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Hamiltonian for the complete system of Ne electrons with coordinates                              
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Stationary Schrödinger equation
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Time-dependent Schrödinger equation
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with

 ∑∑∑

∑∑∑

= =ν ν

ν

≠

ν≠µ
νµ νµ

νµ

==ν ν

ν

−
−=

−
=

−
=

∇
−=

∇
−=

e ne

nen

N

1j

N

1 j
en

N

kj
k,j kj

ee

N

,
nn

N

1i

2
i

e

N

1

2

n

Rr
ZV̂

rr
1

2
1Ŵ
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Standard approach to deal with the full e-n problem

.Rfor fixed nuclear configuration

( ) ( ) ( ) ( )   
BO

nn ,J J ,J ˆ ˆ ˆ ˆT (r) W (r) W (R) V (r,R) Φ r    R  Φ r+ + + = ∈BO BO
e ee en R R

1st step: Solve the electronic-structure problem 
(obtained from full Hamiltonian H by neglecting Tn)

J=0

J=1

R

( )BO
J  R  ∈



( )   
adiab

,J (r,R, t)   (R, t) Φ rΨ = χ BO
R

2nd step: Adiabatic approximation for the full e-n wave function 

( ) ( )( ) ( )B
Jt n

Oi R, t T R, tR∈∂ χ = + χ

( )BO
J R∈

• achieves approximate separation of electronic and nuclear
    degrees of freedom, making calculations possible

• represents our intuition of a molecule or solid (the electronic 
    density resulting from the full Hamiltonian H is constant!!) 



( )   
adiab

 (r,R, t)   (R, t) Φ rΨ = χ BO
R





Plug the ansatz 

( ) ( )( ) ( )t ni R, t T R R, t∂ χ = + ∈ χ

 

( ) ( ) ( ) ( )   

*BO BO BO BO
R R R R R RA R dr r i r i

ν νν = Φ − ∇ Φ = Φ − ∇ Φ∫

( )( ) 

nN 2

n ν ν
ν ν

1T i A R
2M

= − ∇ +∑

Berry
connection 

( ) ( ) ( ){ }nN 2BO BO BO
ν R ν R

ν
R R A R / 2Mν ν∈ =∈ + ∇ Φ ∇ Φ −∑

The “variationally best” adiabatic approximation

into the TD variational principle and determine the “best” 
nuclear wave function by making the QM action stationary: 

“Diagonal correction”



.Rfor fixed nuclear coordinates

  
BO

nn
ˆ ˆ ˆ ˆ ˆH (r,R) T (r) W (r) W (R) V (r,R)= + + +e ee en

To be kept in mind:  Traditional ground-state DFT, 
as well as Berry-phase effects, are inseparably tied to the 
adiabatic approximation. We exclusively deal with the 
electronic-structure Hamiltonian 



Example: Aluminium atom (13 electrons)

depends on 39 coordinates

rough table of the wavefunction

10 entries per coordinate: ⇒ 1039 entries
1 byte per entry: ⇒ 1039 bytes
1012 bytes per SSD: ⇒ 1027 SSDs
20 g per SSD: ⇒ 2×1028 g SSDs

( )1 13r ,...,rΨ
 

Why don’t we just solve the many-particle SE?

For Ti atom the required mass of SSDs exceeds mass
of the universe



Two fundamentally different classes of ab-initio approaches:

•  Wave function approaches
 
    --   Configuration interaction
                   (also stochastic CI)
    --   Tensor networks

•  “Functional Theories”

     



Two fundamentally different classes of ab-initio approaches:

•  Wave function approaches
 
    --   Configuration interaction
                   (also stochastic CI)
    --   Tensor networks

•  “Functional Theories”

     Write total energy as functional 
     of a simpler quantity and minimize
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Motivation

(r, r ') G(r, r ',0 )+γ =

MBPT RDMFT

)'tt,'r,r(G −

“Functional Theories”

DFT

)r,r()r( γ=ρ

Functional:
      Φxc[G]
 or  Σxc[G]
easy (e.g. GW)
numerically
     heavy

Functional:
      Exc[γ]

   difficult

  moderate

Functional:
      Exc[ρ]
 or  vxc[ρ]
very difficult

      light 



Each of these functional theories comes in two
versions: 

