha} \lambda_{\alpha} |\alpha_A\rangle \langle \alpha_A | \implies \xi_{\alpha} := -\log \lambda_{\alpha}$$

- Direct probe of exotic physics
 - degeneracies in SPTs
 - edge CFTs in FQHE, chiral spin liquids,...
- Can simply read off of MPS \bigcirc
- But in > 2D, area law is a problem 🙄
 - need large bond dimensions
 - can only access narrow cylinders
 - edge CFT multiplets disperse

Entanglement spectrum of CFTs

- Matches energy spectrum of CFT with a boundary Läuchli, arXiv:1303.0741
 - same structure as chiral CFT!
- Conformal transformation from reduced to thermal d.m. Cardy & Tonni, J. Stat. Mech. **2016**,123103
 - "entanglement Hamiltonian" = CFT Hamiltonian
 - but system mapped to size $W \simeq \log L$
 - large finite-size effects 🙄

Läuchli, arXiv:1303.0741

Entanglement spectrum of CFTs

- Matches energy spectrum of CFT with a boundary Läuchli, arXiv:1303.0741
 - same structure as chiral CFT!
- Conformal transformation from reduced to thermal d.m. Cardy & Tonni, J. Stat. Mech. **2016**,123103
 - "entanglement Hamiltonian" = CFT Hamiltonian
 - but system mapped to size $W \simeq \log L$
 - large finite-size effects 🙄

Upside down!

- Want sites distributed uniformly in w for better scaling
- Unequal distances in z
 - near the middle: exponential decay
- How to represent in a spin chain?
 - each term stands for $\int dx \mathcal{H}(x) \approx \mathcal{H}_{\text{mid}}\ell$
 - upon conformal transformation
 - ℓ scales as |dz/dw|
 - \mathcal{H} scales as $|dz/dw|^{-2}$
 - \Rightarrow Hamiltonian terms scale as $1/\ell$
- Largest Hamiltonian terms in the middle
- Exponential decay $\sim e^{-n\Delta}$ going outwards

Rainbow chains

- Proposed before as example of volume-law ground states!
 - Vitagliano, Riera, & Latorre, New J. Phys. **12**, 113049 (2010) Ramírez, Rodríguez-Laguna, & Sierra, J. Stat. Mech. **2014**, P10004
 - but only studied for free fermions (aka XX spin chain)
- If $\alpha = e^{-\Delta/2} \ll 1$ (Δ large)
 - separation of scales
 - GS \approx "dimers" on rainbow arcs
- (How much) will this volume-law entanglement limit us?

Transverse-field Ising model

$$H = -\sum_i J_{i+1/2} \sigma_i^x \sigma_{i+1}^x + \sum_i h_i \sigma_i^z$$

- critical point at J = h
- rewrite as Majorana tight-binding chain:

$$H = \sum_{i=0}^{2L-1} i t_{i/2} \gamma_i \gamma_{i+1}$$

- critical point at uniform t
- rainbow chain prescription generalises
- Fermionic Gaussian state
 - \implies exact entanglement spectrum

TFIM on the rainbow chain

- Ising CFT has three conformal sectors:
 - identity (h = 0)
 - fermion (h = 1/2)
 - twist (h = 1/16)
- GS entanglement spectrum: $(0) \oplus (1/2)$
 - much narrower multiplets than for the uniform chain $\, \bigcirc \,$
- Twist sector:
 - parity odd excited state
 - decouple first and last Majorana by hand
 - exact degeneracy \iff SPT phase

on the rainbow chain

TFIM on the rainbow chain

- Ising CFT has three conformal sectors:
 - identity (h = 0)
 - fermion (h = 1/2)
 - twist (h = 1/16)
- GS entanglement spectrum: $(0) \oplus (1/2)$
 - much narrower multiplets than for the uniform chain $\, \bigcirc \,$
- Twist sector:
 - parity odd excited state
 - decouple first and last Majorana by hand
 - exact degeneracy \iff SPT phase

