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Overview |

e On lattice, generate configurations of gluon fields with sea
(“dynamical”) quark back-reaction (fermion determinant), for
particular values of sea quark masses. Expensive!!

e Then compute valence quark propagators (and, from them,
hadron propagators) in gluon backgrounds.

e To get as much info as possible from valuable gluon
configurations with given sea quark masses, use many
values of valence quark masses — “partial quenching” is
very useful.

e Real, “full” QCD Iinfo is available from partially quenched
simulation:

e If Np = 3, low energy constants are the same [Sharpe &
Shoresh].

e Can always set valence & set quark masses equal for
explicit full QCD results.
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Overview Il

e Fastest dynamical lattice quarks, by at least an order of
magnitude, are Kogut-Susskind (“staggered”) quarks.

e Have an exact, non-singlet, axial symmetry on lattice; have
an exact non-singlet (pseudo)Goldstone pion.

e BUT, one staggered fermion field (1 “flavor”) represents 4
“tastes” — 4-fold remnant of doubling symmetry.

e MILC simulations have three staggered flavors (separate
fields for u, d, and s quarks, with m, =mg7#ms); a priori each
one would have 4 tastes.

e Flavor symmetry is exact lattice symmetry (for = masses).

o Taste symmetry is broken on the lattice at O(a%a?)

(“improved staggered fermions”) = At finite lattice spacing,
extra tastes cannot be trivially accounted for and removed.

e This has both practical and theoretical implications.

Benasque Center for Science, July 27, 2004 — p.4



Overview llI

Practical implications of taste-violations:

e \We can control the taste of incoming hadrons, so results of
computations are typically continuum-like to tree level in
chiral perturbation theory.

e But once mesons appear in loops, taste-violations enter
everywhere.

e Need to take into account taste violations (discretization
effects) within XPT to fit lattice data and extract physical
guantities with precision (few %).

e = “Staggered Chiral Perturbation Theory” (SXPT) [Lee &
Sharpe; Aubin & CB; Sharpe & Van de Water]
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Overview |V

Theoretical iIssue:

e MILC simulations use {/Det(]p+ m) to get a single taste per
flavor in continuum limit.

e Assuming normal staggered is ok in perturbation theory,
v Det is trivially correct to all orders in perturbation theory.

e But there is a possibility that, nonperturbatively, v/ Det
produces violations of locality (& therefore universality) in
the continuum limit.

e In other words, the staggered theory would not be the
standard (“real”) QCD.
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Overview V

e Issue of v/Det not yet settled but evidence is accumulating
that it is not a problem:
e Durr, Hoelbling and Wenger
e Follana, Hart, and Davies

e Adams
e comparison of lattice results with experiment.

e comparison of lattice results with SXPT.
e searches for non-locality in lattice propagators.

e Subject for more discussions at this workshop?
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MILC Lattice Configurations

arm’ [ am!, |10/g*| dims. |#lats.| m,/m,
0.03/0.05 | 6.81 |20° x64 | 262 |0.37787(18)
0.02/0.05 | 6.79 |20%x 64 | 485 |0.31125(16)
0.01/0.05 | 6.76 |203x 64 | 608 |0.22447(17)
0.007/0.05 | 6.76 |203x 64 | 447 |0.18891(20)
0.005/0.05 | 6.76 |243 x 64 | 137 |0.15971(20)
0.0124/0.031 | 7.11 |283x 96 | 531 |0.20635(18)
0.0062/0.031 | 7.09 |283 x 96 | 583 |0.14789(18)

Parameters of the coarse (a ~ 0.125 fm) and fine (a ~ 0.09 fm)
lattices. m., m' = simulation masses. Physical values are m,
m. m./ms = 1.09—1.28 (coarse) and 1.07—1.14 (fine). Volumes

are all ~(2.5fm)3, except for ~(3.0fm)> on coarse .005/.05 run.
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MILC Lattice Data

e For Goldstone masses and decay constants, have extensive
partially guenched data:
e Coarse: all combos of 9 valence masses between 0.1m/,
and m/,.
e Fine: all combos of 8 valence masses between 0.14m/,
and m/,.

e For other tastes, have most full QCD pion masses and a few
full QCD kaon masses, but no decay constants and no
partially qguenched data.

e Goldstone guantities have smallest statistical errors.

e = Concentrate on Goldstone mesons. When other-taste
meson masses are needed in 1-loop chiral logs (NLO), use

results of tree-level (LO) fits.

e = NNLO error, estimated to be under 1% for masses &
decay constants; larger, but still small compared to other
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Tree level (LO) SXPT fit

e For coarse lattice, biggest taste violations are > 100% at
lowest masses.

| +
© Ty Fit looks good, but has ter-
rible confidence level (CL),

since statistical errors tiny.