•  a ground-state (or equilibrium) version

•  a time-dependent (or non-equilibrium) version 



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a 
quantum system can be calculated 
from the density of the system 
ALONE

• The density of particles interacting 
with each other can be calculated as 
the density of an auxiliary system of 
non-interacting particles



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a 
quantum system can be calculated 
from the density of the system 
ALONE

• The density of particles interacting 
with each other can be calculated as 
the density of an auxiliary system of 
non-interacting particles

Hohenberg-Kohn theorem (1964)
Kohn-Sham theorem (1965) 
(for the ground state)



HOHENBERG-KOHN THEOREM

1. v(r)                  ρ(r)
 one-to-one correspondence between external potentials v(r) and ground-state 

densities ρ(r). Consequence: Many-body WF is uniquely determined by the density, 
Ψ = Ψ[ρ], and hence all expectation values w.r.t. Ψ[ρ] are functionals of ρ(r).

2. Variational principle
 Given a particular system characterized by the external potential v0(r).  There 

exists a functional,  EHK [ρ], such that the solution of the Euler-Lagrange equation

 yields the exact ground-state energy E0 and ground-state density ρ0(r) of this 
system 

3. EHK[ρ] =  < Ψ[ρ]|T+Vee+V0| Ψ[ρ]>  = F[ρ] +    ρ(r) v0(r) d3r

 F[ρ]  is  UNIVERSAL.    In practice,  F[ρ]  needs to be approximated

1—1

( ) [ ] 0E
r HK =ρ

δρ
δ



compare ground-state densities  ρ(r)  resulting from different 
external potentials  v(r).

QUESTION:     Are the ground-state densities coming from 
different potentials always different?

ρ(r)

v(r)



v(r) Ψ (r1…rN)
ρ (r)

single-particle
potentials having
nondegenerate 
ground state

ground-state
wavefunctions

ground-state
densities

Hohenberg-Kohn-Theorem (1964)

G: v(r)  → ρ (r)   is invertible

A
G

Ã



Proof

Step 1:  Invertibility of map A

Solve many-body Schrödinger equation for the external potential:

This is manifestly the inverse map:    A given Ψ uniquely yields the 
external potential.

( )
Ψ

Ψ−−
= eeŴT̂EV̂

( ) ( ) constantr...rWT̂rv N1ee

N

1j
j +−

Ψ
Ψ

−=∑
=





Step 2:  Invertibility of map Ã

Given: two (nondegenerate) ground states Ψ, Ψ’ satisfying 

Ψ=Ψ EĤ

''E''Ĥ Ψ=Ψ
with

V̂ŴT̂Ĥ ++=

'V̂ŴT̂'Ĥ ++=

to be shown: '    ' ρ≠ρ⇒Ψ≠Ψ

Ψ  

  Ψ’ 
ρ = ρ’

cannot happen



Use Rayleigh-Ritz principle:

( ) ( ) ( )3

ˆ ˆE = Ψ H Ψ  < Ψ' H Ψ' = Ψ' H'+V-V' Ψ'

= E' + d r ρ' r v r -v' r  ∫

( ) ( ) ( )3

ˆ ˆ ˆE' = Ψ' H' Ψ'  < Ψ H' Ψ Ψ H+V'-V Ψ

= E + d r ρ r v' r -v r

=

  ∫

Proof by reductio ad absurdum:
Assumption ρ = ρ’.    Add the two inequalities  ⇒  E + E’ < E + E’ 



Every quantum mechanical observable is completely 
determined by the ground state density.

Proof:  [ ] [ ]ρΦ →ρ→ρ
−

i
.E.S solveG   v  

1

[ ] [ ] [ ]ρΦρΦ=ρ i ii B̂  B 

Consequence

Hermitian operator

                                                e.g. excitation spectrum: Ei[ρ]   

B̂



What is a FUNCTIONAL?

E[ρ]

functional

set of functions set of real numbers

ρ(r) R

Generalization:

[ ] [ ]( )rv v rρ = ρ



[ ] [ ]( )
1 Nr ...r 1 Nr ...rψ ρ = ψ ρ 

  ( )N1 r...r 

functional depending parametrically on r

or on



QUESTION:

How to calculate ground state density of a given system 
(characterized by the external potential             ) 
without recourse to the Schrödinger Equation?

