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A simple “curved space”
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In the positively curved geometry on the surface of a sphere (A), the angles of a triangle add up to
more than 180 degrees. For example, if we assume the Earth is a perfect sphere, which it nearly is,
and we draw a large triangle on the surface of the Earth with:

one corner on the equator and at zero degrees longitude (x )
the second corner on the equator at 90 degrees east longitude (x ) and
the third corner at the North Pole (x ),

 then the angles of this triangle add up to 270 degrees.

In general, the smaller the triangle in the relation to the radius of the sphere, the closer the sum of
the angles is to 180 degrees. For example, if we constructed an equilateral triangle on the Earth’s
surface whose sides were 1 km long, the sum of the angles would add up to 180.000 000 706
degrees.

Similarly,  if we draw a circle of radius r on the surface of a sphere, its area is more than the area
given by the formula πr , which applies in Euclidean geometry The larger the radius of the circle r
compared to the radius of the of sphere, the bigger the departure of the area of the circle from πr .
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An ant crawling on a 2D surface (space):
How can it discover whether it is flat or curved?



Theorema egregium (Gauss, 1827)

Parallel transport Arbitrary transport

Theorema egregium: γ =

∮
∂Σ

dϕ =

∫
Σ

dσ K mod 2π

K : Gaussian curvature



Holonomy

Gaussian curvature
of a spherical surface K = 1/R2

Integrated over an octant:∫
Σ

dσ K =
1
8
× 4πR2 × 1

R2 =
π

2
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Parallel transport (of the black arrow) on a
sphere. Blue and red arrows represent
parallel transports in different directions
but ending at the same lower right point.
The fact that they end up pointing in
different directions is a result of the
curvature of the sphere.

from rigidly moving v along the second curve. This
phenomenon reflects the curvature of the sphere. A
simple mechanical device that can be used to
visualize parallel transport is the south-pointing
chariot.

For instance, suppose that S is a sphere given
coordinates by the stereographic projection. Regard S
as consisting of unit vectors in R3. Then S carries a
pair of coordinate patches corresponding to the
projections from north pole and south pole. The
mappings

cover a neighborhood U0 of the north pole and U1 of the south pole, respectively. Let X, Y, Z be
the ambient coordinates in R3. Then φ0 and φ1 have inverses

Holonomy: Angular mismatch for parallel transport:

γ =

∫
Σ

dσ K mod 2π
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Berry curvature

(κ, λ) are the real coordinates of a 2D space
The time-independent Hamiltonian depends on (κ, λ)

|Ψn⟩ and En also depend on (κ, λ)

Definition:

Ω(κ, λ) = i (⟨∂κΨ0|∂λΨ0⟩ − ⟨∂λΨ0|∂κΨ0⟩)
= −2 Im ⟨∂κΨ0|∂λΨ0⟩

Introduced in the 1980s independently
by M. Berry and by D. Thouless & coworkers
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Berry phase

Holonomy:
In differential geometry: the angle of a vector
In quantum geometry: the phase angle of a state vector
Angular mismatch on a closed path: the Berry phase γ

The Berry curvature is the analogue of the Gaussian curvature
In differential geometry γ =

∮
∂Σ dϕ =

∫
Σ dσ K

In quantum geometry γ =
∮
∂Σ dϕ =

∫
Σ dκdλ Ω(κ, λ)

Σ domain included by the closed path ∂Σ

Berry curvature = Berry phase per unit area



Berry phase

Holonomy:
In differential geometry: the angle of a vector
In quantum geometry: the phase angle of a state vector
Angular mismatch on a closed path: the Berry phase γ

The Berry curvature is the analogue of the Gaussian curvature
In differential geometry γ =

∮
∂Σ dϕ =

∫
Σ dσ K

In quantum geometry γ =
∮
∂Σ dϕ =

∫
Σ dκdλ Ω(κ, λ)

Σ domain included by the closed path ∂Σ

Berry curvature = Berry phase per unit area



Berry phase

Holonomy:
In differential geometry: the angle of a vector
In quantum geometry: the phase angle of a state vector
Angular mismatch on a closed path: the Berry phase γ

The Berry curvature is the analogue of the Gaussian curvature
In differential geometry γ =