Finite-size scaling

- Entanglement entropy
 - $S_{\rm vN} \simeq \frac{c}{6} \log L$ for a uniform chain Calabrese & Cardy, J. Phys. A 42, 504005 (2009)
 - effective length of rainbow chain $\sim e^{-L\Delta/2}$ Ramírez, Rodríguez-Laguna, & Sierra, J. Stat. Mech. **2015**, P06002
 - $\Rightarrow S_{vN} \simeq \frac{c}{12} [L\Delta + \ell(\Delta)]$
 - define $L_{\text{eff}} = \frac{12}{c} S_{\text{vN}}$
- Entanglement gap: $\delta_{ent} \simeq 4\pi^2/L_{eff}$
 - mode spacing in *k*-space $\simeq 2\pi/L_{\rm eff}$
 - effective temperature $\beta = 2\pi$
- Entanglement spectrum
 - conformal multiplets converge as $\approx L_{\text{eff}}^{-2}$
 - but at largest system sizes, ~ L_{eff}^{-3} (unexpectedly fast!)

Finite-size scaling

- Entanglement entropy
 - $S_{\rm vN} \simeq \frac{c}{6} \log L$ for a uniform chain Calabrese & Cardy, J. Phys. A 42, 504005 (2009)
 - effective length of rainbow chain $\sim e^{-L\Delta/2}$

Ramírez, Rodríguez-Laguna, & Sierra, J. Stat. Mech. 2015, P06002

- $\Rightarrow S_{\rm vN} \simeq \frac{c}{12} [L\Delta + \ell(\Delta)]$
 - define $L_{\text{eff}} = \frac{12}{c} S_{\text{vN}}$
- Entanglement gap: $\delta_{ent} \simeq 4\pi^2/L_{eff}$
 - mode spacing in *k*-space $\simeq 2\pi/L_{\rm eff}$
 - effective temperature $\beta = 2\pi$
- Entanglement spectrum
 - conformal multiplets converge as $\approx L_{\text{eff}}^{-2}$
 - but at largest system sizes, ~ $L_{\rm eff}^{-3}$ (unexpectedly fast!)

Numerical renormalisation group (NRG)

Want to solve interacting rainbow chains!

- DMRG struggles with wide range of terms 🙄
- NRG: Originally for impurity problems Wilson, Rev. Mod. Phys. 47, 773 (1975)
 - bath at different energy scales
 - \longrightarrow exponentially decaying chain
 - separation of scales (large Δ)
 - can iteratively diagonalise longer chains and discard high-energy states
- Naturally written in MPS form Weichselbaum, Phys. Rev. B 86, 245124 (2012)
- Must handle all equal-energy terms at once
 ⇒ rainbow chain must be "folded"

Numerical renormalisation group (NRG)

- GS wave function is "folded"
 - entanglement is spread along MPS
 - \Rightarrow can represent volume-law GS \bigcirc
 - but no direct access to entanglement spectrum
- "Unzip" MPS into a regular one!
 - work from last tensor towards the middle
 - split off isometries for left and right side
 - fuse leftover to next tensor
- Result in mixed canonical form
 - \implies read off entanglement spectrum directly \bigcirc

Three-state Potts model

$$H = -\sum_{i} J_{i+1/2}(X_{i}X_{i+1}^{\dagger} + X_{i}^{\dagger}X_{i+1}) - \sum_{i} h_{i}(Z_{i} + Z_{i}^{\dagger}) \qquad X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2} \end{pmatrix} \qquad Z = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- *S*₃ symmetry (permutation of *X* eigenstates)
- For uniform couplings: critical point at *J* = *h*
- Described by \mathcal{M}_5 conformal minimal model Dotsenko, Nucl. Phys. B 235, 54 (1984)
 - 10 primary fields, not all represented in Potts partition functions
 - free boundaries: $(0) \oplus (3) \oplus 2 \times (\frac{2}{3})$
 - can also apply $X + X^{\dagger}$ boundary fields (symmetry: $S_3 \rightarrow \mathbb{Z}_2$) Cardy, Nucl. Phys. B 275, 200 (1986); 324, 581 (1989)

NRG results

• Get all 10 conformal towers \implies NRG fixed point carries full information on (chiral) CFT

• *Q* = 1 doesn't match any boundary CFT spectrum (!)

