# The Renormalization Group for LSS

Henrique Rubira (LMU/Cambridge)





In collaboration with Fabian Schmidt (MPA)

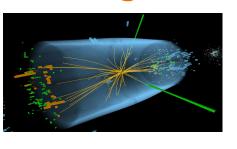
and also: Charalampos Nikolis, Mathias Garny, Thomas Bakx, Zvonimir Vlah

Benasque, July 2025

henrique.rubira@lmu.de

Based on: 2307.15031, 2404.16929, 2405.21002, 2507.13905

# Message to take home

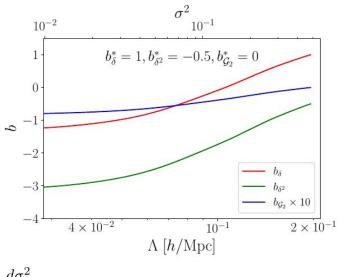


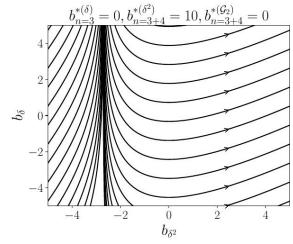


$$\frac{\partial g}{\partial \ln \mu} = \beta(g) \qquad \frac{\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^{2}} + 3b_{\delta^{3}}^{*} - \frac{4}{3}b_{\mathcal{G}_{2}\delta}^{*}\right]\frac{d\sigma_{\Lambda}^{2}}{d\Lambda}}{\frac{db_{\delta^{2}}}{d\Lambda}} = -\left[\frac{8126}{2205}b_{\delta^{2}} + \frac{17}{7}b_{\delta^{3}}^{*} - \frac{376}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\delta^{2})}\right]\frac{d\sigma_{\Lambda}^{2}}{d\Lambda}}{\frac{db_{\mathcal{G}_{2}}}{d\Lambda}} = -\left[\frac{254}{2205}b_{\delta^{2}} + \frac{116}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\mathcal{G}_{2})}\right]\frac{d\sigma_{\Lambda}^{2}}{d\Lambda}.$$

#### Many things to explore:

- Systematic construction of operator basis,
- Systematic renormalization,
- Cross-checks,
- More information from galaxy clustering (TBD)





### **Part I - Preamble**

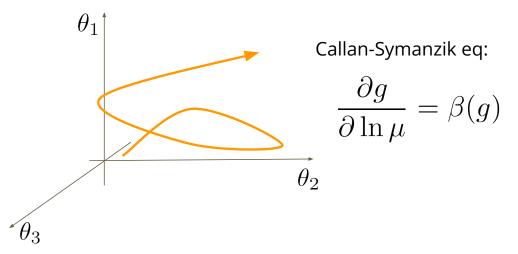
How things change with scale? (from food to galaxies)



# **QFT101**

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



 $\beta_{2L} = 1/(4\pi^2)$ 

For the fine-structure constant (QED):  $\beta_{1L} = 2/(3\pi)$ 

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

Solution to the RG

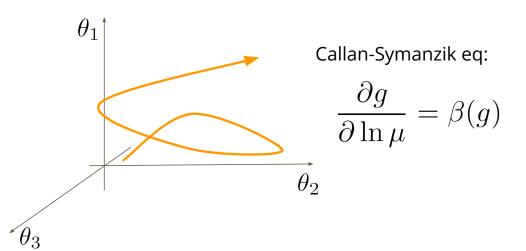
$$\alpha(\mu)\big|_{\rm LL} = \frac{\alpha}{1 - \beta_{1\rm L}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[ 1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

# **QFT101**

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



For the fine-structure constant (QED):

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

$$\beta_{1L} = 2/(3\pi)$$

 $\beta_{2L} = 1/(4\pi^2)$ 

#### Solution to the RG

$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[ 1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

### Suppose you have an amplitude

$$\frac{\sigma_{\ell L}}{\sigma_{\text{tree}}} = \alpha^{\ell} \left[ c^{(\ell,\ell)} \ln^{\ell}(\mu/\mu_*) + c^{(\ell,\ell-1)} \ln^{\ell-1}(\mu/\mu_*) + \dots \right]$$

$$\frac{\sigma_{\text{tree}}}{\sigma_{\text{tree}}} = \alpha^{0} [c^{(0,0)} \ln^{0}]$$

$$\frac{\sigma_{1L}}{\sigma_{\text{tree}}} = \alpha^{1} [c^{(1,1)} \ln^{1} + c^{(1,0)} \ln^{0}]$$

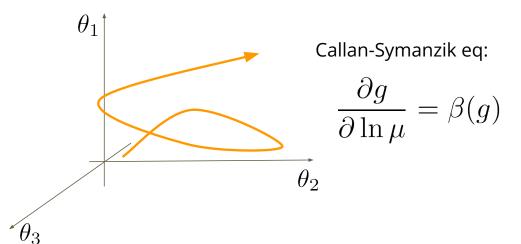
$$\frac{\sigma_{2L}}{\sigma_{\text{tree}}} = \alpha^{2} [c^{(2,2)} \ln^{2} + c^{(2,1)} \ln^{1} + c^{(2,0)} \ln^{0}]$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

# **QFT101**

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



For the fine-structure constant (QED):

