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Introduction:  Chiral extrapolation

Still needed: rather long extrapolation in the light quark mass

Collaboration Fermion type Nf smallest     

UKQCD Wilson 2 ~0.44

SPQcdR Wilson 2 ~0.66

qq+q Wilson 2 ~0.47

CP-PACS Wilson 2 ~0.35

CP-PACS Wilson 2+1 ~0.62

MILC Staggered 2+1 ~0.3

RBC Domain Wall 2 ~0.53

Some numbers I heard at Lattice 2004:

mπ/mρ

Namekawa

Lattice 2004
Talk/poster by:

Ishikawa

Bernard

Scholz

Tarantino

physical value:   0.18

Izubuchi



Chiral Perturbation Theory (ChPT)

Analytic guidance is required for the extrapolation
             provided by ChPT⇒

Effective theory for low-energy QCD

quark mass dependence of observables

M
2

0 = (mu + md)B :  low-energy constantsf, B, L

Weinberg, Gasser, LeutwylerChPT:

Example:

Panel discussion
Lattice 2002, Boston

Does ChPT describe the lattice data ?

Smoking gun: curvature due to chiral logs

m2

π = M2

0

[
1 +

M2
0

16π2Nff2
lnM2

0 −

8LM2
0

f2

]
⇒

Question:



A potential problem

−→Lattice data Continuum

Step 2:
 chiral extrapolation

a → 0

Step 1:
continuum limit

Real world QCD

ChPT formulae derived for            only !        

−
→

a = 0

mq → mq,phys



−
→

−→Lattice data Continuum

Step 2:
 chiral extrapolation

a → 0

Step 1:
continuum limit

Real world QCD

What about the opposite order ?

−→

−
→Step 1:

 chiral extrapolation
Step 2:
continuum limit

.......

mq → mq,phys

A potential problem

ChPT formulae derived for            only !        a = 0

Desirable: ChPT for lattice theories at non-zero lattice spacing



ChPT at non-zero lattice spacing:
 Main strategy

Two-step matching to effective theories:

1. Lattice theory Symanzik’s effective theory
continuum theory making
the a-dependence explicit

2. Symanzik’s effective theory ChPT
including the a-dependence 

→

Lee, Sharpe ‘98
Sharpe, Singleton ‘98

→

Chiral expressions for               ...  with explicit a-dependence⇒ mπ, fπ



Symanzik's action for Lattice QCD with Wilson fermions

Locality and symmetries of the lattice theory 

Seff = SQCD + a c

∫
ψ iσµνGµνψ + O(a2)

• At          only one additional operator ( making use of EOM )

•      : unknown coefficient (”low-energy constant”)

•          :  dim-6 operators:   Sheikholeslami, Wohlert

c

O(a)

O(a2) - fermion bilinears 

- 4-fermion operators

⇒

O(4) rotation invariance is broken at this order



Reminder: Chiral Lagrangian

Fields:

Lagrangian:

Σ(x) = exp

(
2 i

F
π

a(x)T a

)

Σ
′
= LΣR

†
M

′
= LMR

†

:  Group generatorsT
a

L, R : Left, Right
  transformations

Expand in powers of derivatives and masses:

: undetermined low-energy constants

M :  Quark mass matrix

L2 =
f2

4
tr

[
∂µΣ∂µΣ†

]
−

f2B

2
tr

[
Σ†M + M†Σ

]

f, B

Leff

[
Σ, M

]
= Leff

[
Σ

′, M ′
]

Leff = L2 + L4 + . . .



Chiral Lagrangian including     

Seff = SQCD + a c

∫
ψ iσµνGµνψ + O(a2)

Pauli term breaks the chiral symmetry exactly like the mass term in

a enters chiral Lagrangian exactly like the mass term⇒

⇒ L2 =
f2

4
tr

[
∂µΣ∂µΣ†

]
−

f2B

2
tr

[
Σ†M + M†Σ

]

: new undetermined low-energy constantW0

−

f2W0

2
a tr

[
Σ + Σ†

]

includes not really a constant (weak    dependence)a

Sharpe, Singleton ‘98
Rupak, Shoresh ‘02

a

c = c(g2

0)

SQCD



L4 = L4(p
4
, p

2
m, m

2) + L4(p
2
a, ma) + L4(a

2)

-Lagrangian:

Gasser, Leutwyler ‘85 Rupak, Shoresh ‘02 Rupak, Shoresh, OB ‘03
Aoki ‘03

• No O(4) symmetry breaking terms in               ( start at                )

• Total number of low-energy constants:    10       +  (5  +  3)        =  18 !

     are physical ChPT parameters        values are interesting 

Role of        : parameterize    dependence        values are less interesting

Note:        are not universal ( depend on the lattice action )

     

O(a2
p
4)L4(a

2)

L4

Li Wi

Li

Wi

Wi

→

→

( independent of    )

a

a



Power counting

The power counting is non-trivial because of

1. the additive mass renormalization  

2. two symmetry breaking parameters       ,  

     their relative size matters

∝

1

a

a

⇒

mquark



M
2

0 = 2mB + 2aW0

Leading order pion mass ( degenerate case )

m = mu = md

Leading    -effect:  Shift in the pion mass

But:  This shift might already be absorbed in mc

m
′Express the observables               in terms of ⇒

a

Note: additional shifts enter at      , ... a
2

e.g. for

mπ, fπ

m
2

π
= 0 m

′ = Zm(m0 − mcr) = 0



Two expansion  parameters: 2W0a
(4πf)2

2Bm′

(4πf)2Both need to be small 

Relative size determines which terms  are LO,  NLO etc.

