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Quantum Geometry in a nutshell



A simple “curved space”

An ant crawling on a 2D surface (space):
How can it discover whether it is flat or curved?



Theorema egregium (Gauss, 1827)
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Theorema egregium: y :?{ do = / do K mod 27
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K : Gaussian curvature



Holonomy

Gaussian curvature -
of a spherical surface K = 1/R? <\

\

Integrated over an octant: \
1 \K>“/J
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Holonomy

Gaussian curvature -
of a spherical surface K = 1/R? ~\

Integrated over an octant: \ \
N
™ \ ,

1 1
— _ x47R%® x — = —
/szK 8>< T XRZ 5

m Holonomy: Angular mismatch for parallel transport:

vz/daK mod 27
pX



Berry curvature

m (k, ) are the real coordinates of a 2D space
m The time-independent Hamiltonian depends on (x, \)
m |V,) and E, also depend on (k, A)



Berry curvature

m (k, ) are the real coordinates of a 2D space
m The time-independent Hamiltonian depends on (x, \)
m |V,) and E, also depend on (k, A)

m Definition:

Q(/ﬁ:, )\) = I'(<a,§\|/0‘a,\\|fo> - <8AWO‘8,§W0>)
= —2Im <8,£WO’8)\\U0>

m Introduced in the 1980s independently
by M. Berry and by D. Thouless & coworkers



Berry phase

Holonomy:
m In differential geometry: the angle of a vector
m In quantum geometry: the phase angle of a state vector

m Angular mismatch on a/closed path: the Berry phase ~
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Berry phase

Holonomy:
m In differential geometry: the angle of a vector
m In quantum geometry: the phase angle of a state vector

m Angular mismatch on a/closed path: the Berry phase ~

The Berry curvature is the analogue of the Gaussian curvature
m In differential geometry v = §,- d¢ = [ do K
m In quantum geometry v = §,- d¢ = [+ drd) Q(k, )
m Y domain included by the closed path 9%

Berry curvature = Berry phase per unit area



Berry connection & Berry curvature

m Infinitesimal phase difference:

do = —ImIn (Wo .\ |[Wo xiam rian)



Berry connection & Berry curvature

m Infinitesimal phase difference:

do = —ImIn (Wo .\ |[Wo xiam rian)

m Berry connection (gauge

do = Wo|0:Wo)dk + (Vo |0\ WE) AN
A.ds + AydX

dependent)

m Berry curvature (gauge

Q(I{, )\) = 8)\ a

invariant)
— 8HAA = —2 | <8H\U0|({9>\W0>

m Berry phase:

'y:fgzdd):/zdfid/\ Q(x, )



Alternative expressions

m Berry curvature:

Qr,A) = i({0xW0|0xWo) — (0rV0|0xV0))
—21Im <8NW0|8/\W0>;

m Also expressed as a Kubo formula:

(Wo| B H|W ) (W 4]0 H|Wo)

Q(r,A) = -2Im) (E, _E)2

n#0

m Also expressed as a trace:

Q(r,\) = iTr {P[8.P,0\P]}, P = W) (W
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Geometry & adiabatic evolution of an observable



Time-dependent Hellmann-Feynman

m The time-independent operator (:) can be written
as an Hamiltonian derivative: O = 0. H

m For time-independent A\: Hellmann-Feynman
O = (Vo| O|Vg) = 0, Ep
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Time-dependent Hellmann-Feynman

m The time-independent operator (:) can be written
as an Hamiltonian derivative: O = 0. H

m For time-independent A\: Hellmann-Feynman
O = (Vo| O|Vg) = 0, Ep

m When \ — \(1), then A — Ay, E(t) = (V| Ay |vy)
OE(t) = (Wi O + (0:We| He [W1) + (W] Ay 10, Vs)
O(t) + in((0xV|Wt) — (V|0KkVy)) (1)

A

m Exact time-evolution of (O(t)):
O(t) = DE(t) — ih((0.W|Wy) — (W|0rWy))



Adiabatic Hellmann-Feynman

A

m Exact time-evolution of (O(1)):
O(t) = 0. E(t) — in((0:W[Vy) — (W|0rWy))