Still, gets squared masses usu-
ally within 2%, and no worse
than 7% (for lighest Goldstone
pions).

Benasque Center for Science, July 27, 2004 — p.10



Data Subsets

e To get good fits to SXPT forms, need to place upper limit on
valence quark masses (mg, m,).

e Consider 3 data subsets:

e Subset |: m, + m, < 0.40m/ (coarse);
my + my < 0.54m/; (fine). 94 data points.

e Subset II: m, +m, < 0.70m/, (coarse);
my + my < 0.80m/ (fine). 240 data points.

e Subset lll: my; + m, < 1.10m/, (coarse);
my + my < 1.14m/, (fine). 416 data points.

e Can tolerate heavier valence masses (compared to m.) on
fine lattices, since m), /m, is smaller and contributions to
meson masses from taste splittings are smaller.

e Can't similarly limit sea quark masses: m/, fixed on coarse
or fine, and is not small. = adjusting m/, — m gives up to
half of total chiral extrap/interp error.
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Chiral Log Fits

e On subset |, maximum valence-valence Goldstone mass is
~ 350 MeV.

e Adding on average taste splitting gives ~ 500 MeV.
(Maximum taste splitting gives ~ 580 MeV .)

e EXxpect errors of NLO SXPT to be of order:

(500 MeV)2\*
( =y ~ 3.5%

e Statistical errors of data: 0.1% to 0.8% (squared masses);
0.1% to 1.4% (decay constants)

e = NNLO terms needed.

e NNLO SXPT logs unknown. But for high masses, NNLO
logs should be smoothly varying, well approximated by
NNLO analytic terms
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Chiral Log Fits

e Fit decay constants and masses together; include all
correlations.

e Fit coarse and fine lattices together.
e NNLO fit has 20 unconstrained params:
e 2(LO)
e 4 (physical NLO: L;)
e 4 (taste violating NLO: O(a?))
e 10 (NNLO analytic)

e Additional 16 tightly constrained params allow for variation
of physical params with a (~asa®Adycp = 2%)

e Add 4 more tightly constrained params to allow scale
determinations to vary within statistical errors

e Total of 40 params; corresponding “continuum NNLO fit” has
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Chiral Log Fits

e Get good NNLO fits for subsets | and |I.

e Used for finding L;.

e In subset Ill, even NNLO fits break down.

e But want subset Ill to interpolate around my .

e = In subset Ill, fix LO and NLO terms from lower mass fits;
then add on ad hoc additional higher order terms to get good

Interpolation around m.

e Use such fits in subset Il for central values of quark masses
& decay constants; results of subsets I, |l are included In
systematic error estimates.
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Fit of £,

fr with taste violations.
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Fit of £,

e Extrapolate fit
params to
continuum

e Go to “full QCD:”
Set m/

and plot a function

of m
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Fit of £,

e Consistency
check: extrapolate
points with sea
masses = valence
masses to
continuum at fixed
guark mass.
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Fit of m2 /(m, +m,)
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Fit of m2 /(m, +m,)
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Fit of m2 /(m, +m,)
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Electromagnetism & Isospin Violations

e Now find physical quark masses by extrapolating to physical
meson masses.

e Some control of electromagnetic (EM) and isospin-violating
effects Is necessary at the precision of the current
calculation.

e Distinguish among meson masses with & without these
effects:
e EXxperimental masses:

expt expt expt expt
Mo o Mg Mpeo s Mgy

e Masses with EM effects turned off:
QCD QCD _QCD _ QCD

A

e Masses with EM effects turned off and m, = my = m:
mxz, mk
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Electromagnetism & Isospin Violations

e My understanding of bottom line from continuum XPT:

2 (mQCD)2 ~ (mexpt)Q

7t 70 70
CD CD
s (M) (mP)?
CD X
(mE")? ~ (m5e")?
CD X X X
(mEPy ~ (R = (14 Ap) ((mZPH? — (mIPh)?)

e Ar = 01is“Dashen’s theorem.
e Continuum suggests: Ag ~ 1.
e To be conservative, we take 0 < Agp < 2.

e More aggressively, we could, for example, use
Ap = 0.84(25) from J. Bijnens and J. Prades, Nucl. Phys. B
490 (1997) 239. Is there a consensus??? enasque Centerfor Science, July 27, 2004 p.18



Finding quark masses

e Fit of partially
guenched meson
masses again,
now shown without
dividing by

My =+ My,
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Finding quark masses

X & coarse -
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Finding quark masses

e Now fix light sea
guark mass at mn,

and continue
extrapolation until

line hits (m35")?
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Finding quark masses
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Extract f,

e previous plot
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Extract f,
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Extract f,

e Extrapolate to
physical m point.
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Extract f,

e Comparison with
experiment.
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Extract fx

e Similar procedure
for fx.