Theorem:

( )ro


ρ
( )∑= rV oo
v

There exists a density functional  EHK[ρ]  with properties 
   i)   EHK[ρ] > Eo   for  ρ ≠ ρo 
  ii)   EHK[ρo] = Eo 
where  Eo = exact ground state energy of the system 

Thus, Euler equation

yields exact ground state density ρo.
( ) [ ] 0E
r HK =ρ

δρ
δ




proof:

formal construction of EHK[ρ] :  

for arbitrary ground state density         

define: [ ] [ ] [ ]ρΨ++ρΨ≡ρ oHK V̂ŴT̂ E

( ) [ ]ρΨ→ρ
−1A~r

> Eo   for  ρ ≠ ρo
= Eo for  ρ = ρo

EHK[ρ] = d3r ρ(r) vo(r) [ ] [ ]ρΨ+ρΨ ŴT̂ +

F[ρ]  is    universal

q.e.d.



An Example: Explicit algorithm to construct the HK map
 vs          ρ  for non-interacting particles  

Iterative procedure

ρ0(r)  given (e.g. from experiment) 
Start with an initial guess for vs(r)      (e.g. LDA potential) 

   solve (–          + vs(r) )  ϕi = ∈i ϕi

vs
new(r) =          · Σ (∈iϕi(r)2– ϕi* (-          ) ϕi) 

1
ρ0( r) i = 1

N

h2 ∇ 2
2m

h2 ∇ 2
2m

solve SE with  vs
new  and iterate, keeping ρ0(r) fixed

(–          + vs(r) )  ϕi = ∈i ϕi                 Σ ϕi* ·

    Σ ϕi*(–           )ϕi   +  vs(r)ρ(r) =    Σ ∈iϕi(r)2

⇒  vs(r) =          · Σ (∈iϕi(r)2– ϕi* (-          ) ϕi) 
1

ρ(r)

i = 1

N

i = 1

N

h2 ∇ 2
2m

h2 ∇ 2
2m

i = 1

N

i
h2 ∇ 2

2m

Consequence: The orbitals are functionals of the density:  ϕi[ρ] 



KOHN-SHAM EQUATIONS

EHK[ρ] = TS[ρ] +    ρ(r) v0(r) d3r + EH[ρ] + Εxc[ρ]

where
is the kinetic energy functional of non-interacting particles

( ) [ ] 0E
r HK =ρ

δρ
δ yields the Kohn-Sham equations:

( ) ( ) ( )( ) ( ) ( )0 H xc/ 2 v v [ ] v [ ]−∇ + + ρ + ρ φ =∈ φ2
j j jr r r  r r

Rewrite HK functional:

Exc[ρ] is a universal functional of the density which, in practice, needs
to be approximated.  

Walter Kohn: “The KS equations are an 
exactification of the Hartree mean-field equation”

The orbitals from these equations yield the true density of the interacting system

[ ] [ ]( )( ) [ ]( )3 2
S j jT d r r / 2 r∗ρ = φ ρ −∇ φ ρ∑∫



The functional  Exc[ρ]  is universal:

Curse or blessing?



The functional  Exc[ρ]  is universal:

Curse or blessing?

Only ONE functional needs to 
be approximated



The functional  Exc[ρ]  is universal:

Curse or blessing?

Only ONE functional needs to 
be approximated

Functional can be systematically improved, i.e. results will 
improve -on average- for all systems. Systematic improvement
for a single given system is not possible. 



EXTENSIONS

Relativistic KS equations:

vs(r)( )[ ] ( ) ( )rr        mc        i nonno
2 ψγε=ψγ++−∇−⋅γ







As(r)

( ) ( ) [ ]
( ) 











δ
ρδ

+
−

+− ∫ rj
j,E

'rr
'rj'rdrAe xc3

ext 





As(r) =

vs(r) = ( ) ( ) [ ]
( ) 











δρ
ρδ

+
−

ρ
+− ∫ r

j,E
'rr

'r'rdrAe xc30
ext



vnuc(r)

KS orbitals are Dirac spinors



Finite temperature KS equations:

( ) ( ) ( ) ( ) ( )
2

3
nuc xc j j

T T
T j

ρ r'
- +v r + d r'+v [ρ ] r φ r =ε φ r

2m r-r'
 ∇
  
 

∫

( ) ( ) 2

T j
j

ρ r =          × φ r∑ fT(ε j)