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

$$\beta_{2L} = 1/(4\pi^2)$$

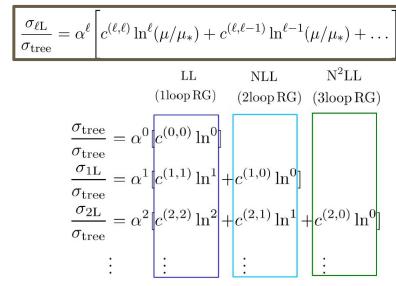
 $\beta_{1L} = 2/(3\pi)$ 

#### Solution to the RG

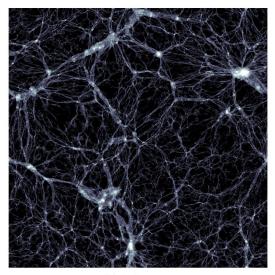
$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

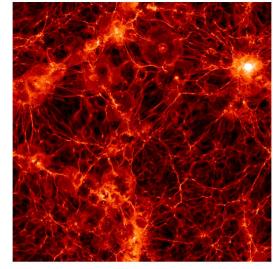
$$= \alpha \left[ 1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

### Suppose you have an amplitude



### The galaxy bias expansion





From Illustris simulation, Haiden, Steinhauser, Vogelsberger, Genel, Springel, Torrey, Hernquist, 15

(a) dark matter

(b) baryons

Stochastic field

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[b_O(\tau) + c_{\epsilon,O}(\tau) \epsilon(\boldsymbol{x},\tau)\right] O(\boldsymbol{x},\tau) + \epsilon(\boldsymbol{x},\tau)$$

Bias review: Desjacques, Jeong, Schmidt

# Renormalizing the bias parameters

Important: those are the same parameters for all n-pt functions

In a nutshell, it is an **Operator Product Expansion (OPE)** 

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[ b_O(\tau) + c_{\epsilon,O}(\tau) \epsilon(\boldsymbol{x},\tau) \right] O(\boldsymbol{x},\tau) + \epsilon(\boldsymbol{x},\tau)$$

$$O[\delta](\boldsymbol{k}) = \int_{\boldsymbol{p}_1,...,\boldsymbol{p}_n} \delta_{\mathrm{D}}(\boldsymbol{k} - \boldsymbol{p}_{1...n}) S_O(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n) \delta(\boldsymbol{p}_1) \cdots \delta(\boldsymbol{p}_n)$$

First order: 
$$\delta$$
;
Second order:  $\delta^2$ ,  $\mathcal{G}_2$ ;
Third order:  $\delta^3$ ,  $\delta \mathcal{G}_2$ ,  $\Gamma_3$ ,  $\mathcal{G}_3$ ;

Contribution from arbitrarily small scales!

# Renormalizing the bias parameters

Important: those are the same parameters for all n-pt functions

In a nutshell, it is an Operator Product Expansion (OPE)

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[ b_O^{\Lambda}(\tau) + c_{\epsilon,O}^{\Lambda}(\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \right] O(\boldsymbol{x},\tau) + \frac{\Lambda}{\epsilon}(\boldsymbol{x},\tau) + c_{\epsilon,O}^{\Lambda}(\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{\epsilon}(\boldsymbol{x},\tau) \stackrel{\Lambda}{$$

$$O[\delta](oldsymbol{k}) = \int_{oldsymbol{p}_1,...,oldsymbol{p}_n}^{oldsymbol{\Lambda}} \delta_{\mathrm{D}}(oldsymbol{k} - oldsymbol{p}_{1...n}) S_O(oldsymbol{p}_1, \dots oldsymbol{p}_n) \delta(oldsymbol{p}_1) \cdots \delta(oldsymbol{p}_n)$$

**Notation:** 

Notation: 
$$\llbracket O \rrbracket = O^{\Lambda_{\mathsf{+counter-terms}}}(\Lambda)$$

Mc. Donald 09 Assassi+ 14

First order:  $\delta$ ;
Second order:  $\delta^2$ ,  $\mathcal{G}_2$ ;
Third order:  $\delta^3$ ,  $\delta \mathcal{G}_2$ ,  $\Gamma_3$ ,  $\mathcal{G}_3$ ;

Contribution from arbitrarily small scales!

### **Motivation**

#### RENORMALIZATION AND EFFECTIVE LAGRANGIANS

Joseph POLCHINSKI\*

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Received 27 April 1983

#### 1. Introduction

The understanding of renormalization has advanced greatly in the past two decades. Originally it was just a means of removing infinities from perturbative calculations. The question of why nature should be described by a renormalizable theory was not addressed. These were simply the only theories in which calculations could be done.

A great improvement comes when one takes seriously the idea of a physical cutoff at a very large energy scale  $\Lambda$ . The theory at energies above  $\Lambda$  could be another field

In a nutshell: instead of simply removing the cutoff dependence, allow for the operators to depend on the cutoff

### **Motivation (for different tastes)**

Lattice person: "At field level you smooth out over your cutoff and those bias parameters have to be defined at a fixed scale!"

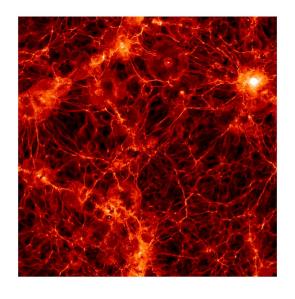
HEP person: "Everything is an EFTs and RG-flow is the next thing to do."