Example: 
L4(a

2)
→

The proper power counting depends on the relative size of      and     

LO NLO

LO LO

→
L2(p

2
, m

′)

f2B m′tr
[
Σ + Σ†

]
W a

2
(
tr

[
Σ + Σ†

])2

m
′
! a

2

m
′
≈ a

2

m
′

a



If                        continuum like ChPT + small            corrections

If                        qualitatively different !

m
′
! a

2
→

m
′
≈ a

2
→

Different power countings have  been discussed:

Rupak, Shoresh, OB ‘03

Sharpe, Singleton ‘98

O(an)

Non-trivial phase diagram

Modification of chiral logs Aoki ‘03



Potential energy:

V = −c1m
′tr

[
Σ + Σ†

]
+ c2a

2
(
tr

[
Σ + Σ†

])2

Sharpe, Singleton ‘98

A:

c1(f, B)

⇒ Aoki phase
flavor and parity are broken
massless pions at 

Aoki ’85

(Nf = 2)

c2(f, B, Wi)

sign c2 = +1

Non-trivial phase diagram

Σvacuum != ±1

a != 0

B: sign c2 = −1 ⇒ Σvacuum = ±1 no flavor/parity breaking
no massless pions  

Question:  Scenario A or B ? Depends on the underlying lattice action



Plaquette action + unimproved Wilson:  Scenario B

163 × 32 high
163 × 32 low

123 × 24 high
123 × 24 low

1/(2κ)

(a
m

P
S)

2
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Data:   Theory: 

Sharpe, Singleton ‘98 F. Farchioni et.al. ‘04

β = 5.2

Questions: 

• Which scenario is realized for improved fermions ?

• Can we find a lattice action with very small      ?

• What are the consequences for overlap fermions ?

similar findings by
Ilgenfritz et. al. ‘03 

c2



Aoki ‘03

•              gives the correct continuum expression

•              :  combinations of low-energy constants 

• The coefficient of                  is no longer universal at non-zero 

• The lattice spacing generates an                contribution

     This term dominates [....] for small 

But:   A resummation of the                terms can be performed .... 

Pseudo-scalar mass to 1-loop (2 deg. flavors)

a → 0

Wi

a
2
lnm

′

m
′

w0, w1

⇒

a

m2

π
= 2Bm′

[
1 +

m′(2B + w1a)

32π2f2
log

2Bm′

Λ2
+

w0a
2

32π2f2
log

2Bm′

Λ2

]

+ analytic

m
′
lnm

′

(lnm
′)n



Resummend Pseudo-scalar mass

m2
π = 2B̃m′

[
1 +

m′(2B + w1a)

32π2f2
log

2Bm′

Λ2

] {
log

2Bm′

Λ̃2

}w̃0a2/32π2f2

Similar modifications for      andfπ mAWI

Expansion of              gives result on previous slide {. . .}a
2

+ analytic

Aoki ’03

Assumption:  Aoki phase scenario



The coefficients of the chiral logs can be altered by O(a) corrections

Feature in WChPT:

Question:  What does                  precisely mean for a given lattice action ?

Crude dimensional argument: 

m ≈ a
2

m ≈ a
2
Λ

3
QCD

a = 0.15fm

ΛQCD = 300MeV

⇒
m ≈ 15MeV

Current lattice simulations do not satisfy m ! a
2



Applying to numerical data

Two groups analyzed their data using WChPT:

Namekawa et.al ‘04

Farchioni et.al. ‘03/‘04

−→

−→

1.  CP-PACS :

2.  qq+q : 

Tadpole improved clover quark action

a = 0.2fm 0.35 ≤
Mπ

Mρ

≤ 0.8 ( 8 Sea quark masses )

Good fits with WChPT assuming  Aoki power counting, i.e.

,

m ≈ a
2

a ≈ 0.2fm

Unimproved Wilson quarks

, 0.47 ≤
Mπ

Mρ

≤ 0.76 ( 4 Sea quark masses )

Good fits with continuum ChPT

Current numerical data is not conclusive



Staggered fermions

Taste reduction on the lattice: det D → 4
√

det D “fourth root trick”

1.  The              -theory has no local lattice action:   Universality ?4
√

det D

+ Fast to simulate

+ Exact U(1) symmetry for massless quarks

- Fermion doubling:   Each flavor comes with 4 tastes

4
√

det D2.  The              -theory has no local Symanzik action:  How to include     in ChPT ? a



Staggered Chiral Perturbation Theory (SChPT)

1. Lattice theory with 
          staggered fermions

Symanzik’s effective theory
with          fermions

2. Symanzik’s effective theory ChPT 

→

→

Main strategy:

3. Compute physical observables like

4.  Adjust by hand to one taste per flavor 
     = include factors of 1/4 
        for sea quark loops

Bernard ‘02
Aubin, Bernard ‘03

1

4

1

4

No factor

One factor

“quark flow” diagrams

M2

π
, fπ, . . .