∮
∂Σ dϕ =

∫
Σ dσ K

In quantum geometry γ =
∮
∂Σ dϕ =

∫
Σ dκdλ Ω(κ, λ)

Σ domain included by the closed path ∂Σ

Berry curvature = Berry phase per unit area



Berry connection & Berry curvature

Infinitesimal phase difference:

dϕ = −Im ln ⟨Ψ0,κλ|Ψ0,κ+dκ λ+dλ⟩

Berry connection (gauge dependent)

dϕ = i⟨Ψ0|∂κΨ0⟩dκ+ i⟨Ψ0|∂λΨ0⟩dλ
= Aκdκ+Aλdλ

Berry curvature (gauge invariant)

Ω(κ, λ) = ∂λAκ − ∂κAλ = −2 Im ⟨∂κΨ0|∂λΨ0⟩

Berry phase:

γ =

∮
∂Σ

dϕ =

∫
Σ

dκdλ Ω(κ, λ)
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Alternative expressions

Berry curvature:

Ω(κ, λ) = i(⟨∂κΨ0|∂λΨ0⟩ − ⟨∂λΨ0|∂κΨ0⟩)
= −2 Im ⟨∂κΨ0|∂λΨ0⟩;

Also expressed as a Kubo formula:

Ω(κ, λ) = −2 Im
∑
n ̸=0

⟨Ψ0|∂κĤ|Ψn⟩⟨Ψn|∂λĤ|Ψ0⟩
(E0 − En)2 .

Also expressed as a trace:

Ω(κ, λ) = i Tr {P̂ [ ∂κP̂, ∂λP̂ ]}, P̂ = |Ψ0⟩⟨Ψ0|
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Time-dependent Hellmann-Feynman

The time-independent operator Ô can be written
as an Hamiltonian derivative: Ô = ∂κĤ
For time-independent λ: Hellmann-Feynman

O ≡ ⟨Ψ0| Ô |Ψ0⟩ = ∂κE0

When λ→ λ(t), then Ĥ → Ĥt , E(t) = ⟨Ψt | Ĥt |Ψt⟩

∂κE(t) = ⟨Ψt | Ô |Ψt⟩+ ⟨∂κΨt | Ĥt |Ψt⟩+ ⟨Ψt | Ĥt |∂κΨt⟩
= O(t) + iℏ(⟨∂κΨ|Ψ̇t⟩ − ⟨Ψ̇|∂κΨt⟩) (1)

Exact time-evolution of ⟨Ô(t)⟩:
O(t) = ∂κE(t)− iℏ(⟨∂κΨ|Ψ̇t⟩ − ⟨Ψ̇|∂κΨt⟩)



Time-dependent Hellmann-Feynman

The time-independent operator Ô can be written
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= O(t) + iℏ(⟨∂κΨ|Ψ̇t⟩ − ⟨Ψ̇|∂κΨt⟩) (1)

Exact time-evolution of ⟨Ô(t)⟩:
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Adiabatic Hellmann-Feynman

Exact time-evolution of ⟨Ô(t)⟩:

O(t) = ∂κE(t)− iℏ(⟨∂κΨ|Ψ̇t⟩ − ⟨Ψ̇|∂κΨt⟩)

Initial condition: |Ψt⟩ = |Ψ0⟩ at t = 0

Kato’s theorem (1950):
“when the change of the Hamiltonian in time is made infinitely
slow, the system, when started from a stationary state, passes
through the corresponding stationary states for all times”.

All quantities replaced with their instantaneous value at λ = λ(t)

O(t) = ∂κE0 − iℏ(⟨∂κΨ0|∂λΨ0⟩ − ⟨∂λΨ0|∂κΨ0⟩)λ̇(t)
= ∂κE0 − ℏΩ(κ, λ) λ̇(t)

nongeometric geometric
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Beyond Hellmann-Feynman

When Ô = ∂κĤ:
O(t) = ∂κE0 − ℏΩ(κ, λ) λ̇(t)