Initial condition: |W;) = |Wg) att =0



Adiabatic Hellmann-Feynman

A

m Exact time-evolution of (O(1)):
O(t) = DuE(t) — ({0 W[We) — (W|0rVy))
Initial condition: |W;) = |Wg) att =0
m Kato’s theorem (1950):
“when the change of the Hamiltonian in time is made infinitely
slow, the system, when started from a stationary state, passes
through the corresponding stationary states for all times”.

m All quantities replaced with their instantaneous value at A\ = \(t)

O(t) = 0nEo— il((0:Vo|0rWo) — (0xWo|drWo))A(t)
= 0.E—hQ(r, M) A1)



Adiabatic Hellmann-Feynman

A

m Exact time-evolution of (O(1)):
O(t) = 0. E(t) — ih((0.W[¥r) — (W]9rWy))
Initial condition: |W;) = |Wg) att =0
m Kato’s theorem (1950):
“when the change of the Hamiltonian in time is made infinitely

slow, the system, when started from a stationary state, passes
through the corresponding stationary states for all times”.

m All quantities replaced with their instantaneous value at A\ = \(t)

O(t) = 0nEo— il((0:Vo|0rWo) — (0xWo|drWo))A(t)

= 0.E—hQ(r, M) A1)
nongeometric geometric
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Beyond Hellmann-Feynman

m When O = 9,.H:
O(t) = 0.Eo — hQ(k, \) A1)

m When O cannot be written as an Hamiltonian derivative

Wo| OW,) (W03 W)
A(t
(B~ E,)? (1)

O(t) = (Wo| O|Wo) +2hIm <
n#0

m Both expressions exact in the adiabatic limit:

m They differ from the exact evolution by terms of order A
m If the evolution is harmonic, they are exact to order w and
neglect terms of order w?



Time-reversal invariant systems

Wo|O[Wn) (WalOrH|Wo) |

O(t) = (Wo| O [Wo) +2hIm Y < B E)2 A(t)

n#0

m When the system is time-reversal invariant

m Hamiltonian & eigenfunctions real



Time-reversal invariant systems

(WolO|W ) (W, |05 H|Wo)
E-Ey O

O(t) = (Wo| O [Wo) +2hIm Y
n#0

m When the system is time-reversal invariant

m Hamiltonian & eigenfunctions real

m For a real O: Only the first term is nonvanishing
(like e.g. the electron density)
m For an imaginary O: Only the second term is nonvanishing
(like e.g. the current densﬂy)
m For an imaginary O = 9,.H:
o(t)

W = —hQ(k, \) (Adiabatic Hellmann-Feynman)
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Many-electron Hamiltonian & KS Hamiltonian



Kohn’s (1964) Hamiltonian

Macroscopically homogeneous system
N electrons in a cubic box (supercell) of volume L4
v one-body and two-body potentials

Time-reversal invariant af x = 0

Born-von-Karman PBCs:
The coordinates r;, are actually angles ¢, = 27, /L



Kohn’s (1964) Hamiltonian

Macroscopically homogeneous system
N electrons in a cubic box (supercell) of volume L4
v one-body and two-body potentials

Time-reversal invariant af x = 0

Born-von-Karman PBCs:
The coordinates r;, are actually angles ¢, = 27, /L

m x-derivatives taken first, L — oo limit after:
This warrants adiabaticity even in metals
CAVEAT: DFT implicitly takes the limit in a different order!



The k parameter

N
1 5 o
Hk = >m ;1 [P + hk]” +V

m x “flux” or “twist” (dimensions: inverse length)

m Equivalent to a vector potential
e .
hk = EA r-independent

m Two different cases

t-independent «: a pure gauge-transformation
t-dependent k: macroscopic field

E(t) = — (D)



Adiabatic current density (many-body formula)

N A
Zp,+fm A

m Macroscopic current-density operator:

~

N
N e e
/a Ld Va de i§_1 pla hLd 6H(y K
m Adiabatic Hellmann-Feynman:

jalt) = =75 [0 Bo — 1 Q0ka, DAQ)
nongeometric geometric



Kohn-Sham Hamiltonian (in crystals)

m Kohn-Sham energies & periodic Bloch orbitals:
€jks i) = ™| uj)
m Kohn-Sham Hamiltonian with a “flux”:

_. . | . 1 e 2
e ik anelkl’ — % p+ EA(r‘) + hk + hl‘&] + VKS(r)7



Kohn-Sham Hamiltonian (in crystals)

m Kohn-Sham energies & periodic Bloch orbitals:
€jks i) = ™| uj)

m Kohn-Sham Hamiltonian with a “flux”:

_. . | . 1 e 2
e ik anelkl’ — % p+ EA(r‘) + hk + hlﬂ‘/] + VKS(r)7

m Conversion recipe Many-body — Kohn-Sham:
Make the quantity intensive (when needed)
Replace k-derivatives with k-derivatives
Replace |Wg) with |ujk)

Sum over j and integrate on the Fermi volume
(BZ in insulators)



Outline

Born effective charges (insulators & metals)



Definition

m Key entries for infrared absorption in insulating solids
& for charge transport in liquid electrolytes

m Z; 5 = derivative of the macroscopic polarization P
wrt nuclear displacement of nucleus s

m Nuclei adiabatically displaced in time:

L9 oP, /ot L9 (t
« / :ZséaBJri/_()

saf = "g HRs 5/0t e Ry




Berry-curvature formula

m Adiabatic Hellmann-Feynman:

LY j.(t)
g = Zsbap + —Tt
s,a3 S e Rs.ﬂ
Many-body = Zs0ap + Qka, Rs,ﬂ)‘
K=0,Rs
Kohn-Sh ) V. dkf-k~'ka’
onn-osham = £s0qp + 0611; BZ(ZT)C”() /( as s,ﬁ)

m Single-particle Berry curvature of band j:
(King-Smith & Vanderbilt, 1993)

(Ko, Rs,p) = —21m (g, Uk |OR,; Ujk)



Acoustic sum rule

m Born charge as a single-point Berry curvature:
Z:,Oéﬂ = ZS(SCMIB + Q(l‘ia, RS,,B)

m Holds as it stands for insulators and metals
m where P does not makes sense

m where the Z; , ; are unrelated to infrared absorption
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m Born charge as a single-point Berry curvature:
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m A rigid translation of the lattice: Rs(t) = u(f), any s
ja(t) = (Z Zs*,oz,8> 0,373
s
m Acoustic sum rule (Pick, Cohen, & Martin 1970):

Zz;aﬁ =0
S



Acoustic sum rule

m Born charge as a single-point Berry curvature:
Z:,Oéﬂ = ZS(SCMIB + Q(l‘ia, RS,,B)
m Holds as it stands for insulators and metals

m where P does not makes sense
m where the Z; , ; are unrelated to infrared absorption

m A rigid translation of the lattice: Rs(t) = u(f), any s
ja(t) = (Z Zs*,oz,3> 0,373
s
m Acoustic sum rule (Pick, Cohen, & Martin 1970):

ZZ;"QB =0 in insulators only!
S
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m YES in molecules
m NO in solids!
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Exact vs. Kohn-Sham

m Do the exact and Kohn-Sham Z;  ; coincide?

m YES in molecules
m NO in solids!

m Why?
m The famous G® (Gonze-Ghosez-Godby) 1995 paper
m Is the discrepancy a serious drawback?

m A problem of semantics:

m So-called adiabatic TDDFT does not access
adiabatic response properties!

m One needs nonadiabatic TDDFT or (even better) TDCDFT !



Outline

Drude weight



Free acceleration in metals

m Classical Drude theory (A.D. 1900), dissipationless limit
oy 2N
j(t)y=e¢ mst

m n = N/L% conduction-electron density
m n/minverse inertia of the many-electron system



Free acceleration in metals

Classical Drude theory (A.D. 1900), dissipationless limit

Y
j(t)y=e¢ mst

n = N/L9 conduction-electron density
n/m inverse inertia of the many-electron system

Fourier transform (singular):

i(w) = 0P (w)E (W)

Enforcing causality (Ashcroft-Mermin, Ch. 1):

H 2

W m



Electronic current induced by a dc field

m Adiabatic Hellmann-Feynman once more:

() = =713 [a,mEo RQ(Ke, A)A(D)

m Identify A(t) — rg(t) = —FEst
m Longitudinal & transverse currents:

2

. E
8)0+L

® Q(kq, k) = 0in a T-invariant system

Q(ka, kp)Es



Longitudinal response

m In a dc field the electrons undergo free acceleration:

Difu(t) = €2 O‘ﬁg
m Longitudinal current

]a(t) = hLd 8/'@0( EO

e 82E0

Otfa(t) = T hL Onaot



Longitudinal response

m In a dc field the electrons undergo free acceleration:

Difu(t) = €2 O‘ﬁg
m Longitudinal current

Jo(t) = hLda’“aEO
. e PE e PR . & PL
atja(t) = —Wm = _Wanaaﬂﬁ Rkg = r2Ld aﬁaanﬁ gﬁ

m Inverse inertia:
M 1 9°E
m h2L9 9y, 0,

kg



Drude weight (a.k.a. adiabatic charge stiffness)

m Fourier transform:

: e 82E0 : (Drude)
Jo(t) = ngﬁt Ja(w) = 0g5 " (w)Es(w)

m Enforcing causality:

Uél%rude)(w) = D,p [5(w) 4 I}

m The famous Kohn'’s formula (1964):

-a 1e® 0%Ey

*

Das = " Mas = G214, o).



Kohn-Sham optical conductivity

Ja(@) = Tas(@)Ep(w),  0ap(w) =045 (W) + 0l ()

O'((xz)(w) = Dug |:5(UJ)+I:| + g;gular)(w)

J(Drude( )+ (regular)( )

m Adiabatic TDDFT:

m Filled bands don’t contribute. Kohn’s formula yields:

ore® [ dk e
Das = =2 /BZ @y F Wk

[ ag;gula”(w) is nonadiabatic: interband Kubo formula



Fermi-volume & Fermi-surface formulee for D,

m Integrating by parts

2re? dk 0%ex
D.,s = f — _— *
A 12 /BZ 2y F ek)akaﬁkg
2re? dk p Oek Oek

- T2 /BZ (27)3 /(E")akaaTB (2)



Fermi-volume & Fermi-surface formulee for D,

m Integrating by parts
2ne? dk 0%ex
D.s = flep — k) =1
aB 12 /BZ 2y F ek)akaﬁkg
_ 2né? dk | Oek Oeg
T TR /BZ @ne’ (ek)akaaTB @)

m Velocity of a band electron

o 1 aEk . P)
Vk,oz = ﬁ% — Daﬁ = —27Te /BZ (27(_)3

/
7a K
f (ek) Vk.a Yk 8



Fermi-volume & Fermi-surface formulee for D,

m Integrating by parts

27 e? dk 82ex
— Flep — e ) ——K
Das 12 /BZ 2y F ek)akaakﬁ
2re? dk Oek Oek
E— : I 2
12 /BZ @ne’ () 7k okg @)

m Velocity of a band electron

1 D _ o2 Ik,
Wo gk~ Do 2@ | pfle)wons

m In agreement with Landau’s Fermi-liquid theory:
Intraband quasiparticle property



Experiment: Drude term & regular term

n aggr“de) (w) Intraband from Kohn's adiabatic formula
Main issue:
Is it broadened by extrinsic or intrinsic effects?

u aggg‘”ar) (w) Interband from Kubo formula

L5

/ RUBIDIUM

o(w) in Rubidium

ec)

m Dots: experiment
m Red: Drude

m Blue: Regular

o (W) (10" s

m Solid: sum of the two terms



Drude peak broadening: Extrinsic vs. intrinsic

m Kohn'’s prescription:

m x-derivatives taken first, L — oo limit after
m Response causal but nondissipative at any L

G_(Drude)(w) — ||m DOéﬁ I
b n—0t T w4+ in

= Duy [de) + |
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m DFT: Theory of the Inhomogeneous Electron Gas
m L — oo limit first: k becomes a continuous variable
m The crystalline potential is switched on afterwards
m Memory-dependent functionals:
The dc response becomes nonadiabatic & dissipative



Drude peak broadening: Extrinsic vs. intrinsic

m Kohn'’s prescription:
m x-derivatives taken first, L — oo limit after
m Response causal but nondissipative at any L