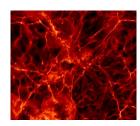
Cosmo-MCMC person: "How can we be sure we are not messing up with the priors in my EFT analysis? Maybe extract more information..."

EFT-complainer: "You have a bunch of free parameters. How can you trust them?"

### **Intuition time**

Smooth simulations (initial conditions) at different  $\Lambda$  and measure  $b_O$ 







### Part II - The RG equations

Warning (and apologies in advance): next 3 slides will be technical

$$0 = \frac{d}{d\Lambda} \delta_g(\mathbf{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\mathbf{x}) + b_a \frac{d\mathcal{O}_a(\mathbf{x})}{d\Lambda}$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

$$0 = \frac{d}{d\Lambda} \delta_g(\mathbf{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\mathbf{x}) + b_a \frac{d\mathcal{O}_a(\mathbf{x})}{d\Lambda}$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

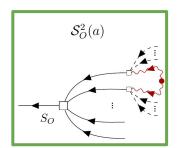
and calculate introducing correlations:

$$0 = \frac{db_a}{d\Lambda} \Big|_{1L} \langle \mathcal{O}_a \delta_L(\mathbf{k}_1) \cdots \delta_L(\mathbf{k}_n) \rangle_{\text{tree}} + b_a \frac{d}{d\Lambda} \langle \mathcal{O}_a \delta_L(\mathbf{k}_1) \cdots \delta_L(\mathbf{k}_n) \rangle_{1L}$$

one-loop:

$$\left| \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda}$$
 **HR**, Schmidt, 23

|   | $s_{O'}^O$      | δ | $\delta^2$ | $\mathcal{G}_2$ | $\delta^3$ | $\mathcal{G}_3$ | $\Gamma_3$ | $\delta \mathcal{G}_2$ |  |
|---|-----------------|---|------------|-----------------|------------|-----------------|------------|------------------------|--|
|   | 1               | - | -          | _               | -          | -               | -          | -                      |  |
|   | δ               | - | 68/21      | -               | 3          | -               | -          | -4/3                   |  |
|   | $\delta^2$      | - | 8126/2205  | -               | 68/7       | -               | -          | -376/105               |  |
| ĺ | $\mathcal{G}_2$ | - | 254/2205   | -               | -          | -               | -          | 116/105                |  |



$$0 = \frac{d}{d\Lambda} \delta_g(\mathbf{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\mathbf{x}) + b_a \frac{d\mathcal{O}_a(\mathbf{x})}{d\Lambda}$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

and calculate introducing correlations:

$$0 = \frac{db_a}{d\Lambda}\Big|_{1L} \langle \mathcal{O}_a \delta_L(\boldsymbol{k}_1) \cdots \delta_L(\boldsymbol{k}_n) \rangle_{\text{tree}} + b_a \frac{d}{d\Lambda} \langle \mathcal{O}_a \delta_L(\boldsymbol{k}_1) \cdots \delta_L(\boldsymbol{k}_n) \rangle_{1L}$$

one-loop:

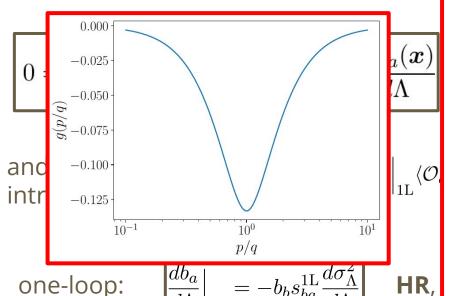
$$\left| \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda}$$



two-loop:

$$\left| \frac{db_{\delta}}{d\Lambda} \right|_{2L} = -30b_b \tilde{d}_b^{(5)} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \int_0^{\Lambda} dq \frac{q^2 P^{\text{lin}}(q)}{2\pi^2} g(q/\Lambda) ,$$

Bakx, Garny, HR, Vlah



one-loop:

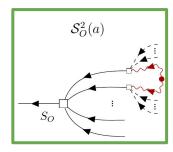
$$\left| \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda}$$

 $\frac{\mathrm{tr}\big[\big(\Pi^{[1]}\big)^2\big]}{\big(\mathrm{tr}\big[\Pi^{[1]}\big]\big)^2}$  $\begin{array}{c} \left(\mathrm{tr}[\Pi^{[1]}]\right)^{3} \\ \mathrm{tr}[\left(\Pi^{[1]}\right)^{2}] \mathrm{tr}[\Pi^{[1]}] \\ \mathrm{tr}[\left(\Pi^{[1]}\right)^{3}] \\ \mathrm{tr}[\Pi^{[1]}\Pi^{[2]}] \end{array}$  $\frac{\left( \text{tr}[\Pi^{[1]}] \right)^4}{\text{tr}[\left(\Pi^{[1]}\right)^3] \text{tr}[\Pi^{[1]}]} \\ \text{tr}[\left(\Pi^{[1]}\right)^2] \left( \text{tr}[\Pi^{[1]}] \right)$  $(\operatorname{tr}[\Pi^{[1]}])$ 

n we expand...

