

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

An Unofficial DESI Analysis

Turning 5 million galaxies into 3 numbers...

Oliver H. E. Philcox

Junior Fellow @ Simons Foundation Postdoc @ Columbia Assistant Prof @ Stanford [from September]

1

Acknowledgements

Reanalyzing DESI DR1: 1. ACDM Constraints from the Power Spectrum & Bispectrum

Anton Chudaykin,^{1,*} Mikhail M. Ivanov,^{2,3,†} and Oliver H.E. Philcox^{4,5,6,7,‡}

arXiv:2507.13433

Additional thanks

- "East Coast" team: Marko Simonovic, Matias Zaldarriaga, Giovanni Cabass, Kazu Akitsu, Stephen Chen
- "West Coast" team: Guido D'Amico, Leonardo Senatore, Pierre Zhang, Matt Lewandowski

and, of course, the **DESI collaboration!**

Galaxy Clustering Experiments

The Past

• BOSS [2009 - 2014]

The Present

- **DESI** [2021 2026]
- Euclid [2024 2030]

The Nearly

- SphereX [2025 2027]
- Rubin [2025 2035]
- Roman [launches 2027]

The Future

• Spec-S5? [planning]

SPHEREX

Roman

3

Euclid

Rubin

What Do These Probe?

Major Goal: map the distribution of galaxies, $\delta_{o}(\mathbf{X}, \mathbf{z})$ across space and time

- Surveys range from low-**redshift** ($z \leq 0.1$) to high-redshift ($z \leq 3$)
 - *Low-z* magnitude limited
 - High-z large volume
- The surveys range from **ultra-large** to **ultra-deep**
 - Large GR and non-Gaussianity
 - Deep Non-linearities and structure formation

Each blob is a 3D galaxy position!

How to Model A Galaxy Survey

- Initial Conditions
 - Gaussian, with $\zeta \sim \mathcal{N}(0, P_{\zeta})$
 - (Almost) **Scale-invariant**, with $P_{\mathcal{L}}(k) \sim A_s k^{n_s 4}$
 - Adiabatic all fields have the same initial conditions!
- Early Universe Physics
 - Standard expansion history including matter-radiation equality $k_{eq} \sim \Omega_m H_0$
 - Recombination physics, including sound horizon $r_d \sim \Omega_b H_0^2$, $\Omega_m H_0^2$, ...
- Linear Growth
 - Background $-H(z), D_A(z)$ set by $H_0, \Omega_m, \Omega_r, \Omega_{\Lambda}$
 - Perturbations $D(z), f(z) \sim \Omega_m(z)^{\gamma}$ set by $\Omega_m, \Omega_r, \Omega_{\Lambda} + GR$
- Non-Linear Clustering
 - Collapse of **dark matter** into bound structures
 - Formation of **galaxies** around dark matter halos

This is the hard bit!

Initial Conditions

Early Universe Physics

Linear Growth

Non-Linear **Clustering**

How to Model A Galaxy Survey – beyond ACDM

- Initial Conditions
 - Gaussian, with $\zeta \sim \mathcal{N}(0, P_{\zeta})$
 - (Almost) **Scale-invariant**, with $P_{\mathcal{L}}(k) \sim A_s k^{n_s 4}$
 - Adiabatic all fields have the same initial conditions!
- Early Universe Physics
 - Standard expansion history including matter-radiation equality $k_{eq} \sim \Omega_m H_0$
 - Recombination physics, including sound horizon $r_d \sim \Omega_b H_0^2$, $\Omega_m H_0^2$, ...
- Linear Growth
 - Background $-H(z), D_A(z)$ set by $H_0, \Omega_m, \Omega_r, \Omega_{\Lambda}$
 - Perturbations $-D(z), f(z) \sim \Omega_m(z)^{\gamma}$ set by $\Omega_m, \Omega_r, \Omega_{\Lambda} + GR$
- Non-Linear Clustering
 - Collapse of **dark matter** into bound structures
 - Formation of **galaxies** around dark matter halos