O_(Drude)(w) — ||m Dozﬁ I
af n—0t T w4+ in

= Duy [de) + |

m DFT: Theory of the Inhomogeneous Electron Gas
m L — oo limit first: k becomes a continuous variable
m The crystalline potential is switched on afterwards
m Memory-dependent functionals:
The dc response becomes nonadiabatic & dissipative

m Dissipation (a.k.a. Joule heating) with no relaxation time:
m Giuliani-Vignale:
An infinite system is its own thermostat



Dreyer-Coh-Stengel sum rule (2022)

m Acoustic sum rule (Pick, Cohen, & Martin 1970):

Z S op = in insulators only

m In metals the electrons are left behind, j() # 0

m In the reference frame of the nuclei the current is carried
by the electrons, all moving with velocity —u:

, . - e . .
ja(t) = enaﬁuﬁ = F (Z ZS,aB) Uﬁ
s



Dreyer-Coh-Stengel sum rule (2022)

m Acoustic sum rule (Pick, Cohen, & Martin 1970):

Z S op = in insulators only

m In metals the electrons are left behind, j() # 0

m In the reference frame of the nuclei the current is carried
by the electrons, all moving with velocity —u:

. . e : m .
Ja(t) = €N, 3Us = 75 (Z Z;,a5> Us = — 5 Daslls
S

m Outstanding message:

A macroscopic £ field and a rigid translation of the lattice
probe the same material property: 1}, ;
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B Anomalous Hall conductivity



Breaking time-reversal symmetry

m Modified Hamiltonian: A(™<)(r) intrinsic T-breaking term

N
Ao =5->" [p,- + SA(‘“iC“’)(r,-) + hnr +V

i=1

m The adiabatic current, again:

2

ja(t) = hLdaRa E() + L Q(f{a, Kl[;)&g

m Anomalous Hall conductivity (intrinsic, or geometric):

| - - ez
I&Hall) _ 0((15)55 N 0&5) - FQ(Ifo“ Kg)



AHC as a single-point Berry curvature

) €

%ap = ~hL@

Q(Kas kp)

m Curvature evaluated at k = 0
m Very general: 2d and 3d, metals and insulators
m Topological for a 2d insulator

m Extrinsic effects:

m Very relevant in metals

m Nonexisting in the topological case

m For noninteracting electrons (Kohn-Sham) it coincides with
the standard Fermi-volume integral in the L — oo limit



QAHE (quantum anomalous Hall effect)

2 1

Oxy’ = —— X 75Q(kx, ky)

hoo L2 K=0

m A universal constant x a dimensionless quantity
m Quantized in the insulating case



QAHE (quantum anomalous Hall effect)

2 1

Oxy’ = —— X 75Q(kx, ky)

hoo L2 K=0

m A universal constant x a dimensionless quantity
m Quantized in the insulating case

m Topological quantization for L — oo, not for finite L

h . 2m
—0x’ = lim —Q(kx, ky) = Celk

m Natural resistance unit:
1 klitzing = h/€? = 25812.807557(18) ohm



An early simulation

D. Ceresoli & R. Resta, Phys. Rev. B 76, 012405 (2007)

Single-point Berry curvature

Haldane (noninteracting)
model Hamiltonian

Convergence:

2
T2Unxry)| = Cy
K=0

Chern number

1.02

1.00

0.98

0.96

0.94

0.92

numerical —e—
analytical —e—
exact

0.05 0.1 0.15
1L

0.2



Many-body Chern number

Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372 (1985)

21/

The mean-value theorem:

472 F £3
?Q(/{me) o~ / dlix/ dky Qkx, Ky)
=0 0 0
Integral over a torus in the insulating case only Kg‘
2n/L

Quantized for any L

2
2

1

Q(kx, Ky) ~ 5 dnx/ dky Q(kx, ky) = C

K=0
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m A subtle issue:
Adiabatic in many-body setting vs. DFT-adiabatic
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Outlook

m The Berry curvature:

m The main entity addressing adiabatic quantum transport
m Independently introduced
by Berry and by Thouless in the 1980s

m Geometrical observables (in this talk):

m Born effective charges, dc conductivity
(longitudinal & transverse)

m Here: compact many-body formulae
(conversion into KS formulee is straightforward)

m A subtle issue:
Adiabatic in many-body setting vs. DFT-adiabatic

THANK YOU FOR YOUR ATTENTION !
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