$$= \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

$$\langle n \rangle_{\mathrm{tree}} + b_a \frac{d}{d\Lambda} \langle \mathcal{O}_a \delta_L(\boldsymbol{k}_1) \cdots \delta_L(\boldsymbol{k}_n) \rangle_{1\mathrm{L}}$$



two-loop:

$$\left| \frac{db_{\delta}}{d\Lambda} \right|_{2L} = -30b_b \tilde{d}_b^{(5)} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \int_0^{\Lambda} dq \frac{q^2 P^{\text{lin}}(q)}{2\pi^2} g(q/\Lambda) ,$$

Bakx, Garny, HR, Vlah

## Part IV - The One-loop RG results

HR, Schmidt 23

### **Solutions**

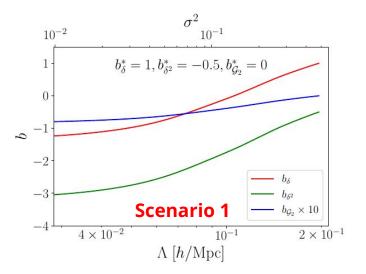
#### Wilson-Polchinski RG-equations

$$\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^{2}} + 3b_{\delta^{3}}^{*} - \frac{4}{3}b_{\mathcal{G}_{2}\delta}^{*}\right] \frac{d\sigma_{\Lambda}^{2}}{d\Lambda},$$

$$\frac{db_{\delta^{2}}}{d\Lambda} = -\left[\frac{8126}{2205}b_{\delta^{2}} + \frac{17}{7}b_{\delta^{3}}^{*} - \frac{376}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\delta^{2})}\right] \frac{d\sigma_{\Lambda}^{2}}{d\Lambda},$$

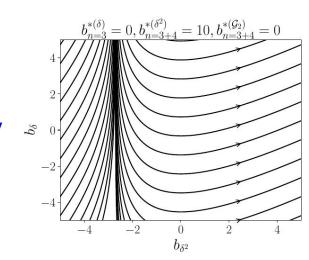
$$\frac{db_{\mathcal{G}_{2}}}{d\Lambda} = -\left[\frac{254}{2205}b_{\delta^{2}} + \frac{116}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\mathcal{G}_{2})}\right] \frac{d\sigma_{\Lambda}^{2}}{d\Lambda}.$$

HR, Schmidt 23



#### **Notice that:**

- Bias parameter that are zero, may be sourced;
- Bias parameters may change sign!



 $\mathcal{O}^{[2]}$ 

 $\mathcal{O}^{[3]}$ 

 $\mathcal{O}^{[4]}$ 

 $\mathcal{O}^{[5]}$ 

Initial

Value

0

1Loop RG eq.

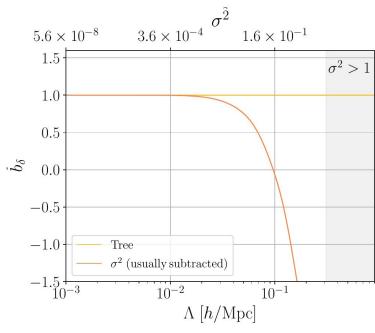
$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$

Solution

$$b_a(\sigma^2)$$

$$= b_a^* - (\sigma^2 - \sigma_*^2) \bar{s}_{ac}^{1L} b_c^*$$

 $\mathcal{O}^{[6]}$ one loop



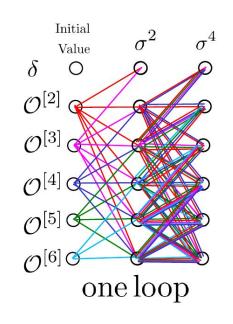
Assassi et al, 14

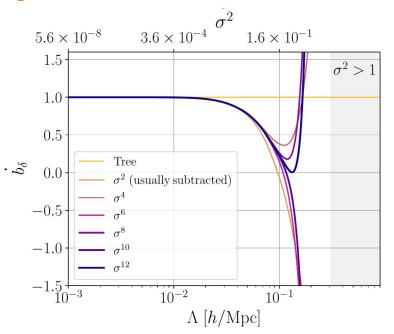
1Loop RG eq.

$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$

Solution

 $b_a(\sigma^2)$ 

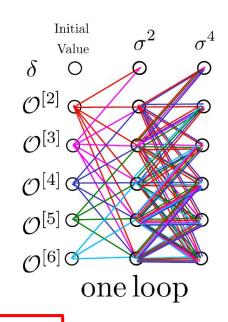


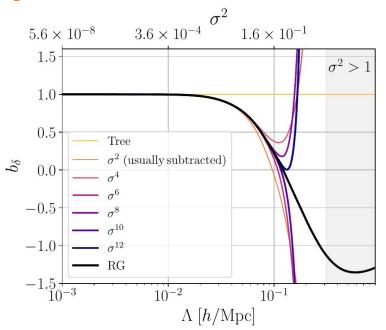


$$=b_a^*-(\sigma^2-\sigma_*^2)\bar{s}_{ac}^{1\mathrm{L}}b_c^*+\frac{1}{2}(\sigma^2-\sigma_*^2)^2\bar{s}_{ab}^{1\mathrm{L}}\bar{s}_{bc}^{1\mathrm{L}}b_c^*-\frac{1}{6}(\sigma^2-\sigma_*^2)^3\bar{s}_{ab}^{1\mathrm{L}}\bar{s}_{bd}^{1\mathrm{L}}\bar{s}_{dc}^{1\mathrm{L}}b_c^*+\dots$$

1Loop RG eq.