When Ô cannot be written as an Hamiltonian derivative

O(t) = ⟨Ψ0| Ô |Ψ0⟩+ 2ℏ Im
∑
n ̸=0

⟨Ψ0|Ô|Ψn⟩⟨Ψn|∂λĤ|Ψ0⟩
(E0 − En)2 λ̇(t)

Both expressions exact in the adiabatic limit:

They differ from the exact evolution by terms of order λ̈
If the evolution is harmonic, they are exact to order ω and
neglect terms of order ω2
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Time-reversal invariant systems

O(t) = ⟨Ψ0| Ô |Ψ0⟩+ 2ℏ Im
∑
n ̸=0

⟨Ψ0|Ô|Ψn⟩⟨Ψn|∂λĤ|Ψ0⟩
(E0 − En)2 λ̇(t)

When the system is time-reversal invariant

Hamiltonian & eigenfunctions real

For a real Ô: Only the first term is nonvanishing
(like e.g. the electron density)
For an imaginary Ô: Only the second term is nonvanishing
(like e.g. the current density)
For an imaginary Ô = ∂κĤ:

O(t)
λ̇(t)

= −ℏΩ(κ, λ) (Adiabatic Hellmann-Feynman)
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Kohn’s (1964) Hamiltonian

Ĥκ =
1

2m

N∑
i=1

[pi + ℏκ]2 + V̂

Macroscopically homogeneous system

N electrons in a cubic box (supercell) of volume Ld

V̂ one-body and two-body potentials

Time-reversal invariant af κ = 0

Born-von-Kàrmàn PBCs:
The coordinates riα are actually angles φiα = 2πriα/L

κ-derivatives taken first, L → ∞ limit after:
This warrants adiabaticity even in metals
CAVEAT: DFT implicitly takes the limit in a different order!
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The κ parameter

Ĥκ =
1

2m

N∑
i=1

[pi + ℏκ]2 + V̂

κ “flux” or “twist” (dimensions: inverse length)

Equivalent to a vector potential

ℏκ ≡ e
c

A r̂-independent

Two different cases

1 t-independent κ: a pure gauge-transformation
2 t-dependent κ: macroscopic field

E(t) = −ℏ
e
κ̇(t)



Adiabatic current density (many-body formula)

Ĥκ =
1

2m

N∑
i=1

(pi + ℏκ)2 + V̂λ

Macroscopic current-density operator:

ĵα = − e
Ld v̂α = − e

mLd

N∑
i=1

piα = − e
ℏLd ∂καĤκ

Adiabatic Hellmann-Feynman:

jα(t) = − e
ℏLd

[
∂καE0 − ℏΩ(κα, λ)λ̇(t)

]
nongeometric geometric



Kohn-Sham Hamiltonian (in crystals)

Kohn-Sham energies & periodic Bloch orbitals:

ϵjk, |ψjk⟩ = eik·r|ujk⟩

Kohn-Sham Hamiltonian with a “flux”:

e−ik·rHκeik·r =
1

2m

[
p +

e
c

A(r) + ℏk + ℏκ
]2
+ VKS(r),

Conversion recipe Many-body −→ Kohn-Sham:
1 Make the quantity intensive (when needed)
2 Replace κ-derivatives with k-derivatives
3 Replace |Ψ0⟩ with |ujk⟩
4 Sum over j and integrate on the Fermi volume

(BZ in insulators)
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Definition

Key entries for infrared absorption in insulating solids
& for charge transport in liquid electrolytes

Z ∗
s,αβ = derivative of the macroscopic polarization P

wrt nuclear displacement of nucleus s

Z ∗
s,αβ =

Ld

e
∂Pα

∂Rs,β

Nuclei adiabatically displaced in time:

Z ∗
s,αβ =

Ld

e
∂Pα/∂t
∂Rs,β/∂t

= Zsδαβ +
Ld

e
jα(t)
Ṙs,β



Berry-curvature formula

Adiabatic Hellmann-Feynman:

Z ∗
s,αβ = Zsδαβ +

Ld

e
jα(t)
Ṙs,β

Many-body = Zsδαβ +Ω(κα,Rs,β)

∣∣∣∣
κ=0,Rs

Kohn-Sham = Zsδαβ + Vcell

∑
j

∫
BZ

dk
(2π)d fj(k) Ω̃j(kα,Rs,β)