Modified Inflation

Modified Early Universe

Modified Expansion History

Modified Structure Formation

Initial Conditions

Early Universe Physics

Modeling Non-Linearities

Step 1: predict the distribution of dark matter $\delta_m(\mathbf{x}, z)$

- This can be done either analytically or numerically
- Most modern analyses use the "Effective Field Theory of Large-Scale Structure"
 - This smoothes ("coarse-grains") the dark matter on some scale $R \gtrsim 10 \,\mathrm{Mpc}$ $\delta_m \rightarrow \delta_m \star \operatorname{smoothing}[R]$
 - We can compute δ_m as a **perturbation series** in the initial conditions

$$\delta_m \sim K_1 \zeta + \int K_2 \zeta^2 + \int \int K_3$$

- The coupling kernels are set by gravity
- Free **counterterms** account for **small-scale** physics ("renormalization")
- Alternative run N-body simulations and emulate the statistics of interest

 $\zeta^3 + \cdots$

Cabass+, **Philcox**+, Chen+, d'Amico+, Assassi, Zaldarriaga, Simonovic, Senatore, White, Castorina, Vlah,...

Modeling Non-Linearities

Step 2: predict the distribution of galaxies $\delta_{g}[\delta_{m}](\mathbf{x}, z)$

- This can be done **analytically**, **semi-analytically** or **numerically**
- Effective Field Theory approach:
 - Compute δ_g as a **perturbation series** in the dark matter density, δ_m
 - Use symmetries to account for any galaxy formation effects [e.g., homogeneity, isotropy, Galilean invariance]:

 $\delta_g = b_1 \delta + b_2 \delta^2 + b_s s_{ii} s^{ij} + b_{\nabla} \nabla^2 \delta + \cdots$

- The **bias parameters** encode galaxy formation physics
- This is **robust** but limited to large-scales \Rightarrow loss of information
- Can model δ_m either from **theory** or **simulations** (Hybrid EFT)
- **Alternatives:**
 - Post-process simulations to add galaxies, with an HOD or Semi-Analytic Model
 - Perform a full hydrodynamical simulation!

What Statistics Should We Use?

Most analyses focus on the simplest statistics

- The Baryon Acoustic Oscillations (BAO)
 - Good for tracing the **expansion history** across time
- The Galaxy Power Spectrum (or correlation function)
 - This is a **powerful** probe of $\Lambda \text{CDM}!$

(Many **many** references here!)

What Statistics Should We Use?

Most analyses focus on the simplest statistics

- The Baryon Acoustic Oscillations (BAO)
- The Galaxy Power Spectrum (or correlation function)

Other options include:

- **Bispectra** and **Trispectra** (3-Point and 4-Point Functions)
 - Traces non-linear information and **inflation** but more expensive!
- Galaxy bias and halo mass functions $n_{\rm gal}(M_{\rm halo})$
 - These probe halo-scale physics ($R \leq 10h^{-1}$ Mpc) but are difficult to model!
- Wavelets, kNNs, CNNs, marked statistics, density-split statistics,
 - These are **non-linear** probes that must be modeled numerically!
- Cross-Correlations with weak lensing
 - Strong probes of **gravity**
- Galaxy **spins**, galaxy **shapes**
 - Higher-order physics including **tensors**

Theory In Practice

- There are **fast codes** implementing the theory predictions:
 - CLASS-PT, Velocileptors, PyBird, PBJ, Class OneLoop, FOLPSu,...
- These predict the **power spectrum** or **bispectrum** of galaxies
- By combining with an observed dataset and a Gaussian likelihood we can constrain any Λ CDM parameter entering the model!

Predictions for Statistics

Ivanov, **Philcox**, Cabass, Chen, Vlah, Zhang, d'Amico, Simonovic, Zaldarriaga, Senatore, Moretti, Lesgourges, Werth, Aviles, Gil-Marin, Beutler, ...

Theory In Practice

- There are **fast codes** implementing the theory predictions:
 - CLASS-PT, Velocileptors, PyBird, PBJ, Class OneLoop, FOLPSu,...
- These predict the **power spectrum** or **bispectrum** of galaxies
- By combining with an observed dataset and a Gaussian likelihood we can constrain any Λ CDM parameter entering the model!

- This has been used to measure $\Omega_m, H_0, \sigma_8, \cdots$ from BOSS / eBOSS in full-shape / direct modeling analyses
 - (See also ShapeFit and $f\sigma_8$ measurements)
- Recently, it has been applied to the Year 1 DESI dataset

Can we reproduce this?