$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$





#### Solution

$$b_a(\sigma^2) = \left[ e^{-\bar{s}^{1L} \times (\sigma^2 - \sigma_*^2)} \right]_{ac} b_c^*$$

#### **RG** resums the series!

$$=b_a^* - (\sigma^2 - \sigma_*^2)\bar{s}_{ac}^{1L}b_c^* + \frac{1}{2}(\sigma^2 - \sigma_*^2)^2\bar{s}_{ab}^{1L}\bar{s}_{bc}^{1L}b_c^* - \frac{1}{6}(\sigma^2 - \sigma_*^2)^3\bar{s}_{ab}^{1L}\bar{s}_{bd}^{1L}\bar{s}_{dc}^{1L}b_c^* + \dots$$

We can always diagonalize the bias basis

$$rac{db_i^{
m diag}}{d\sigma^2} = \lambda_i b_i^{
m diag}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

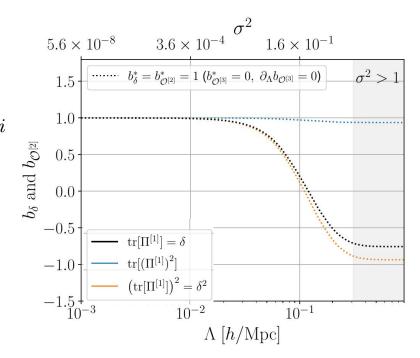
$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

Marginal

Relevant



Bakx, Garny, **HR**, Vlah

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

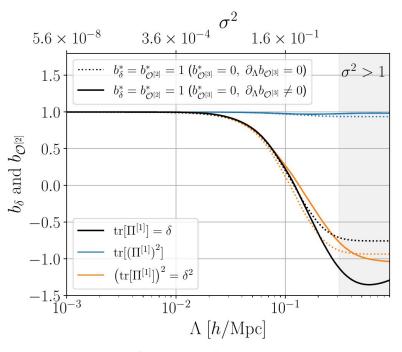
Marginal

Relevant

Extending to third-order:

Irrelevant

$$\{0,0,0,-12.6,-3.44,-2.01,0.220\}$$



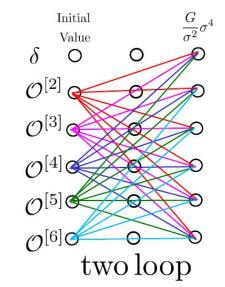
#### **Caution to interpret**:

what happens if we go to higher order? TBD

# Part III - The Two-loop RG

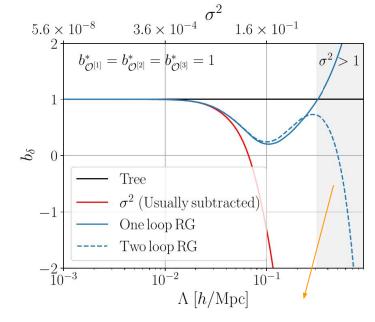
Bakx, Garny, HR, Vlah

# **Two-loop RG**



$$\frac{db_{\delta}}{d\ln\Lambda} = -\left[\sum_{c\in\mathcal{O}^{[2]}} s_{c\delta}^{1L} b_c + \sum_{c\in\mathcal{O}^{[3]}} s_{c\delta}^{1L} b_c\right] \frac{d\sigma_{\Lambda}^2}{d\ln\Lambda}$$

$$\sum_{c\in\mathcal{O}^{[3]}} d\sigma_{\Lambda}^2 \int_{-\Lambda}^{\Lambda} d\Lambda'$$

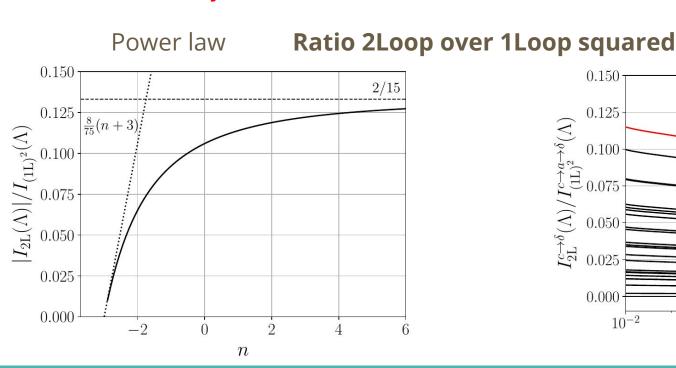


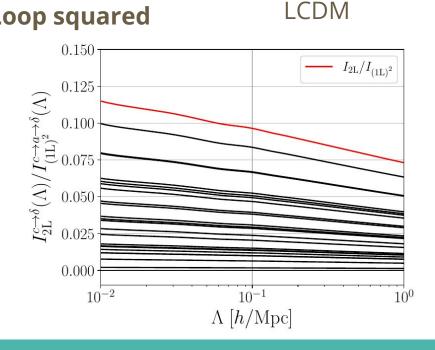
Small corrections compared to the one-loop

$$\frac{d\Lambda'}{\Lambda'} \frac{d\sigma_{\Lambda'}^2}{d\ln \Lambda'} \left[ s_{c\delta}^{2L}(\Lambda'/\Lambda) - s_{c\delta}^{2L}(0) \right] b_c$$