Single-particle Berry curvature of band j :
(King-Smith & Vanderbilt, 1993)

Ω̃j(kα,Rs,β) = −2 Im ⟨∂kαujk|∂Rsβujk⟩



Acoustic sum rule

Born charge as a single-point Berry curvature:

Z ∗
s,αβ = Zsδαβ +Ω(κα,Rs,β)

Holds as it stands for insulators and metals
where P does not makes sense
where the Z ∗

s,αβ are unrelated to infrared absorption

A rigid translation of the lattice: Rs(t) = u(t), any s

jα(t) =

(∑
s

Z ∗
s,αβ

)
u̇β,s

Acoustic sum rule (Pick, Cohen, & Martin 1970):∑
s

Z ∗
s,αβ = 0 in insulators only!
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Exact vs. Kohn-Sham

Do the exact and Kohn-Sham Z ∗
s,αβ coincide?

YES in molecules
NO in solids!

Why?
The famous G3 (Gonze-Ghosez-Godby) 1995 paper
Is the discrepancy a serious drawback?

A problem of semantics:
So-called adiabatic TDDFT does not access
adiabatic response properties!
One needs nonadiabatic TDDFT or (even better) TDCDFT !
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Free acceleration in metals

Classical Drude theory (A.D. 1900), dissipationless limit

j(t) = e2 n
m
E t

n = N/Ld conduction-electron density
n/m inverse inertia of the many-electron system

Fourier transform (singular):

j(ω) = σ(Drude)(ω)E(ω)

Enforcing causality (Ashcroft-Mermin, Ch. 1):

σ(Drude)(ω) = D
[
δ(ω) +

i
πω

]
, D =

πe2n
m
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Enforcing causality (Ashcroft-Mermin, Ch. 1):

σ(Drude)(ω) = D
[
δ(ω) +

i
πω

]
, D =

πe2n
m



Electronic current induced by a dc field

Adiabatic Hellmann-Feynman once more:

jα(t) = − e
ℏLd

[
∂καE0 − ℏΩ(κα, λ)λ̇(t)

]

Identify λ(t) −→ κβ(t) = −e
ℏEβ t

Longitudinal & transverse currents:

jα(t) = − e
ℏLd ∂καE0 +

e2

Ld Ω(κα, κβ)Eβ

Ω(κα, κβ) = 0 in a T-invariant system



Longitudinal response

In a dc field the electrons undergo free acceleration:

∂t jα(t) = e2 n∗
αβ

m
Eβ

Longitudinal current

jα(t) = − e
ℏLd ∂καE0

∂t jα(t) = − e
ℏLd

∂2E0

∂κα∂t
= − e

ℏLd
∂2E0

∂κα∂κβ

κ̇β =
e2

ℏ2Ld
∂2E0

∂κα∂κβ

Eβ

Inverse inertia:
n∗
αβ

m
=

1
ℏ2Ld

∂2E0

∂κα∂κβ
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Drude weight (a.k.a. adiabatic charge stiffness)

Fourier transform:

jα(t) =
e2

ℏ2Ld
∂2E0

∂κα∂κβ

Eβt jα(ω) = σ
(Drude)
αβ (ω)Eβ(ω)

Enforcing causality:

σ
(Drude)
αβ (ω) = Dαβ

[
δ(ω) +

i
πω

]
The famous Kohn’s formula (1964):

Dαβ =
πe2

m
n∗
αβ =

πe2

ℏ2Ld
∂2E0

∂κα∂κβ



Kohn-Sham optical conductivity

jα(ω) = σαβ(ω)Eβ(ω), σαβ(ω) = σ
(+)
αβ (ω) + σ

(−)
αβ (ω)

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i
πω

]
+ σ

(regular)
αβ (ω)

= σ
(Drude)
αβ (ω) + σ

(regular)
αβ (ω)

Adiabatic TDDFT:

Filled bands don’t contribute. Kohn’s formula yields:

Dαβ =
2πe2

ℏ2

∫
BZ

dk
(2π)3 f (ϵF − ϵk)