NRG stability

- CFT fixed point is unstable
 - eigenstate cutoff $\chi_{\rm NRG}$ is an irrelevant perturbation
 - but it moves critical $g \equiv h/J$ away from 1
 - Δg amount and direction depends on Δ , χ_{NRG} randomly
- Can automatically search g_c
 - stabilises NRG for \sim 500 steps \bigcirc
 - excellent scaling collapse for $g \approx g_c$
 - implied v = 16/3 far higher than 3-state Potts v = 5/6! \implies NRG much more stable \bigcirc

NRG stability

- CFT fixed point is unstable
 - eigenstate cutoff χ_{NRG} is an irrelevant perturbation
 - but it moves critical $g \equiv h/J$ away from 1
 - Δg amount and direction depends on Δ , χ_{NRG} randomly
- Can automatically search g_c
 - stabilises NRG for \sim 500 steps \bigcirc
 - excellent scaling collapse for $g \approx g_c$
 - implied v = 16/3 far higher than 3-state Potts v = 5/6! \implies NRG much more stable \bigcirc

Unzip scaling

- Entanglement entropy
 - follows volume law for small systems
 - saturates at $S = \log \chi \text{const.}$
 - can still handle $L \approx 250$ chains accurately
- Entanglement gap
 - follows $\delta_{ent} = 4\pi^2/L_{eff}$ until *S* saturates
 - then quickly shrinks
- Entanglement spectrum
 - converges to thermo. limit until saturation
 - then starts to diverge, faster for smaller χ
 - optimum around saturation (L = 256)

Unzip scaling

- Entanglement entropy
 - follows volume law for small systems
 - saturates at $S = \log \chi \text{const.}$
 - can still handle $L \approx 250$ chains accurately
- Entanglement gap
 - follows $\delta_{ent} = 4\pi^2/L_{eff}$ until *S* saturates
 - then quickly shrinks
- Entanglement spectrum
 - converges to thermo. limit until saturation
 - then starts to diverge, faster for smaller χ
 - optimum around saturation (L = 256)

Conclusion & Outlook

Methods to compute (boundary/chiral) CFT spectra from ground state wave functions

- Rainbow chain: finite-size corrections scale with *L*, not log *L*
 - \implies can clearly resolve ~ 10 conformal levels \bigcirc
- Interacting rainbow chains: low-energy states from NRG
 - fixed-point tensor describes all conformal towers: How to extract more CFT data?
 - not symmetric under chain reversal \implies chiral??

Technical improvements for NRG

- Compute fixed-point tensor directly (iDMRG/vumps?)
- More robust alternative to unzipping
 - MPS representation of Schmidt states
 - DMRG/iDMRG/vumps to compute them
 - how to obtain full spectrum?

Outlook: Parton constructions for CFTs

- Only need wave functions, not parent Hamiltonians!
 - \implies applicable to any CFT wave function!
- Parton constructions successful for (chiral) topological order
 - fractional quantum Hall
 - chiral spin liquids...
- Equivalent construction on rainbow chains edge CFT?
- Two copies of free fermions + Gutzwiller projection
 - as edge theory: KL chiral spin liquid
 - get the expected spectrum 😳

Partons for CFTs

Outlook: Parton constructions for CFTs

- Only need wave functions, not parent Hamiltonians!
 - \implies applicable to any CFT wave function!
- Parton constructions successful for (chiral) topological order
 - fractional quantum Hall
 - chiral spin liquids...
- Equivalent construction on rainbow chains \longrightarrow edge CFT?
- Two copies of free fermions + Gutzwiller projection
 - as edge theory: KL chiral spin liquid
 - get the expected spectrum \bigcirc