### So... The 2Loop is small. Why should you care?

- Good news: 1Loop RG takes care of most of the information
- It is not just small, it is **PARAMETRICALLY** small as  $n \rightarrow -3$





## So the 2Loop is small. Why should you care?

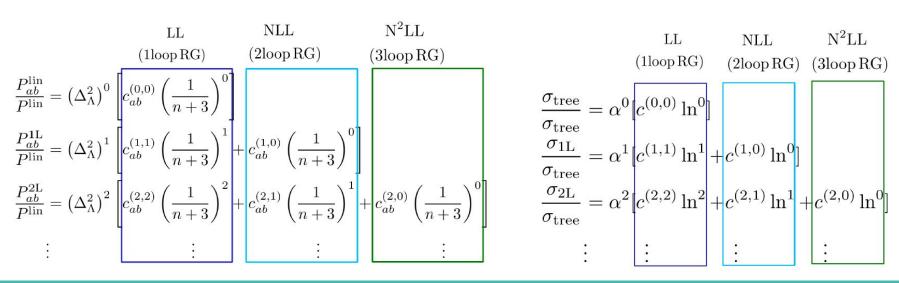
We can write EFT loops as:

$$\frac{P_{ab}^{\ell L}(k)}{P^{\text{lin}}(k)}\Big|_{k \ll \Lambda} = (\Delta_{\Lambda}^2)^{\ell} \times \left[ c_{ab}^{(\ell,\ell)} \left( \frac{1}{n+3} \right)^{\ell} + c_{ab}^{(\ell,\ell-1)} \left( \frac{1}{n+3} \right)^{\ell-1} + \dots \right]$$

### So the 2Loop is small. Why should you care?

We can write EFT loops as:

$$\frac{P_{ab}^{\ell L}(k)}{P^{\text{lin}}(k)}\Big|_{k \ll \Lambda} = (\Delta_{\Lambda}^2)^{\ell} \times \left[ c_{ab}^{(\ell,\ell)} \left( \frac{1}{n+3} \right)^{\ell} + c_{ab}^{(\ell,\ell-1)} \left( \frac{1}{n+3} \right)^{\ell-1} + \dots \right]$$

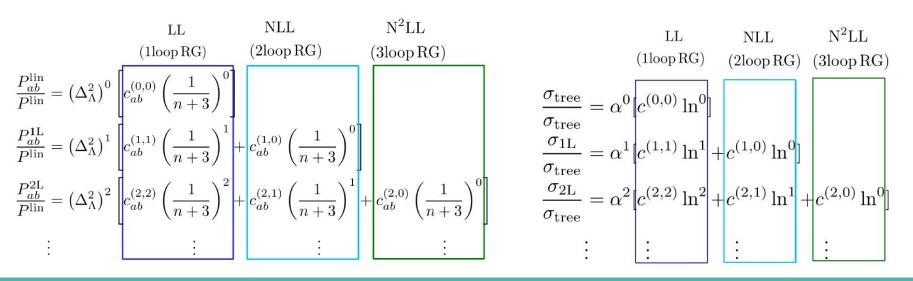


### So the 2Loop is small. Why should you care?

We can write EFT loops as:

$$\left. \frac{P_{ab}^{\ell \mathrm{L}}(k)}{P^{\mathrm{lin}}(k)} \right|_{k \ll \Lambda} = (\Delta_{\Lambda}^2)^{\ell} \times \left[ c_{ab}^{(\ell,\ell)} \left( \frac{1}{n+3} \right)^{\ell} + c_{ab}^{(\ell,\ell-1)} \left( \frac{1}{n+3} \right)^{\ell-1} + \ldots \right] \quad \text{resum the integrals still tbd}$$

\*Caution to interpret: scales in between we have to



# **Part IV - PNG and Stochasticity**

### **PNGs**

#### Free term

$$\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^2}(\Lambda) + b_{n=3}^{*\{\delta\}_G}\right]\frac{d\sigma_{\Lambda}^2}{d\Lambda}$$

#### New interaction

$$-a_0 f_{\rm NL} \left[ -\frac{13}{21} b_{\Psi} + \frac{13}{21} b_{\Psi\delta} + b_{n=3}^{*\{\delta\}_{\rm NG}} \right] \left( \frac{H_0}{\Lambda} \right)^2 \frac{3 \Omega_m}{2 T(\Lambda)} \frac{d\sigma_{\Lambda}^2}{d\Lambda};$$

Now a coupled set of ODEs

$$\frac{db_{\Psi}}{d\Lambda} = -a_0 f_{\rm NL} b_{n=3}^{*\{\Psi\}_{\rm NG}} \frac{d\sigma_{\Lambda}^2}{d\Lambda} - 4a_0 f_{\rm NL} b_{\delta^2} \frac{d\sigma_{\Lambda}^2}{d\Lambda} ,$$