Ivanov, **Philcox**, Cabass, Chen, Vlah, Zhang, d'Amico, Simonovic, Zaldarriaga, Senatore, Moretti, Lesgourges, Werth, Aviles, Gil-Marin, Beutler, ...

The DESI Universe

- We analyze **six** DESI chunks:
 - BGS: Bright Galaxy Sample (0.1 < z < 0.4)
 - Low redshift, magnitude limited
 - LRG: Luminous Red Galaxies (0.4 < z < 1.1)
 - Similar to previous surveys!
 - **ELG**: Emission Line Galaxies (1.1 < z < 1.6)
 - Low-redshift tail dropped due to systematic contamination
 - QSO: Quasars (0.8 < z < 2.1)
 - High redshift, large shot-noise
 - Lyman-alpha Emission
 - Not included in DR1
- Each is split into **north** and **south** regions

Quasars & Lyman- α

Emission Line Galaxies

Luminous Red Galaxies

Bright Galaxies

DESI Galaxies

Cosmological Parameters

DESI Data Release 1 (LRGs)

TARGETID	Z	NTILE	RA	DEC	
int64	float64	int64	float64	float64	
39627540901396844	0.42060841162467566	1	159.30684159361635	-10.155757636765902	
39627546836338876	0.8668980715716706	1	158.44667596279407	-9.962760066342906	
39627546840531340	0.9348172077800124	1	158.4799294702238	-9.880343166939232	
39627546840533707	0.7646678553759423	1	158.65071160360105	-9.900898173028425	
39627546840534067	0.88129590000311	1	158.67878216902403	-9.91791308567385	
39627546840534396	0.6646155566176719	1	158.70027052890555	-9.885818986284596	
39627546844725593	0.7619120932610688	1	158.72751630870823	-10.011383569041937	
39627546844726132	0.8129116729090922	1	158.76343950179967	-9.912671320450734	
39627546844726593	0.835471640017949	1	158.79898500886574	-9.952788127324665	
39627546848921194	0.8148312339778753	1	159.052157885943	-9.992428612452807	
39627546848922139	0.7200341373651288	1	159.10202657806508	-9.938566366253678	
39627546848922621	0.7606337242857438	1	159.1309146297404	-10.02377942401391	
39627546848922874	0.7198972751282844	1	159.1462785833043	-9.950181865635432	
39627546848923188	0.7210857282186207	1	159.16399100631358	-9.912947332242044	
39627546848923381	0.569430729151765	1	159.17802210549974	-9.97892860399317	
39627546848923415	0.8891288789150124	1	159.18008439182032	-10.072752528866118	
39627546848923493	0.9513285375888253	1	159.1840389390485	-9.910321824120278	
39627546848923519	0.7212784017696859	1	159.1860701777553	-9.944737378735352	
39627546853114634	0.8131126675553368	1	159.25137421856687	-10.058275905081851	
39627546853115304	0.5559672054059013	1	159.28855963426028	-9.955979493106813	
39627546853115470	0.7147216867384578	1	159.2970230990033	-10.012836906791499	
39627546853115682	0.9274570688680336	1	159.30835543527493	-10.106935803496164	

Cosmological Parameters

DESI 2024 II, V, DESI Data Release 1, Chudaykin, Ivanov, Philcox 2025

DESI Data Release 1 (LRGs)

TARGETID	Z	NTIL	
int64	float64	int64	
39627540901396844	0.42060841162467566	1	
39627546836338876	0.8668980715716706		
39627546840531340	0.9348172077800124	1	
39627546840533707	0.7646678553759423	1	
39627546840534067	0.88129590000311	1	Th
39627546840534396	0.6646155566176719	1	
39627546844725593	0.7619120932610688	:	
39627546844726132	0.8129116729090922	1	
39627546844726593	0.835471640017949	1	
39627546848921194	0.8148312339778753	1	
39627546848922139	0.7200341373651288	1	
39627546848922621	0.7606337242857438	1	
39627546848922874	0.7198972751282844	1	
39627546848923188	0.7210857282186207		
39627546848923381	0.569430729151765	1	
39627546848923415	0.8891288789150124		
39627546848923493	0.9513285375888253	1	
39627546848923519	0.7212784017696859	1	
39627546853114634	0.8131126675553368	1	
39627546853115304	0.5559672054059013	1	
39627546853115470	0.7147216867384578	:	Th
39627546853115682	0.9274570688680336	1	

le data release only contains:

Cosmological Parameters

DESI Data Release 1 (LRGs)

	_	
TARGETID	Z	NTIL
int64	float64	int64
39627540901396844	0.42060841162467566	1
39627546836338876	0.8668980715716706	1
39627546840531340	0.9348172077800124	1
39627546840533707	0.7646678553759423	1
39627546840534067	0.88129590000311	1
39627546840534396	0.6646155566176719	1
39627546844725593	0.7619120932610688	1
39627546844726132	0.8129116729090922	1
39627546844726593	0.835471640017949	1
39627546848921194	0.8148312339778753	1
39627546848922139	0.7200341373651288	1
39627546848922621	0.7606337242857438	1
39627546848922874	0.7198972751282844	1
39627546848923188	0.7210857282186207	1
39627546848923381	0.569430729151765	1
39627546848923415	0.8891288789150124	1
39627546848923493	0.9513285375888253	1
39627546848923519	0.7212784017696859	1
39627546853114634	0.8131126675553368	1
39627546853115304	0.5559672054059013	1
39627546853115470	0.7147216867384578	
39627546853115682	0.9274570688680336	1

covariance estimates, and theory codes

corrections

Cosmological Parameters

Two-Point Estimators

The DESI data is a **point cloud** of positions and weights for galaxies and randoms

$$n_g(\mathbf{x}) \sim \sum_{i=1}^{N_g} w_{g,i} \delta_{\mathrm{D}}(\mathbf{x} - \mathbf{x}_{g,i}), \quad n_r(\mathbf{x}) \sim \sum_{i=1}^{N_r} w_{r,i} \delta_{\mathrm{D}}(\mathbf{x} - \mathbf{x}_{r,i})$$

- We want to turn this into a **power spectrum** \bullet
 - 1. **FKP** estimator

$$P_{\text{FKP}}(\mathbf{k}) \sim \left| n_g(\mathbf{k}) - \frac{N_g}{N_r} n_r(\mathbf{k}) \right|^2 / \langle n^2 \rangle$$

- This is (almost) optimal
- The output is convolved with the mask:

$$P_{\text{FKP}}(\mathbf{k}) \sim \int d\mathbf{q} \left| n(\mathbf{k} - \mathbf{q}) \right|^2 P_{\text{true}}(\mathbf{q}) /$$

Feldman, Kaiser, Peacock 1980s, BOSS DR12, Beutler+, Gil-Marin+, McDonald+, Ivanov+19, Philcox+20,21, Philcox & Floss 2025

Used by DESI

 $\langle n^2 \rangle$

Two-Point Estimators

 The DESI data is a point cloud of positions and weights for galaxies and randoms

$$n_g(\mathbf{x}) \sim \sum_{i=1}^{N_g} w_{g,i} \delta_{\mathrm{D}}(\mathbf{x} - \mathbf{x}_{g,i}), \quad n_r(\mathbf{x}) \sim \sum_{i=1}^{N_r} w_i$$

- We want to turn this into a power spectrum
 - 2. Quasi-Optimal "Unwindowed" estimator

$$P_{\text{unwin}}(\mathbf{k}) \sim \int d\mathbf{q} \, \mathbf{W}^{-1}(\mathbf{k}, \mathbf{q}) \left| n_g(\mathbf{q}) - \frac{N_g}{N_r} \right|$$

At leading order, the output is **not** convolved with the mask:

$$P_{\text{unwin}}(\mathbf{k}) \sim P_{\text{true}}(\mathbf{k})$$

Feldman, Kaiser, Peacock 1980s, BOSS DR12, Beutler+, Gil-Marin+, Ivanov+19, Philcox+20,21, Philcox & Floss 2025