Fermi-Dirac distribution

EXTENSIONS



Approximations for the 
exchange-correlation functional



xcE "Nature 's glue"⇒ =

[ ] ( ) ( )( )LDA 3 unif
xc xcE d r r rρ = ρ ε ρ∫

 

Local density approximation (LDA)

[ ]xcE smallest part of total energyρ =

[ ]xcsimplest approximation : E 0 Hartree approachρ ≡ ⇒

Result: lattice constants and bonding distances much too large (20%-50%) 

LDA (Kohn and Sham, 1965)

( )unif
xcε ρ xc energy per particle of a uniform electron gas of density ρ

(known from quantum Monte-Carlo and many-body theory)

Result: decent lattice constants, phonons, surface energies of metals



Quantity Typical deviation 
       (from expt)

• Atomic & molecular 
ground state energies

< 0.5 %

• Molecular equilibrium 
distances

< 5 %

• Band structure of 
metals, Fermi surfaces

few %

• Lattice constants < 2 %



Quantity Typical deviation 
       (from expt)

• Atomic & molecular 
ground state energies

< 0.5 %

• Molecular equilibrium 
distances

< 5 %

• Band structure of 
metals, Fermi surfaces

few %

• Lattice constants < 2 %

Systematic error of LDA: Molecular atomisation energies too large and bond lengths 
                                            and lattice constants too small



( )
1

32
Fk 3

∇ρ
<< = π ρ

ρ
1

6
TFk 4(3 / )

∇ρ
<< = ρ π

ρ

( )xcn r, r ' 

xn 0≤

xc x cn n n= +

[ ] ( ) ( )LDA
xcLDA 3 3

xc

n r, r '1E d r r d r '
2 r ' r

ρ = ρ
−∫ ∫
 



 

One would expect the LDA to be good only for weakly 
inhomogeneous systems, i.e., systems whose density satisfies:

and

Why is the LDA good also for strongly inhomogeneous systems?

Answer: Satisfaction of many exact constraints (features of exact xc fctl)

coupling-constant-averaged xc hole density 

( )3
xd r 'n r, r ' 1= −∫
 

Important constraints:

( )3
cd r 'n r, r ' 0=∫
 

are satisfied in LDA 



[ ] ( ) ( )( )GGA 3
xcE d r f r , rρ = ρ ∇ρ∫

 

Generalized Gradient Approximations (GGA)

Langreth, Mehl (1983), Becke (1986), Perdew, Wang (1988)
PBE: Perdew, Burke, Ernzerhof (1996) 

Construction principle: Satisfaction of exact constraints
(important lesson from LDA and from gradient expansion of Exc )

Results: GGAs reduce the LDA error in the atomisation energy
               significantly (but not completely) while LDA bond lengths are
               over-corrected (i.e. are in GGA too large compared with expt)



Detailed study of molecules (atomization energies)

32 molecules (all neutral diatomics from first-row atoms only and H2 )

B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 97, 7847 (1992)

Atomization energies (kcal/mol) from:

  mean deviation from experiment   0.1  1.0 -85.8
  mean absolute deviation 4.4  5.6 85.8

VWN
c

B
x EE + LYP

c
B
x EE + HF

for comparison:     MP2
 -22.4
 22.4



LIMITATIONS OF  LDA/GGA

• Not free from spurious self-interactions: KS potential decays more 
rapidly than r-1 for finite systems

 Consequences: –  no Rydberg series
  –  negative atomic ions not bound
  –  ionization potentials (if calculated from highest     

    occupied orbital energy) too small

• Dispersion forces cannot be described
 Wint (R)           e-R  (rather than R-6)

• band gaps too small: G
     Egap

 (LDA/GGA) ≈ 0.5 Egap(expt) 

• Energy-structure dilemma of GGAs
                                     atomisation energies too large
                                    bond lengths too large
                                         (no GGA known that gets both correct!!)