But note that fx Is
the decay constant

of K.

Here we need to
extrapolate  light

valence quark to
m., but light sea
guark to m.
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Results: Decay Constants

fr = 129.5+0.9+3.5 MeV
frr = 156.64 1.0+ 3.6 MeV

fr/f= = 1.210(4)(13)

e First error is statistical; second is systematic.

e Chiral extrapolation errors and scale errors contribute
almost equally to the systematic error on f,. and fx. Scale
errors are unimportant for the ratio.

e Results for f,, fx, and fx/f. consistent with experiment
within their ~ 3%, 2.5% and 1% errors, respectively.

e In fact, result for fx/f. can be turned around to compute
|Vus| (Marciano, hep-ph/0402299). Get: |V,s| = 0.2219(26),
compared to PDG value 0.2196(26).
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Results: Masses

My /mg = 0.43(0)(1)(8)
e Errors are from statistics, simulation systematics, and EM
effects (conservative range), respectively.

e If iInstead we assume, for example, the result of Bijnens &
Prades (Agp = 0.84 + 0.25), we get m,,/mg = 0.44(0)(1)(2).

e We can also ask how big A g would have to be to give
m, = 0. Get Ap ~ 8.4.

e Bottom line: m, = 0 is ruled out.
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Results: Masses

e Results from collaboration of HPQCD, UKQCD, & MILC
[hep-lat/0405022].

mMS = 76(0)(3)(7)(0) MeV
MmMS = 2.8(0)(1)(3)(0) MeV
ms/m = 27.4(1)(4)(0)(1)

e Errors are from statistics, simulation, perturbation theory,
and EM effects. Scale for masses is 2 GeV.

e Based on expectations from sum rules, these are quite low.

e If problem is on lattice side, most likely possibility would be
that perturbation theory error estimate is too low. Higher
order in progress; non-perturbative renormalization should
also be done.
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Results: Masses

e Assuming above results for m and m, /mgy, get (at scale
2 GeV):

mMS = 1.7(0)(1)(2)(2) MeV

Uu

mMS = 3.9(0)(1)(4)(2) MevV

e Again, errors are from statistics, simulation, perturbation
theory, and EM effects.

e EM errors in m, & my are highly, negatively, correlated.
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Results: Low Energy Constants

e Also get (in units of 1072, at chiral scale m,):

2L¢ — Ly = 0.5(2)(4

)(4)

oLs — Ly = —0.2(1)(2)
Li = 0.2(3)(3)

Ly = 1.9(3)(3)

e Consistent with “conventional results” summarized, e.g., In
Cohen, Kaplan, & Nelson, JHEP 9911, 027 (1999).
Ls =2.2(5), Lg = 0.0(3), Ly = 0.0(5).

e Our result for 2Lg — L5 Is far from range
—3.4 < 2Lg — Ly < —1.8 that would allow m,, = 0 (Kaplan &
Manohar; Cohen, Kaplan & Nelson).

e Consistent with (but not independent of) direct
determination of m,,.
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Convergence of chiral expansion

e fr, fi from fit to
set I

0.20

& & extrap
X 'pion’ pts. i
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Convergence of chiral expansion
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Convergence of chiral expansion
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Elephant in the room

In desperation | asked Fermi whether he was not impressed by
the agreement between our calculated numbers and his
measured numbers.

He replied, “How many arbitrary parameters did you use for your
calculations?”

| thought for a moment about our cut-off procedures and said,
“Four.”

He said, “I remember my friend Johnny von Neumann used to
say, ‘With four parameters | can fit an elephant, and with five |
can make him wiggle his trunk.™

With that, the conversation was over.

—Freeman Dyson
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Elephant in the room

Could we fit a whole herd of elephants with our 40 (or 20
unconstrained) parameters?

If the physics isn’t right, ~ 40 parameters WON'T allow you to fit
the data:

e Comparable fits to continuum form (all taste-violating terms
set to 0): 36 params, CL < 102",

e Comparable fits with all chiral logs and finite volume
corrections omitted from fit function (i.e., analytic function
only) are poor = Good evidence for chiral logarithms:

e Remove finite volume effects from data first (cf. Becirevic
& Villadoro): 38 params, CL < 107°°.

e Don’t remove finite volume effects from data: 38 params,
CL < 107186,

e Also tried separate linear fits of m2 or f, vs. quark mass:
e m2: 6 params, CL < 1072°Y,
o f7-(- 10 params, CL < 10_250. Benasque Center for Science, July 27, 2004 — p.28



Elephant in the room

Having wrestled for years with the problem of fitting an elephant,
| can say with some certainty that at least 43 parameters...are
required to give even a rough approximation to an elephant.

—Robert D. Phair

:+ ELEPHANT.STU =] E3
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