Iwo-Point Estimators

In practice, we compute the **binned power spectrum** in a set of k-bins and redshift-space multipoles, plus a (square) 2D normalization matrix

$$\mathbf{P}_{\ell}^{\text{unwin}}(\mathbf{k}) \sim \sum_{\ell' \mathbf{k}'} \mathcal{W}_{\ell\ell'}^{-1}(\mathbf{k}, \mathbf{k}') \left| n_g(\mathbf{k}') - \frac{N_g}{N_r} n_r(\mathbf{k}') \right|_{\ell'}^2$$

- The **numerator** is the standard FKP numerator (up to an user-defined weight)
- The normalization can be computed using Monte Carlo methods and FFTs
- We account for **residual corrections** using a rectangular **theory matrix** (computed stochastically)
- This is equivalent to the pseudo- C_{ℓ} scheme used in the CMB!
- Up to scale-cuts, it is **equivalent** to the standard estimators

(Stochastic Trace Estimation; See Philcox, Floss 2025)

Feldman, Kaiser, Peacock 1980s, BOSS DR12, Beutler+, Gil-Marin+, McDonald+, Ivanov+19, Philcox+20,21, Philcox & Floss 2025

Three-Point Estimators

- We also want to compute **bispectra**
- These are usually computed using **FKP-like** estimators:

$$\boldsymbol{B}_{\text{FKP}}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \sim \left\langle \prod_{i=1}^3 \left(n_g(\mathbf{k}_i) - \frac{N_g}{N_r} n_r(\mathbf{k}_i) \right) \right\rangle / \langle n^3 \rangle$$

The theory needs to be convolved with the **mask**

$$B_{\text{FKP}}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \sim \int_{\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3 = \mathbf{0}} n(\mathbf{k}_1 - \mathbf{q}_1) n(\mathbf{k}_2 - \mathbf{q}_2) n(\mathbf{k}_3 - \mathbf{q}_3) B_{\text{true}}(\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3)$$

- This is a **difficult** 6-dimensional integral to compute at **every** step of the MCMC chain
- Various approximations exist, but they can **break down**

Feldman, Kaiser, Peacock 1980s, BOSS DR12, Beutler+, Gil-Marin+, McDonald+, Ivanov+19, Philcox+20,21, Philcox & Floss 2025

(See Gil-Marin+, Chen+)

Three-Point Estimators

We compute bispectra using quasi-optimal "**unwindowed**" estimators:

$$\mathbf{B}_{\underline{bin}\,a}^{\underline{unwin}} \sim \sum_{b \in bins} \mathcal{W}_{ab}^{-1} \left\langle \prod_{i=1}^{3} \left(n_g(\mathbf{k}_i) - \frac{N_g}{N_r} n_r(\mathbf{k}_i) \right) \right\rangle$$

At leading-order (a good approximation), this does **not** need to be convolved with the mask

$$B_{bin\,a}^{unwin} \sim B_{bin\,a}^{true}$$

- *Plus,* it's almost optimal, even on *large-scales* \bullet
- Instead of **mask-convolving** the theory, we **mask deconvolve** the data!
- The **normalization** can be efficiently computed using **Monte Carlo** methods and FFTs

Both P + B are computed using the **PolyBin3D** code

(Philcox, Floss 2025)

Feldman, Kaiser, Peacock 1980s, BOSS DR12, Beutler+, Gil-Marin+, McDonald+, Ivanov+19, Philcox+20,21, Philcox & Floss 2025

(+ linear term) bin b

(Philcox, Floss 2025)

Accounting for Systematics

- **Radial integral constraint**
 - [missing line-of-sight fluctuations] lacksquare
 - Included in **normalization** and **theory** matrix
- **Imaging systematics**
 - [the Galaxy contaminates angular modes] lacksquare
 - Included in **weights** (as in DESI)
 - Template marginalized out over for ELG2 and QSO

Stochasticity

- [the sample is discrete]
- Subtract **Poisson** shot-noise

$$P_{\text{shot}} \sim \bar{n}_g^{-1}, B_{\text{shot}} \sim \bar{n}_g^{-2} + \bar{n}_g^{-1}P(k)$$

- Wide-angle effects
 - Included in power spectrum **theory matrix** [Window $\star P_{\ell=1,3}^{WA}$] ~ [Window' $\star P_{\ell}^{true}$]