∂2ϵk
∂kα∂kβ

σ
(regular)
αβ (ω) is nonadiabatic: interband Kubo formula



Fermi-volume & Fermi-surface formulæ for Dαβ

Integrating by parts

Dαβ =
2πe2

ℏ2

∫
BZ

dk
(2π)3 f (ϵF − ϵk)

∂2ϵk
∂kα∂kβ

= −2πe2

ℏ2

∫
BZ

dk
(2π)3 f ′(ϵk)

∂ϵk
∂kα

∂ϵk
∂kβ

(2)

Velocity of a band electron

vk,α =
1
ℏ
∂ϵk
∂kα

→ Dαβ = −2πe2
∫

BZ

dk
(2π)3 f ′(ϵk) vk,αvk,β

In agreement with Landau’s Fermi-liquid theory:
Intraband quasiparticle property
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Experiment: Drude term & regular term

σ
(Drude)
αβ (ω) Intraband from Kohn’s adiabatic formula

Main issue:
Is it broadened by extrinsic or intrinsic effects?

σ
(regular)
αβ (ω) Interband from Kubo formula

σ(ω) in Rubidium

Dots: experiment

Red: Drude

Blue: Regular

Solid: sum of the two terms



Drude peak broadening: Extrinsic vs. intrinsic

Kohn’s prescription:
κ-derivatives taken first, L → ∞ limit after
Response causal but nondissipative at any L

σ
(Drude)
αβ (ω) = lim

η→0+

Dαβ

π

i
ω + iη

= Dαβ

[
δ(ω) +

i
πω

]

DFT: Theory of the Inhomogeneous Electron Gas
L → ∞ limit first: k becomes a continuous variable
The crystalline potential is switched on afterwards
Memory-dependent functionals:
The dc response becomes nonadiabatic & dissipative

Dissipation (a.k.a. Joule heating) with no relaxation time:
Giuliani-Vignale:
An infinite system is its own thermostat
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Dreyer-Coh-Stengel sum rule (2022)

Acoustic sum rule (Pick, Cohen, & Martin 1970):∑
s

Z ∗
s,αβ = 0 in insulators only

In metals the electrons are left behind, j(t) ̸= 0
In the reference frame of the nuclei the current is carried
by the electrons, all moving with velocity −u̇:

jα(t) = e n∗
αβ u̇β =

e
Ld

(∑
s

Z ∗
s,αβ

)
u̇β

Outstanding message:
A macroscopic E field and a rigid translation of the lattice
probe the same material property: n∗

αβ
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Breaking time-reversal symmetry

Modified Hamiltonian: A(micro)(r) intrinsic T-breaking term

Ĥκ =
1

2m

N∑
i=1

[
pi +

e
c

A(micro)(ri) + ℏκ
]2

+ V̂

The adiabatic current, again:

jα(t) = − e
ℏLd ∂κα

E0 +
e2

Ld Ω(κα, κβ)Eβ

Anomalous Hall conductivity (intrinsic, or geometric):

j(Hall)
α = σ

(−)
αβ Eβ −→ σ

(−)
αβ =

e2

Ld Ω(κα, κβ)



AHC as a single-point Berry curvature

σ
(−)
αβ = − e2

ℏLd Ω(κα, κβ)

Curvature evaluated at κ = 0
Very general: 2d and 3d, metals and insulators
Topological for a 2d insulator
Extrinsic effects:

Very relevant in metals
Nonexisting in the topological case
For noninteracting electrons (Kohn-Sham) it coincides with
the standard Fermi-volume integral in the L → ∞ limit



QAHE (quantum anomalous Hall effect)

σ
(−)
xy = −e2

ℏ
× 1

L2Ω(κx , κy )

∣∣∣∣
κ=0

,
A universal constant × a dimensionless quantity
Quantized in the insulating case

Topological quantization for L → ∞, not for finite L

h
e2σ

(−)
xy = lim

L→∞

2π
L2 Ω(κx , κy )

∣∣∣∣
κ=0

= C1 ∈ Z

Natural resistance unit:
1 klitzing = h/e2 = 25812.807557(18) ohm
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An early simulation
D. Ceresoli & R. Resta, Phys. Rev. B 76, 012405 (2007)

Single-point Berry curvature

Haldane (noninteracting)
model Hamiltonian

Convergence:

2π
L2 Ω(κx , κy )

∣∣∣∣
κ=0

→ C1

proach yields an error of 7!10−3 for L=6, and smaller than
10−5 for L=32. We are showing here the results for a " value
well inside the C=1 domain. We also find that the conver-
gence worsens near the transition point !sin "!=1/"3.

Numerical evaluation of Chern numbers is a staple tool in
the theory of the quantum Hall effect, where supercells are
routinely used to account for disorder and/or electron-
electron interaction. However, even in a supercell frame-
work, a discrete reciprocal mesh #or equivalently a mesh of
phase boundary conditions$ has been invariably used in the
algorithms implemented so far.19–22 Here we have shown
that, provided the supercell is large enough, no mesh is
needed: the Chern number can be evaluated from a single
Hamiltonian diagonalization #with a single choice of bound-
ary condition$. The rationale behind our finding is simple:
the Chern number is by definition an integral, whose integra-
tion domain shrinks to a single point in the limit of a large
supercell.

The single-point orbital magnetization M of the model
system, computed from Eqs. #3$ and #10$ as a function of the

supercell size, is shown in Fig. 3, again for "=0.4#. In this
case the analytical-derivative approach converges definitely
better, showing, in fact, the same kind of relative error as the
Chern number, while the numerical-derivative approach
proves somewhat less accurate.

In conclusion, we provide here the key formulas for com-
puting the orbital magnetization of a condensed system from
first principles in a supercell framework and using a single k
point, to be used as they stand within Car-Parrinello simula-
tions in an environment which breaks time-reversal symme-
try. We have validated the present formulas on a simple tight-
binding model Hamiltonian in two dimensions, and checked
their #fast$ convergence with the supercell size. Last but not
the least, we have proved that even the Chern number—
which has a paramount relevance in quantum-Hall-effect
simulations—can be computed from a single Hamiltonian
diagonalization, and converges fast with the supercell size.
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APPENDIX: MORE GENERAL BOUNDARY CONDITIONS

The single-point formulas discussed so far are based on
Eq. #7$, with $=1, and eventually require diagonalizing the
Hamiltonian at the % point only, ergo solving the
Schrödinger equation with periodic boundary conditions on
the supercell. This is by far the most common choice among
Car-Parrinello practitioners, although other choices are pos-
sible.

In order to extend our single-point formulas to more gen-
eral boundary conditions it would be enough to switch from
Eq. #7$ #at $=1$ to alternative expressions for the directional

t1

+∆
−∆

t2 ie φ

FIG. 1. Four unit cells of the Haldane model. Filled #open$
circles denote sites with E0=−& #+&$. Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei". Arrows indicate sign of the phase " for second-
neighbor hopping.
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FIG. 2. Convergence of the Chern number as a function of the
supercell size, evaluated using the single-point formulas #see text$,
for the Haldane model Hamiltonian at "=0.4#. The largest L cor-
responds to 2048 sites.
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FIG. 3. Convergence of the orbital magnetization as a function
of the supercell size, evaluated using the single-point formulas #see
text$, for the Haldane model Hamiltonian at "=0.4#, The largest L
corresponds to 2048 sites.
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Many-body Chern number
Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

The mean-value theorem:

4π2

L2 Ω(κx , κy )

∣∣∣∣
κ=0

≃
∫ 2π

L

0
dκx

∫ 2π
L

0
dκy Ω(κx , κy )

Integral over a torus in the insulating case only
Quantized for any L 2π/L

2π/L

κx

κy

2π
L2 Ω(κx , κy )

∣∣∣∣
κ=0

≃ 1
2π

∫ 2π
L

0
dκx

∫ 2π
L

0
dκy Ω(κx , κy ) = C1



Outline

1 Quantum Geometry in a nutshell

2 Geometry & adiabatic evolution of an observable

3 Many-electron Hamiltonian & KS Hamiltonian

4 Born effective charges (insulators & metals)

5 Drude weight

6 Anomalous Hall conductivity

7 Conclusions



Outlook

The Berry curvature:

The main entity addressing adiabatic quantum transport
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Adiabatic in many-body setting vs. DFT-adiabatic
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