• Wrong ground state for strongly correlated solids, e.g. CoO, La2CuO4 
predicted as metals (in the KS equations) 



[ ] ( )MGGA 3 MGGA
xc xcE d r (r) (r), (r) , (r)ρ = ρ ε ρ ∇ρ τ∫

   

( ) ( )
occup 2

,
,

1r r
2 α σ

α σ

τ = ∇ψ∑  [ ] ( )3
sT n d r r= τ∫



Meta Generalized Gradient Approximations (MGGA)

Result: Solves energy-structure dilemma of GGAs



,ρ ∇ρ
ρ

xcE 0=

LDA

GGA

, ,ρ ∇ρ τMGGA

hybrid , , ,ρ ∇ρ τ occupied orbitals (e.g. fraction of EXX in hybrid fctls)

RPA-like , , ,ρ ∇ρ τ occupied & unoccupied KS orbitals + energies

earth (Hartree                 )

heaven (exact functional)

Jacob’s ladder of xc functionals (John Perdew) 



DFT of Magnetism and Superconductivity



DFT of Magnetism and Superconductivity

Spontaneously-broken-symmetry phases: 
Formation of a non-vanishing order parameter

Order parameter of magnets: spin magnetization density

Order parameter of superconductors: 

0
ˆ ˆ ˆm(r) (r) (r)+

α αβ β
αβ

= µ ψ σ ψ∑ 

( ) ( ) ( )ˆ ˆ ˆr, r ' r r '↑ ↓χ = ψ ψ



Order parameter: 
vector field of spin magnetization

m(r)



Order parameter: 
vector field of spin magnetization

m(r)

Cr monolayer in the ground state (obtained with non-collinear LSDA)



In principle, Hohenberg-Kohn theorem guarantees that m(r) is a 
functional of the density:  m(r) = m[ρ](r). 
In practice, very few approximations for the functional m[ρ] are known. 
Notable exceptions:  Callow, Pearce, Gidopoulos, JCP 156, 111101 (2022); 
C. Ullrich, PRA 100, 012516 (2019).

Standard procedure: Include m(r) as additional ‘density’ in the 
formalism (in addition to the density ρ(r)).



ˆ ˆ ˆwith m(r) (r) (r)+
α αβ β

αβ

= ψ σ ψ∑ 

HK theorem [ ]  1-1 (r),m(r)   v(r),B(r) ρ ←→  




total energy:

[ ] [ ] ( )3
Bv,BE ρ,m =F ρ,m + d r v(r)ρ(r) -μ B(r) m(r)⋅∫



  

universal

( ) ( ) ( ) ( )3 3
ee Bv,B

ˆˆ ˆ ˆ ˆH T V r v r d r m r B r d r= + + ρ − µ ⋅∫ ∫





Start from fully interacting Hamiltonian with Zeeman term:

U. von Barth, L. Hedin, J. Phys C 5, 1629 (1972),   N. Gidopoulos, PRB 75, 134408 (2007)



KS scheme: Orbitals are Pauli spinors

vxc[ρ,m] = δExc[ρ,m]/δ ρ Bxc[ρ,m] = δExc[ρ,m]/δ m

B → 0  limit

These equations do not reduce to the original KS equations for  
B → 0  if, in this limit, the system has a finite m(r). 

[ ] [ ]
2

B j j jv( ) v ( ) μ B( )  φ (r) = ε φ (r)
2 Hm

σ
 ∇

− + + + − + 
 

r r rvxc(r) Bxc(r)

( ) ( ) ( )
N

†
j j

j=1
ρ r = φ r φ r∑ ( ) ( ) ( )

N
†
j j

j=1
m r = φ r σ φ r∑ 





Construction of a novel xc functional 
        for non-collinear magnetism

K. Capelle, E.K.U. Gross, PRL 78, 1872 (1997)

Enforce property of the exact xc functional:

( ) ( )exact exact
xc xcB r = ×A r∇

( ) ( )GGA
xc xcB r = ×A r + φ(r)∇ ∇

By virtue of Helmholtz’ theorem, any vector field can be
decomposed as: 

Enforce exact property by subtracting source term!

This condition is violated by all standard functionals (LDA, GGAs,…), i.e. 
the approximate xc magnetic field is produced by magnetic monopoles



( ) ( )2 GGA
xcφ r =4π ×B r∇ ∇

Explicit construction:

( ) ( ) ( )GGA
xc xc

1B r :=B r - φ r
4π

∇

( ) ( )SF
xc xcB r =s B r

Scaling factor, s, only depends on underlying functional 
(GGA/LSDA), nothing else. (s = 1.14 for GGAs)

S. Sharma, E.K.U. Gross, A. Sanna, K. Dewhurst, JCTC14, 1247 (2018)
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