Fiber Collisions

- **Small** angular scales in DESI are **contaminated** by observational systematics, *i.e.* **fiber collisions**
- DESI accounted for this by **removing** pairs of galaxies with small angular separations

$$P(\mathbf{k}) \sim \sum_{\text{galaxy } i} \sum_{\text{galaxy } j} w_i w_j e^{i\mathbf{k} \cdot (\mathbf{x}_i - \mathbf{x}_j)} \times \begin{cases} 1 & \text{if } \theta_{ij} > 0.0 \\ 0 & \text{else} \end{cases}$$

The correction can be computed by explicit **pair-counting** \bullet

- We do the same, correcting the **numerator**, the **normalization**, and the **theory matrix** [*i.e.* residual window]
- DESI applied a **rotation** since the new window is strongly off-diagonal
 - This is **automatically** accounted for in our normalization matrix! lacksquare

)5°

DESI Focal Plane

DESI Fibers

Chudaykin, Ivanov, Philcox 2025

Fiber Collisions

- Fiber collisions are harder for the bispectrum
- To remove all close **pairs** (or triplets), we'd need to count all **triplets** of galaxies, which is $\sim 10^6$ times more expensive!

$$B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \sim \sum_{\text{galaxy } i \text{ galaxy } j} \sum_{\text{galaxy } k} \sum_{i \text{ galaxy } k} w_i w_j w_k (\dots) \times \begin{cases} 1 & \text{if } \left(\theta_{ij} \text{ and } \theta_{jk} \right) \\ 0 & \text{else} \end{cases}$$

 We introduce a novel stochastic method for removing these, involving cross-bispectra

Power spectrum example:

$$\sum_{i} w_i \epsilon_i \sum_{j} w_j \sum_{k} \epsilon_k \begin{cases} 1 & \text{if } \theta_{jk} > 0.05^\circ \\ 0 & \text{else.} \end{cases} \implies \sum_{i} w_i \sum_{j} w_j \begin{cases} 1 & \text{if } \theta_{jk} > 0.05^\circ \\ 0 & \text{else.} \end{cases}$$

average over $\epsilon_i \sim \mathcal{N}(0,1)$

Chudaykin, Ivanov, **Philcox** 2025

Power Spectrum Data-Set

$P_{\ell}(k)$ for $\ell = 0,2,4$ and $0.02 \,h{ m Mpc}^{-1} \le k \le 0.20 \,h{ m Mpc}^{-1}$

Bispectrum Data-Set

$B_0(k)$ for $0.02 h \text{Mpc}^{-1} \le k \le 0.08 h \text{Mpc}^{-1}$

⁽Maximum SNR: 9σ)

Covariance Matrix

- DESI computed the covariances using **simulations**
- We compute covariance **analytically**

 $\operatorname{cov}[P] \sim P^2(k) \star \operatorname{mask}^4$, $\operatorname{cov}[B] \sim P^3(k) \star \operatorname{mask}^6$

- This is computed on a **grid**, accounting for the **mask**
- **PolyBin3D** measures this similarly to the **normalization** and **theory matrix**
- This depends on a power spectrum **model** fit from the **data**
- **Note:** we do not include non-Gaussian terms...
- DESI rescaled the **simulation** covariance to match a **data-calibrated** theory covariance — we do not need to do this!
- We **inflate** covariance to include various sources of noise

(It also does not make a difference)

DESI P(k) Covariance

Total vs Theory Matrix vs Shot vs Systematics

28

Theoretical Model

- We fit the data with the **Effective Field Theory** of **Large** Scale Structure at one-loop for P and tree-level for B
- **Parameters** (assuming ΛCDM):
 - Cosmology: free (H_0 , ω_{cdm} , $\log A_s$), plus priors on (ω_b, n_s)
 - Bias: free $(b_1, b_2, b_{\mathcal{G}_2}, b_{\Gamma_2})$
 - Stochasticity: free $P_{\text{shot}}, B_{\text{shot}}, A_{\text{shot}}, a_0, a_2$
 - Counterterms: free $c_0, c_2, c_4, \tilde{c}, c_1$
- Most parameters are analytically marginalized
- We rescale parameters by σ_8 according to degeneracies