Nf 4Nf



−→ Continuum expression

−→ 0

−→ 0

In the Continuum limit :

• Reduces to the continuum expression for             ( not easy to see here )  

• Non-zero    :   Additional log contributions  involving other particles
                        Continuum log behaviour may be changed significantly !

• MILC data strongly suggests the presence of these contributions 

Pseudo-scalar mass to 1-loop  (3 deg. flavor)

a

Aubin, Bernard ‘02/03

+
4

24π2f2

[
m2

η′

A

ln
m2

η′

A

Λ2
− m2

πA
ln

m2
πA

Λ2
)

]
+ a2C

+
4

24π2f2

[
m2

η′

V

ln
m2

η′

V

Λ2
− m2

πV
ln

m2
πV

Λ2
)

]

(
m

π
+

5
)2

2Bm
= 1 +

1

24π2f2
m2

πI
ln

m2
πI

Λ2
+ analytic

a → 0

talk by Claude Bernard−→



Question:

Is the 4th-root trick really legitimate ?

• Can we analytically understand why it works ?

• Can we find additional cross checks ? 
( Besides comparing with experimental results )



tmQCD

Why tmQCD: 

• No exceptional configurations

• Automatic O(a) improvement at maximal twist

• No exceptional configurations

• Automatic O(a) improvement at maximal twist

Twisted mass term:

Frezzotti, Rossi ‘03

But:  Seems to work only if m ! a
2

Why ?

m′eiωγ5τ3 = m + iµγ5τ3 ω :  twist angle

ω =
π

2



Twisted mass term on the lattice

ψ̄ph(x)

[(
−a

r

2

∑
µ

∇
!
µ∇µ + Mcr(r)

)
exp(−iwγ5τ3) + mq

]
ψph(x)

Mass term + Wilson term on the lattice :

ψ̄(x)

[(
−a

r

2

∑
µ

∇
!
µ∇µ + Mcr(r)

)
+ mq exp(iwγ5τ3)

]
ψ(x)

mq = m0 − Mcr(r)

bare quark mass critical quark mass

→→

ψph = exp(i
ω

2
γ5τ3)ψ,

ψ̄ph = ψ̄ exp(i
ω

2
γ5τ3)

Field redefinition:



Wilson average and O(a) improvement

Mcr(−r) = −Mcr(r)

〈O〉WA(r,mq,ω) ≡
1

2

[
〈O〉(r,mq,ω) + 〈O〉(−r,mq,ω)

]
The Wilson average

can be shown to be  O(a) improved: = 〈O〉cont(mq) + O(a2)

Crucial assumption: 



Automatic O(a) improvement at maximal twist

〈O〉TA(r,mq,ω =
π

2
) ≡

1

2

[
〈O〉(r,mq,ω =

π

2
) + 〈O〉(r,mq,ω = −

π

2
)
]

Consider the twist average: 

exp(−i
π

2
γ5τ3) = − exp(i

π

2
γ5τ3)

=
1

2

[
〈O〉(r,mq,ω =

π

2
) + 〈O〉(−r,mq,ω =

π

2
)
]

For observables even in      (e.g. masses):

〈O〉(r,mq,ω =
π

2
) = 〈O〉TA(r,mq,ω =

π

2
) = 〈O〉cont(mq) + O(a2)

O(a) improvement without taking an average !

ω



Using WChPT you can explicitly show  ( in the Aoki phase scenario with                )

Mcr(r) =
r

a
M1(ra) + a

2
r
2
M2(ra) M1,2(ra) :

even polynomials in ra !

Mcr(r) != −Mcr(−r)⇒

c2 > 0

〈O〉(r,mq,ω =
π

2
)TA =

1

2

[
〈O〉(r,mq,ω =

π

2
) + 〈O〉(−r,m′

q,ω =
π

2
+ ω′)

]

m
′

q
=

√
m2

q
+ (2a2r2M2(ar))2 tanω

′ =
2a2r2M2(ar)

mq

Automatic O(a) improvement only if mq ! a
2

⇒



New definition for the twist angle

M cr(r) =
Mcr(r) − Mcr(−r)

2
= −M cr(−r)

∆Mcr(r) =
Mcr(r) + Mcr(−r)

2
= ∆Mcr(−r)

Define:

ψ̄ph(x)

[
−

(
−a

r

2

∑
µ

∇
!
µ∇µ + M cr(r)

)
exp(−iwγ5τ3) + mq + ∆Mcr(r)

]
ψph(x)

New definition for the twist angle:⇒

Automatic O(a) improvement at maximal twist without restrictions on mq

You can show:


