The status of the scalar channel in chiral dynamics

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris XI, 91405 Orsay, France

August 5 2004

A chiralist's adventures in Scalarland

Contents

The scalar exception

Scalars and the QCD vacuum

The spectrum of the Dirac operator

Consequences for three-flavour χPT

Conclusions

Scalars: simple, elusive ...

Conceptually, scalars are very simple objects

- Simplest under space-time transformations
- Quantum numbers of the vacuum

But the light scalars do not seem to behave very nicely

- No scalar source provided by nature (≠ vector, axial)
- ▶ Mixture of broad and narrow resonances, $\sigma(\sim 600)$, $f_0(980)$...
- ▶ Hard to "interpret" : $q\bar{q}, q\bar{q}q\bar{q}, K\bar{K}$ molecule, glueballs...

...and hard to put together again

Scalar "multiplet" completely baffling

```
I = 0 : \sigma(\sim 600), f_0(980), f_0(1370), f_0(1500)...

I = 1 : a_0(980), a_0(1450)... I = 1/2 : \kappa(\sim 800), K_0^*(1430)...
```

Mass splittings? Gell-Mann-Okubo formula? Ideal mixing?

... and hard to put together again

Scalar "multiplet" completely baffling

I = 0: $\sigma(\sim 600), f_0(980), f_0(1370), f_0(1500)...$

I=1 : $a_0(980), a_0(1450)...$ $I=1/2: \kappa(\sim 800), K_0^*(1430)...$

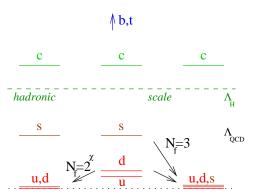
Mass splittings? Gell-Mann-Okubo formula? Ideal mixing?

Humpty Dumpty sat on a wall Humpty Dumpty had a great fall All the king's horses and all the king's men Couldn't put Humpty together again

Scalar channel has the quantum numbers of the vacuum

Nonperturbative properties of QCD vacuum related to all this scalar nonsense?

Three chiral limits of interest



$$m_u, m_d \rightarrow 0$$

$$N_f = 3$$
 : $m_s \rightarrow 0$

$$N_f = 2^{\chi}$$
 : m_s physical

$$N_f = 2^{\chi}$$
 : m_s physical $N_f = 2^{\text{lat}}$: no dynamical s

Three chiral limits of interest

Two versions of
$$\chi$$
PT

$$N_f = 2^{\chi}$$
: π only d.o.f

 $N_f = 2^{\chi}$: π only d.o.f (few param. & processes) $N_f = 3$: π, K, η d.o.f (more param. & processes)

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0|\bar{u}u|0\rangle \qquad \begin{cases} \Sigma(3) &= \Sigma(2; 0) \\ \Sigma(2^{\chi}) &= \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) &= \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0|\bar{u}u|0\rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2^{\chi}) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2; m_s) = \Sigma(2; 0) + m_s \frac{\partial \Sigma(2; m_s)}{\partial m_s} + O(m_s^2)$$

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0|\bar{u}u|0\rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2^{\chi}) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

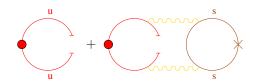
$$\Sigma(2^{\chi}) = \Sigma(3) + m_s^{\text{phys}} \lim_{m_u, m_d \to 0} i \int d^4x \ \langle 0 | \bar{u}u(x) \, \bar{s}s(0) | 0 \rangle + O(m_s^2)$$

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u}u | 0 \rangle \qquad \begin{cases} \Sigma(3) &= \Sigma(2; 0) \\ \Sigma(2^{\chi}) &= \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) &= \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s^{\text{phys}} \lim_{m_u, m_d \to 0} i \int d^4x \, \langle 0 | \bar{u}u(x) \, \bar{s}s(0) | 0 \rangle + O(m_s^2)$$

$\Sigma(2^{\chi})$ contains

- A "genuine" condensate Σ(3)
- An "induced" condensate
 m_s × (scalar N_c-suppressed)
 [effect from sea s̄s-pairs]



$$\Sigma(2^{\chi})$$

In the isospin limit $m=m_u=m_d$

$$SU(2^{\chi}): F_{\pi}^{2}M_{\pi}^{2} = 2m\Sigma(2^{\chi}) + O(m^{2})$$

 $SU(3): F_{\pi}^{2}M_{\pi}^{2} = 2m\Sigma(3) + O(m_{s}^{2}, mm_{s}, m^{2})$

$$\Sigma(2^{\chi})$$

In the isospin limit $m = m_u = m_d$

$$SU(2^{\chi}): F_{\pi}^{2} M_{\pi}^{2} = 2m\Sigma(2^{\chi}) + O(m^{2})$$

 $SU(3): F_{\pi}^{2} M_{\pi}^{2} = 2m\Sigma(3) + O(m_{s}^{2}, mm_{s}, m^{2})$

 $\pi\pi$ scattering data from K_{e4}^+ decay + analyticity, unitarity, crossing

E865 Brookhaven (2001) B.Ananthanarayan et al.

$$\frac{2m\Sigma(2^{\chi})}{F_{\pi}^{2}M_{\pi}^{2}}=0.81\pm0.08$$

SDG et al.

... even larger G.Colangelo et al.

 \implies $N_f = 2^{\chi} \chi PT$ framework experimentally confirmed

$$\Sigma(2^{\chi}) - \Sigma(3)$$

$$\Sigma(2^{\chi}) - \Sigma(3) \propto \Pi(0) \qquad \Pi(k^2) = \lim_{m_{u,d} \to 0} \int d^4x \ e^{-ik \cdot x} \langle \bar{u}u(x) \ \bar{s}s(0) \rangle_c$$

 $\Pi(0)$ from superconvergent sum rule

B. Moussallam

Im
$$\Pi(s) \propto \sum \sqrt{\frac{s - M_{\sigma}^2}{s}} \theta(s - M_{\sigma}^2) \langle 0 | \bar{u}u | \sigma \rangle \langle \sigma | \bar{s}s | 0 \rangle$$
 $\sigma = (\pi \pi, K\bar{K}, \ldots)_{J=0}^{\ell=0}$

$$\Sigma(2^{\chi}) - \Sigma(3)$$

$$\Sigma(2^{\chi}) - \Sigma(3) \propto \Pi(0) \qquad \Pi(k^2) = \lim_{m_{u,d} \to 0} \int d^4x \ e^{-ik \cdot x} \langle \bar{u}u(x) \ \bar{s}s(0) \rangle_c$$

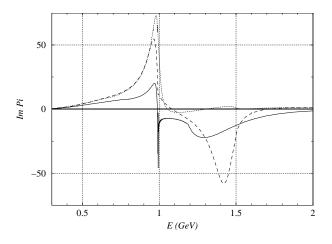
 $\Pi(0)$ from superconvergent sum rule

B. Moussallam

$$\operatorname{Im} \ \Pi(s) \propto \sum_{\sigma} \sqrt{\frac{s - M_{\sigma}^2}{s}} \theta(s - M_{\sigma}^2) \langle 0 | \bar{u}u | \sigma \rangle \langle \sigma | \bar{s}s | 0 \rangle \quad \sigma = (\pi \pi, K\bar{K}, \ldots)_{I=0}^{\ell=0}$$

- Requires π and K scalar form factors...
- ...in some cases, out of the physical region

 \implies Models for the interactions in $\pi\pi$ and $K\bar{K}$ channels



Various models for the scalar spectral function Im Π suggest

- $f_0(980)$ strongly coupled to nonstrange and strange scalar densities
- $\langle (\bar{u}u)(\bar{s}s)\rangle$ large and positive
- $\Sigma(3)$ could be as small as $\Sigma(2^{\chi})/2$

B. Moussallam, SDG

$$\Sigma(3)$$
:

$$\underbrace{\langle \bar{u}u \rangle|_{m_u = m_d = 0, m_s \text{ phys}}}_{\text{sizeable } \Sigma(2^{\chi})} = \underbrace{\langle \bar{u}u \rangle|_{m_u = m_d = m_s = 0}}_{\Sigma(3)} + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + \dots$$

$\Sigma(3)$: a fat cat,

$$\underbrace{\langle \bar{u}u \rangle|_{m_u = m_d = 0, m_s \text{ phys}}}_{\text{sizeable } \Sigma(2^{\chi})} = \underbrace{\langle \bar{u}u \rangle|_{m_u = m_d = m_s = 0}}_{\Sigma(3)} + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + \dots$$

 $\Sigma(3) \simeq \Sigma(2^{\chi})$ $\langle (\bar{u}u)(\bar{s}s) \rangle$ small Large- N_c picture

$\Sigma(3)$: a fat cat, or just a grin?

$$\underbrace{\frac{\langle \bar{u}u \rangle|_{m_u = m_d = 0, m_s \text{ phys}}}{\text{sizeable } \Sigma(2^{\chi})}} = \underbrace{\frac{\langle \bar{u}u \rangle|_{m_u = m_d = m_s = 0}}{\Sigma(3)}} + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + \dots$$

 $\Sigma(3)\simeq\Sigma(2^\chi) \ \langle (\bar{u}u)(\bar{s}s)
angle \ {
m small} \ {
m Large-}N_c \ {
m picture}$

 $\Sigma(3) < \Sigma(2^{\chi}) \ \langle (\bar{u}u)(\bar{s}s) \rangle$ large Big Zweig-rule violation

Well, I understand large- N_c pretty well...

But how could the other alternative occur?

The Dirac operator

In Euclidean QCD on a torus L^4 , the Dirac operator can be diagonalised

$$H[G] \equiv D = \gamma_{\mu}(\partial_{\mu} + iG_{\mu}) \qquad H\phi_{n} = \lambda_{n}[G]\phi_{n}$$

$$\lambda_{-n} \dots \lambda_{-3} \quad \lambda_{-2}\lambda_{-1} \quad 0 \quad \lambda_{1} \quad \lambda_{2} \quad \lambda_{3} \quad \dots \quad \lambda_{n}$$

$$|V|$$
modes

The Dirac operator

In Euclidean QCD on a torus L^4 , the Dirac operator can be diagonalised

$$H[G] \equiv D = \gamma_{\mu}(\partial_{\mu} + iG_{\mu}) \qquad H\phi_{n} = \lambda_{n}[G]\phi_{n}$$

$$\lambda_{-n} \dots \lambda_{-3} \quad \lambda_{-2}\lambda_{-1} \quad 0 \quad \lambda_{1} \quad \lambda_{2} \quad \lambda_{3} \quad \dots \quad \lambda_{n}$$

$$|V|$$
modes

A correlation function expressed as a statistical average over G

$$\ll$$
 $\Gamma \gg \propto \int dG \ e^{-S_{YM}[G]} \prod_{j} \Delta(m_{j}|G) \ \Gamma$

with the fermionic determinant
$$\Delta(m_j|G) \propto m^{|\nu[G]|} \prod_{j=1}^n (m_j^2 + {\lambda_n}^2)$$

Scalar density $\bar{q}q$ Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$ $\Sigma(N_f)$ Average e.v. density around 0 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

Scalar density
$$\bar{q}q$$
 Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$
 $\Sigma(N_f)$ Average e.v. density around 0
 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

For order parameters dominated by lowest Dirac e.v. like $\Sigma(N_f)$

- ▶ Dependence on m_s through fermionic determinant $\Delta(m_s|G)$
- \triangleright IR end of fermionic determinant increasing function of m_s

$$\Delta_{IR}(m_s|G) \propto m_s^{|
u[G]|} \prod_{n>0}^K (m_s^2 + {\lambda_n}^2)$$

Scalar density
$$\bar{q}q$$
 Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$
 $\Sigma(N_f)$ Average e.v. density around 0
 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

For order parameters dominated by lowest Dirac e.v. like $\Sigma(N_f)$

- Dependence on m_s through fermionic determinant $\Delta(m_s|G)$
- \triangleright IR end of fermionic determinant increasing function of m_s

$$\Delta_{IR}(m_s|G) \propto m_s^{|\nu[G]|} \prod_{n>0}^K (m_s^2 + \frac{\lambda_n^2}{n})$$

$$\Sigma(2,0) < \Sigma(2,m_s)$$

Scalar density
$$\bar{q}q$$
 Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$
 $\Sigma(N_f)$ Average e.v. density around 0
 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

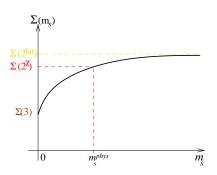
For order parameters dominated by lowest Dirac e.v. like $\Sigma(N_f)$

- ▶ Dependence on m_s through fermionic determinant $\Delta(m_s|G)$
- \triangleright IR end of fermionic determinant increasing function of m_s

$$\Delta_{IR}(m_s|G) \propto m_s^{|\nu[G]|} \prod_{n>0}^K (m_s^2 + \frac{\lambda_n^2}{n})$$

$$\Sigma$$
(3) < Σ (2^χ) Decrease of Σ due to sea $s\bar{s}$ -pairs (similar effect for $F^2 = \lim_{N_F} F_\pi^2$)

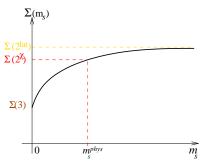
Vacuum fluctuations of ss pairs



$$\frac{\Sigma(2^{\chi}) \sim \Sigma(3)}{\text{Mean}} \quad + \quad \langle \bar{u}u \ \bar{s}s \rangle$$
Fluctuations

of the density of Dirac eigenvalues

Vacuum fluctuations of ss pairs



$$\frac{\Sigma(2^{\chi}) \sim \Sigma(3)}{\text{Mean}} + \langle \bar{u}u \; \bar{s}s \rangle$$
Fluctuations

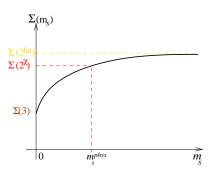
of the density of Dirac eigenvalues

Mean-field

- Large average, small fluct.
- Zweig rule not violated in 0⁺
- ▶ No impact of strange sea quarks

$$\Sigma(3) \simeq \Sigma(2^{\chi})$$

Vacuum fluctuations of ss pairs



- Large average, small fluct.
- Zweig rule not violated in 0+
- No impact of strange sea quarks $\Sigma(3) \simeq \Sigma(2^{\chi})$

$$\Sigma(2^{\chi}) \sim \Sigma(3) + \langle \bar{u}u \; \bar{s}s \rangle$$
Mean & Fluctuations

of the density of Dirac eigenvalues

Near a critical point

- Small average, large fluct.
- Large violation of Zweig rule
- Strange sea quarks important

$$\Sigma(3) < \Sigma(2^{\chi})$$

$\Sigma(3)$ might be smaller than usually assumed...

So what ?

Convergence and instabilities

$$F_{\pi}^{2}M_{\pi}^{2} = 2m\Sigma(3) + 64m(m_{s} + 2m)B_{0}^{2}\Delta L_{6} + 64m^{2}B_{0}^{2}\Delta L_{8} + O(m_{q}^{2})$$

- $B_0 = -\lim_{m_u, m_d, m_s \to 0} \langle \bar{u}u \rangle / F_{\pi}^2$
- $\Delta L_8 = L_8(M_\rho) + 0.20 \cdot 10^{-3} = O(p^4) \text{ LEC} + \chi \log$
- $\Delta L_6 = L_6(M_\rho) + 0.26 \cdot 10^{-3} = O(p^4) \text{ LEC} + \chi \log 10^{-3}$

Convergence and instabilities

$$F_{\pi}^{2}M_{\pi}^{2} = 2m\Sigma(3) + 64m(m_{s} + 2m)B_{0}^{2}\Delta L_{6} + 64m^{2}B_{0}^{2}\Delta L_{8} + O(m_{q}^{2})$$

- $B_0 = -\lim_{m_u, m_d, m_s \to 0} \langle \bar{u}u \rangle / F_{\pi}^2$
- $\Delta L_8 = L_8(M_\rho) + 0.20 \cdot 10^{-3} = O(\rho^4) \text{ LEC} + \chi \log$
- $\Delta L_6 = L_6(M_\rho) + 0.26 \cdot 10^{-3} = O(\rho^4) \text{ LEC} + \chi \log$

L_6 is the awesome guy here

- ▶ Enhanced by m_s , related to $\langle (\bar{u}u)(\bar{s}s)\rangle$...
- ...and "guestimated" assuming Zweig rule in scalar sector

Numerical competition between $O(p^2)$ and $O(p^4)$? Source of instability in chiral series ?

A usual (and dangerous) treatment of $N_f = 3$ series

$$X(3) \equiv \frac{2m\Sigma(3)}{F_{\pi}^{2}M_{\pi}^{2}} = \frac{2m\Sigma(3)}{2m\Sigma(3) + \Delta L_{6,8} + O(p^{6})}$$

$$\rightarrow \frac{1 - 16\frac{2M_{K}^{2} + M_{\pi}^{2}}{F_{\pi}^{2}}\Delta L_{6} - \frac{M_{\pi}^{2}}{F_{\pi}^{2}}\Delta L_{8} + \dots$$

using $1/(1+x)=1-x+\ldots$ and reexpressing mB_0 and m_sB_0

A usual (and dangerous) treatment of $N_f = 3$ series

$$X(3) \equiv \frac{2m\Sigma(3)}{F_{\pi}^{2}M_{\pi}^{2}} = \frac{2m\Sigma(3)}{2m\Sigma(3) + \Delta L_{6,8} + O(p^{6})}$$

$$\rightarrow 1 - 16\frac{2M_{K}^{2} + M_{\pi}^{2}}{F_{\pi}^{2}}\Delta L_{6} - \frac{M_{\pi}^{2}}{F_{\pi}^{2}}\Delta L_{8} + \dots$$
using $1/(1+x) = 1 - x + \dots$ and reexpressing mB_{0} and $m_{s}B_{0}$

For
$$r=25$$
, $L_6(M_{
ho})=0.4\cdot 10^{-3}$, $L_8(M_{
ho})=0.9\cdot 10^{-3}$
$$X(3)=\frac{1}{2}-0.62+0.04+O(p^6)$$

- ▶ No fluctuations : $\Delta L_6 = L_6(M_\rho) + 0.23 \cdot 10^{-3}$ very close to 0
- ▶ If $(m_s$ -enhanced) fluctuations, $N_f = 3$ series require extra care

There may be large fluctuations of $s\bar{s}$ pairs with a dramatic impact on the convergence of SU(3) chiral expansion

There may be large fluctuations of $s\bar{s}$ pairs with a dramatic impact on the convergence of SU(3) chiral expansion

▶ Dismiss the whole SU(3) χ PT (shame on you !)

There may be large fluctuations of $s\bar{s}$ pairs with a dramatic impact on the convergence of SU(3) chiral expansion

- ▶ Dismiss the whole SU(3) χ PT (shame on you !)
- Assume the absence of fluctuations and compare with experiment

H.Bijnens et al. @ $O(p^6)$

There may be large fluctuations of $s\bar{s}$ pairs with a dramatic impact on the convergence of SU(3) chiral expansion

- ▶ Dismiss the whole SU(3) χ PT (shame on you !)
- Assume the absence of fluctuations and compare with experiment

H.Bijnens et al. @ $O(p^6)$

• Determine $\Sigma(3)$ and fluctuations from experiment

SDG, L. Girlanda, N. Fuchs, J. Stern

- Assume overall convergence for a subset of observables
- Leave open a numerical competition between LO and NLO
- ▶ Do not reexpress perturbatively ratios of observables $1/(1+x) \neq 1-x$
- Determine the size of fluctuations from $\pi\pi$, πK scattering...

There may be large fluctuations of $s\bar{s}$ pairs with a dramatic impact on the convergence of SU(3) chiral expansion

- ▶ Dismiss the whole SU(3) χ PT (shame on you !)
- Assume the absence of fluctuations and compare with experiment

H.Bijnens et al. @ $O(p^6)$

• Determine $\Sigma(3)$ and fluctuations from experiment

SDG, L. Girlanda, N. Fuchs, J. Stern

- Assume overall convergence for a subset of observables
- Leave open a numerical competition between LO and NLO
- ▶ Do not reexpress perturbatively ratios of observables $1/(1+x) \neq 1-x$
- ▶ Determine the size of fluctuations from $\pi\pi$, πK scattering...

$$\pi\pi$$
 scattering $\Longrightarrow 2m_s/(m_u+m_d) \ge 14$ @ 95 % CL

Lattice connections

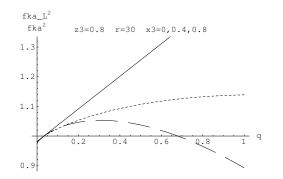
In case of large fluctuations with LO and NLO comparable \gg NNLO

- Not all observables have good convergence properties
- ▶ Trading chiral couplings for observables delicate $2mB_0 \rightarrow M_\pi^2$
- ▶ Chiral extrapolations modified : $\Sigma(3)/F(3)^2 \times \log$

Lattice connections

In case of large fluctuations with LO and NLO comparable \gg NNLO

- Not all observables have good convergence properties
- ▶ Trading chiral couplings for observables delicate $2mB_0 \rightarrow M_\pi^2$
- Chiral extrapolations modified : $\Sigma(3)/F(3)^2 \times \log$



$$(2+1)$$
 simulation $(m_{\rm lat}, m_{\rm lat}, m_s)$

$$\frac{\left.F_K^2\right|_{\mathrm{lat}}}{F_K^2} = F\left(q \equiv \frac{m_{\mathrm{lat}}}{m_s}\right)$$

for some choice of F(3) and m_s/m

Typical sea-quark/unquenched effect

Be careful when you use $N_f=3~\chi {\rm PT}$ for chiral extrapolations. . .

Be careful when you use $N_f=3~\chi {\rm PT}$ for chiral extrapolations. . .

It might prove a tool more difficult to use than expected!

Scalar sector exhibit very unusual features ... related to nonperturbative properties of QCD vacuum ?

- Scalar sector exhibit very unusual features ... related to nonperturbative properties of QCD vacuum ?
- ► Two chiral limits

$$N_f=3:m_u,m_d,m_s
ightarrow 0 \ N_f=2^\chi:m_u,m_d
ightarrow 0,m_s$$
 physical

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$$

- Scalar sector exhibit very unusual features
 ... related to nonperturbative properties of QCD vacuum ?
- Two chiral limits

$$N_f=3:m_u,m_d,m_s
ightarrow 0 \ N_f=2^\chi:m_u,m_d
ightarrow 0,m_s$$
 physical

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$$

▶ N_f -dependence of order parameters \leftrightarrow Role of sea $s\bar{s}$ -pairs \leftrightarrow Zweig rule violation in scalar sector

4日 → 4回 → 4 至 → 4 至 → 9 Q ○

- Scalar sector exhibit very unusual features
 ... related to nonperturbative properties of QCD vacuum ?
- Two chiral limits

$$N_f=3:m_u,m_d,m_s o 0 \ N_f=2^\chi:m_u,m_d o 0,m_s$$
 physical

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$$

- ▶ N_f -dependence of order parameters \leftrightarrow Role of sea $s\bar{s}$ -pairs \leftrightarrow Zweig rule violation in scalar sector
- In terms of the spectrum of the Dirac operator $\Sigma(2^{\chi}) \geq \Sigma(3)$ $\frac{\Sigma(3) \text{ average density }}{\langle (\bar{u}u)(\bar{s}s)\rangle} \text{ of eigenvalues around 0}$ $\implies \text{Possibility of small } \Sigma(3) \text{ and large fluctuations}$

▶ In $N_f=3$ $O(p^4)$ χ PT, fluctuations mirrored by L_4 and L_6 L_6 (L_4) related to N_f -dependence of Σ (F^2)

- ▶ In $N_f = 3~O(p^4)~\chi$ PT, fluctuations mirrored by L_4 and L_6 L_6 (L_4) related to N_f -dependence of Σ (F^2)
- ▶ Due to m_s -enhancement, $L_{4.6}(M_{\rho})$ a few 10^{-3} larger than

$$L_6^{
m no~fluc}(M_
ho) = -0.23 \cdot 10^{-3} \qquad L_4^{
m no~fluc} = -0.51 \cdot 10^{-3}$$

means large fluctuations ...

- ▶ In $N_f = 3~O(p^4)~\chi$ PT, fluctuations mirrored by L_4 and L_6 L_6 (L_4) related to N_f -dependence of Σ (F^2)
- ▶ Due to m_s -enhancement, $L_{4,6}(M_{\rho})$ a few 10^{-3} larger than

$$L_6^{
m no~fluc}(M_{
ho}) = -0.23 \cdot 10^{-3} \qquad L_4^{
m no~fluc} = -0.51 \cdot 10^{-3}$$

means large fluctuations . . .

ightharpoonupleading to numerical competition of LO and NLO in SU(3) series

- ▶ In $N_f = 3~O(p^4)~\chi$ PT, fluctuations mirrored by L_4 and L_6 L_6 (L_4) related to N_f -dependence of Σ (F^2)
- ▶ Due to m_s -enhancement, $L_{4,6}(M_{\rho})$ a few 10^{-3} larger than

$$L_6^{
m no~fluc}(M_{
ho}) = -0.23 \cdot 10^{-3}$$
 $L_4^{
m no~fluc} = -0.51 \cdot 10^{-3}$

means large fluctuations . . .

- lacksquareleading to numerical competition of LO and NLO in SU(3) series
- More care needed to perform chiral extrapolations (good observables, reexpression of couplings, $\chi \log$ curvature)

- ▶ In $N_f = 3~O(p^4)~\chi$ PT, fluctuations mirrored by L_4 and L_6 L_6 (L_4) related to N_f -dependence of Σ (F^2)
- ▶ Due to m_s -enhancement, $L_{4,6}(M_{\rho})$ a few 10^{-3} larger than

$$L_6^{
m no~fluc}(M_{
ho}) = -0.23 \cdot 10^{-3}$$
 $L_4^{
m no~fluc} = -0.51 \cdot 10^{-3}$

means large fluctuations . . .

- $lue{}$ leading to numerical competition of LO and NLO in SU(3) series
- More care needed to perform chiral extrapolations (good observables, reexpression of couplings, $\chi \log$ curvature)

We must assess experimentally how large the vacuum fluctuations of $s\bar{s}$ -pairs are !

The scalar channel is definitely very talkative. . .

but its shouting is sometimes hard to understand!