Projection Effects

- When analyzing synthetic data, do we recover the input cosmology?
 - The best-fit can be shifted due to **non-Gaussian** posteriors and **parameter degeneracies**
 - This is a consequence of **Bayes' theorem**, but \bullet minimizing these helps to interpret **posteriors**

- We find good consistency with inputs, particularly when extra data is added ($< 0.4\sigma$)
- The **rescaled biases** (e.g., $b_1 \rightarrow b_1 \sigma_8$) help a lot! e.g. Maus+24

DESI 2024 V, Maus+, Chudaykin, Ivanov, Philcox 2025

Constraints on ACDM

DESI alone finds strong constraints on Ω_m, H_0, σ_8

- Adding the **bispectrum** improves constraints by $\sim 10\%$
- Adding the (official) DESI DR2 BAO gives significant improvements in Ω_m, H_0
- No evidence for H_0 tension or S_8 tension $(S_8 = 0.813 \pm 0.031)$

Our constraints are **broadly consistent** with Planck

• P + B + BAO dataset matches CMB to 2σ (1.8 σ with PR4)

Dataset	Ω_m	H_0	σ
$P_\ell(k)$	$0.274^{+0.012}_{-0.013}$	$70.22^{+1.06}_{-1.06}$	0.825
$P_{\ell}(k) + B_0(k)$	$0.284\substack{+0.010\\-0.012}$	$70.67\substack{+1.05 \\ -1.05}$	0.811
$P_{\ell}(k) + B_0(k) + BAO$	$0.296\substack{+0.007\\-0.007}$	$68.82^{+0.58}_{-0.58}$	0.818
CMB	$0.316\substack{+0.007\\-0.007}$	$67.28\substack{+0.53\\-0.53}$	0.812

Constraints on ACDM

We find even stronger constraints combining with the CMB:

- DESI enhances Planck constraints up to $2 \times$
 - $\Omega_m = 0.298 \pm 0.003$
 - $H_0 = 68.61 \pm 0.28$
 - $\sigma_8 = 0.809 \pm 0.005$
- Ω_m is still a **bit low** but it shifts towards Planck as more data is added

Chudaykin, Ivanov, Philcox 2025

Constraints on Bias Parameters

- Adding the **bispectrum** leads to strong constraints on **bias parameters**
- These agree with HOD predictions, but not with **dark matter** predictions

Chudaykin, Ivanov, Philcox 2025

Comparison to Official Results

- We find fairly good agreement with DESI with $\Delta \Omega_m = -0.8\sigma, \Delta H_0 = +0.2\sigma, \Delta \sigma_8 = -0.4\sigma$
- The main differences are due to:
 - Addition of the **hexadecapole** (P_4)
 - Free scale-dependent shot-noise ($P \supset \frac{1}{\bar{n}} \left[1 + a_0 k^2 \right]$)
 - Free higher-order fingers-of-God counterterm (\tilde{c})
 - Free cubic bias (b_{Γ_3})
 - Analytic covariance
- And of course, the addition of the bispectrum and DR2 BAO

Other Systematic Checks

- Results are stable ($< 0.5\sigma$ shifts) under changes to the bias model
 - *i.e.* fixing $a_0, b_{\Gamma_3}, \tilde{c}$
 - Or removing the hexadecapole

- Results are stable under switching from unwindowed to (conventional) windowed estimators
 - (Windowed are much slower however!)

Next works

- There are **many** more models to explore, e.g.,
 - Curvature Ω_k
 - Dark Energy w(a)
 - Neutrinos $\sum m_{\nu}$
 - Primordial non-Gaussianity, $f_{\rm NL}^{\rm loc, eq, orth}$
- There are **many** more datasets to explore, e.g.,
 - Combined BAO and full-shape data
 - Bispectrum multipoles, B_{e}
 - Smaller scale bispectra (one-loop)

Can we independently reproduce these?

DESI (BAO) + CMB + PantheonPlusDESI (FS+BAO) + CMB + PantheonPlus

Summary

 We perform a full renalysis of the public DESI DR1 (fullshape), using independent estimators, theory codes, and covariances

• We find **consistency** within $\approx 0.5\sigma$, and we add **new data** $(P_4 + B_0)$

There's a lot more to explore with the data!

Contact: <u>ohep2@cantab.ac.uk</u>