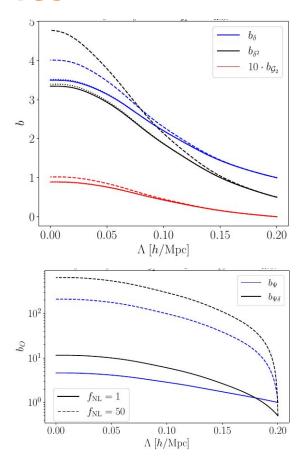
$$\frac{db_{\Psi\delta}}{d\Lambda} = -a_0 f_{\rm NL} \left[ \frac{272}{21} b_{\delta^2} + b_{n=3+4}^{*\{\Psi\delta\}_{\rm G}} + b_{n=3+4}^{*\{\Psi\delta\}_{\rm NG}} \right] \frac{d\sigma_{\Lambda}^2}{d\Lambda} ,$$

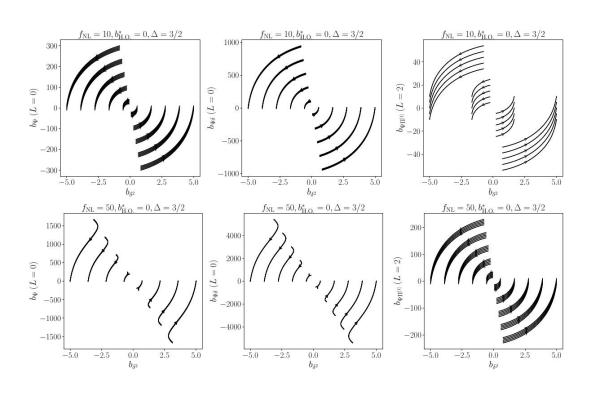
Rederivation of Dalal+ 07 (in an elegant way)

| $s_{O'}^O$                | $\delta^2$ | $\delta^3$ | $\delta \mathcal{G}_2$ | Ψ           | $\Psi\delta$ | $\Psi \delta^2$ | $\Psi \mathcal{G}_2$ | $\text{Tr}\Psi\Pi^{[1]}$ | $\delta \operatorname{Tr} \Psi \Pi^{[1]}$ | $\text{Tr }\Psi\Pi^{[2]}$ |
|---------------------------|------------|------------|------------------------|-------------|--------------|-----------------|----------------------|--------------------------|-------------------------------------------|---------------------------|
| δ                         | 68/21      | 3          | -4/3                   | -13/21      | 13/21        | 2               | -4/3                 | 34/21                    | 1                                         | 34/21                     |
| $\delta^2$                | 8126/2205  | 68/7       | -376/105               | 43/135      | 478/135      | 47/21           | -31/21               | 124/315                  | 178/105                                   | 14347/6027                |
| $\mathcal{G}_2$           | 254/2205   | -          | 116/105                | -1699/13230 | 79/2205      | =               | -1/21                | -661/4410                | 4/35                                      | -241/735                  |
| Ψ                         | 4          | -          | -                      | -           |              | 1               | -                    | -                        | -                                         | -                         |
| $\delta\Psi$              | 272/21     | 12         | -8/3                   | -           | -            | 68/21           | -                    | 1-0                      |                                           | -0                        |
| $\text{Tr }\Psi\Pi^{[1]}$ | 64/105     | -          | 16/15                  | -           | -            | =               | -                    |                          | 8/105                                     | 58/305                    |

Nikolis, HR, Schmidt

### **PNGs**





Stochasticity 
$$\delta_g(\boldsymbol{x}, au) \equiv \frac{n_g(\boldsymbol{x}, au)}{\bar{n}_g( au)} - 1 = \sum_O \left[b_O( au) + c_{\epsilon,O}( au) \epsilon(\boldsymbol{x}, au)\right] O(\boldsymbol{x}, au) + \epsilon(\boldsymbol{x}, au)$$

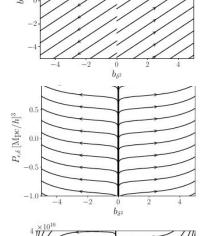
$$\langle \epsilon(\boldsymbol{k}_1) \dots \epsilon(\boldsymbol{k}_m) O(\boldsymbol{k}_{m+1}) \rangle = \hat{\delta}_{\mathrm{D}}(\boldsymbol{k}_{1...m}) C_{\epsilon,O}^{(m)} O(\boldsymbol{k}_{m+1})$$

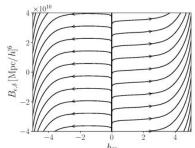
Stochasticity 
$$\delta_g({m x}, au) \equiv rac{n_g({m x}, au)}{ar{n}_g( au)} - 1 = \sum_O \left[ b_O( au) + c_{\epsilon,O}( au) \epsilon({m x}, au) \right] O({m x}, au) + \epsilon({m x}, au)$$

$$\langle \epsilon(\boldsymbol{k}_1) \dots \epsilon(\boldsymbol{k}_m) O(\boldsymbol{k}_{m+1}) \rangle = \hat{\delta}_{\mathrm{D}}(\boldsymbol{k}_{1...m}) C_{\epsilon,O}^{(m)} O(\boldsymbol{k}_{m+1})$$

### Simple expression for how stochastic terms talk to each other

$$\frac{d}{d\Lambda} C_O^{(m)}(\Lambda) \propto - [P_{\rm L}(\Lambda)]^{p-1} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \sum_{O_1,O_2,\dots,O_m} s_{O_1O_2\dots O_m}^O C_{O_1}^{(i_1)}(\Lambda) \dots C_{O_p}^{(i_p)}(\Lambda)$$





Stochasticity 
$$\delta_g({m x}, au) \equiv rac{n_g({m x}, au)}{ar{n}_g( au)} - 1 = \sum_O \left[b_O( au) + c_{\epsilon,O}( au)\,\epsilon({m x}, au)
ight] O({m x}, au) + \epsilon({m x}, au)$$

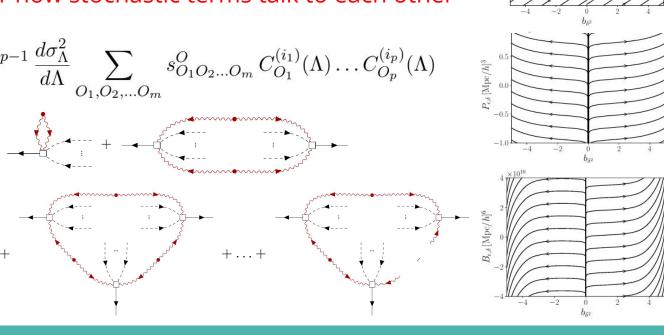
$$\langle \epsilon(\boldsymbol{k}_1) \dots \epsilon(\boldsymbol{k}_m) O(\boldsymbol{k}_{m+1}) \rangle = \hat{\delta}_{\mathrm{D}}(\boldsymbol{k}_{1...m}) C_{\epsilon,O}^{(m)} O(\boldsymbol{k}_{m+1})$$

Simple expression for how stochastic terms talk to each other

$$\frac{d}{d\Lambda} C_O^{(m)}(\Lambda) \propto - [P_L(\Lambda)]^{p-1} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \sum_{O_1, O_2, \dots O_m} s_{O_1 O_2 \dots O_m}^O C_{O_1}^{(i_1)}(\Lambda) \dots C_{O_p}^{(i_p)}(\Lambda)$$

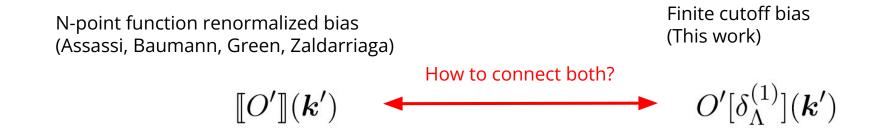
Simple diagrammatic interpretation

HR, Schmidt, 24



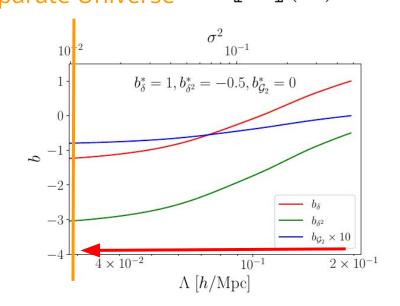
### **Part IV - Final remarks**

### How to relate the renormalization schemes?



### How to relate the renormalization schemes?

N-point function renormalized bias (This work) (Assassi, Baumann, Green, Zaldarriaga) How to connect both?  $O'[\delta_{\Lambda}^{(1)}](\boldsymbol{k}')$  $[\![O']\!](k')$ Separate Universe



Solution: Run the bias towards

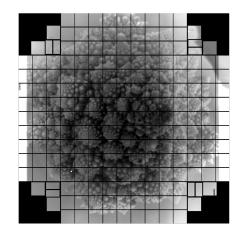
$$\Lambda \to 0$$

HR, Schmidt 23

Finite cutoff bias

# Why you should care

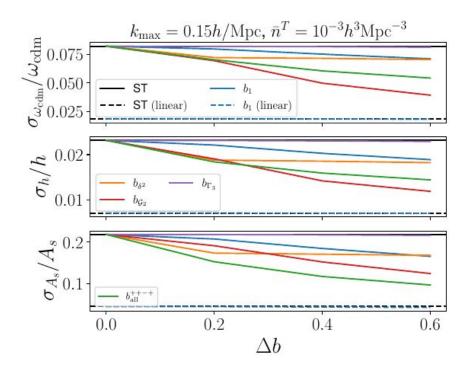
- Cross-check for EFT inference;
- Systematic renormalization (+ stochastic +PNG);
- Systematic renormalization of n-point functions.
   Self-consistent renormalization for P(k),
   B(k1,k2,k3), ...



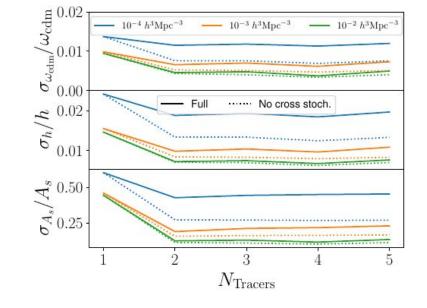
First images of Rubin

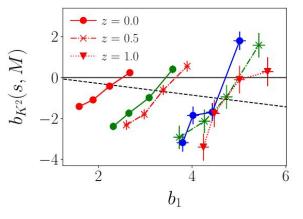
- (Unambiguously) Define Priors for EFT analysis in  $\Lambda o 0$
- More information from resummation? TBD!

### **Multi-tracer**



HR, Conteddu, see also: Mergulhão, HR, Voivodic 23 Mergulhão, HR, Voivodic, Abramo





Lazeyras, Barreira, Schmidt

