Two baryons on a lattice Phase shifts and beyond

Will Detmold

University of Washington

Outline

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

Nuclear physics from lattice QCD

Electroweak properties of two nucleon systems [WD & Martin Savage, hep-lat/0403007]

Two particle energy levels in background fields

- **Radiative capture** $n p \longrightarrow d \gamma$
- Deuteron breakup: $\overline{\nu}_e d \longrightarrow n n e^+$
- Deuteron magnetic moment
- Other recent highlights
 - Twisted boundary conditions/Aharonov-Bohm effect [Bedaque '04]
 - Hyperon nucleon scattering [Beane, Bedaque, Parreño & Savage '03]

Nuclear physics from lattice QCD

NPLQCD

- Nuclear physics
- Two nucleon sector

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- Traditional nuclear physics: based on meson exchange models, generic functional forms etc
 - Not really clear what questions to ask of lattice QCD
 - NN potential not an observable/measurable quantity
- Effective field theory (modern) approach to nuclear physics [Weinberg 90,91] is more systematic
 - Clear what we want to know from the lattice: fix counterterms via matching. E.g.

$$\mu_d = f(m_\pi, \kappa_0, \gamma, \boldsymbol{L_2})$$

- Nuclear physics from first principles
- Particularly import in context of unphysical masses and partially-quenched simulations
- Once counterterms are fixed, the physical limit can be taken

Two nucleon sector

NPLQCDNuclear physics

Two nucleon sector

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

Two nucleon scattering states: quantum numbers of angular momentum (J) and isospin (I)

NN scattering S-matrix described in terms of phase shifts and defined by scattering amplitude (p: COM momentum)

$$S \equiv \exp[2i\delta(p)] \equiv 1 + \frac{i \ p \ M}{2\pi} \mathcal{A}$$

$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{p \cot \delta(p) - i p}$$

-

Two nucleon sector

 NPLQCD

 Nuclear physics

 Two nucleon sector

 Electroweak NN properties

 Scattering in background fields

 Aharonov-Bohm effect

 ΛN scattering

 Summary

Two nucleon scattering states: quantum numbers of angular momentum (J) and isospin (I)

NN scattering S-matrix described in terms of phase shifts and defined by scattering amplitude (p: COM momentum)

Effective range expansion (ERE): scattering length(a), effective range (r), shape parameters (q_i)

$$p \cot \delta(p) = -\frac{1}{a} + \frac{r}{2}p^2 + \sum_i q_i p^{2i} + \dots$$

Two nucleon sector

NPLQCD

Nuclear physics
Two nucleon sector

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

Summary

Two nucleon scattering states: quantum numbers of angular momentum (J) and isospin (I)

NN scattering S-matrix described in terms of phase shifts and defined by scattering amplitude (p: COM momentum)

Effective range expansion (ERE): scattering length(a), effective range (r), shape parameters (q_i)

$$p \cot \delta(p) = -\frac{1}{a} + \frac{r}{2}p^2 + \sum_i q_i p^{2i} + \dots$$

•
$${}^{1}S_{0}$$
 : $J = 0, I = 1$
• $a_{1} = -23.714$ fm, $r_{1} = 2.73$ fm

•
$${}^{3}S_{1}$$
 : $J = 1, I = 0$

- mixes with ${}^{3}D_{1}$ channel
- $a_3 = 5.425 \text{ fm}, r_3 = 1.75 \text{ fm}$
- deuteron bound state: B = 2.2 MeV, $\gamma = 45$ MeV

Neutrino masses and mixing

NPLQCD

- Electroweak NN properties

 Neutrino masses and mixing
 Nuclear cross-sections
- Lattice cross-sections
- Two particle energies
- **#**EFT
- EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

 SNO and SuperK have given conclusive evidence for non-electron neutrino components in ⁸B solar neutrino flux → NEUTRINO OSCILLATIONS!!!
 Results based on three reactions (x = e, μ, τ):
 σ_{CC}: ν_e d → p p e⁻ Charged current
 σ_{NC}: ν_x d → p n ν_x Neutral current
 σ_{ES}: ν_x e⁻ → ν_x e⁻ Elastic scattering

• Event rates \implies neutrino fluxes (f_{ν_i}) :

$$R_{CC/NC/ES} \sim \int dE \,\sigma_{CC/NC/ES} f_{\nu_{e/x/x}}$$

Cross sections are a major source of theoretical uncertainty in determination of fluxes

Nuclear cross-sections

NPLQCD

Electroweak NN properties

Neutrino masses and mixing
Nuclear cross-sections
Lattice cross-sections

- Two particle energies
- π EFT
- EW properties in π EFT

Scattering in background fields

- Aharonov-Bohm effect
- ΛN scattering
- Summary

- Elastic scattering cross-section is well known, but the CC and NC cross-sections have large uncertainties
- Difficulties are because of the poorly constrained two-body interaction with the external current
 - Meson exchange currents (MEC's) in potential models
 - Effective Field Theory: multi-nucleon current operators
- Most relevant operator is zero-derivative, isovector axial two-body current $\sim L_{1,A}$
- In terms of this coupling (at $E_{\nu} = 10 \text{ MeV}$):

 $\sigma_{CC} = 4.07 + 0.12 L_{1,A} \qquad \sigma_{NC} = 1.76 + 0.056 L_{1,A}$

- $L_{1,A}$ is only poorly known: $L_{1,A} = 4 \pm 6$ fm³ from experiment [*Chen, Heeger & Robertson, '03*]
- A lattice determination of it would be very useful

$\sigma_{CC/NC}$ from the lattice

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections

Lattice cross-sections

Two particle energies

- #EFT
- EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

How does one determine these hadronic cross-sections (tow-body counterterms) from the lattice?

• Measure $\langle d(\mathbf{p}=0)|J_{5,a}^{\mu}|n(\mathbf{p}=0)p(\mathbf{p}=0)\rangle$ at unphysical kinematics

- Would allow determination of the coefficients ($L_{1,A}$ etc) in the low energy EFT to give an ab initio calculation from QCD
- Extremely difficult: one or two orders of magnitude harder than two-particle energies

NPLQCD

- Electroweak NN properties
- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies
- **#**EFT
- EW properties in π EFT
- Scattering in background fields
- Aharonov-Bohm effect
- ΛN scattering
- Summary
- _____

A simpler way ...

- By measuring the proton mass on a lattice with a background magnetic field, one can extract the magnetic moment [Bernard et al.; Martinelli et al.] and even polarisability [F. Lee et al.]
- Using same philosophy: by calculating two-particle energies in background magnetic field one can probe eg: deuteron magnetic moment
- Background (Z_0) axial field (a flux of neutrinos across the lattice): extract axial, isovector two-nucleon coupling $L_{1,A}$, weak moment of the deuteron, ...
- Need additional ensembles of gauge configurations
- Computational advantage for isosinglet: disconnected contributions automatically included

NPLQCD

- Electroweak NN properties
- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies
- #EFT
- EW properties in π EFT
- Scattering in background fields
- Aharonov-Bohm effect

 ΛN scattering

Summary

ERE describes NN data but not eg: $d \gamma \longrightarrow n p$ Improvements:

- Traditional potential models: meson-exchange currents (MECs)
- EFT provides a model independent approach (but requires parameters to be determined)

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

For $|\mathbf{p}| \ll m_{\pi}/2$, only effective degrees of freedom are nucleons and external electroweak currents: #EFT

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

For |p| ≪ m_π/2, only effective degrees of freedom are nucleons and external electroweak currents: *π*EFT
 Lagrangian involves all possible interactions with correct symmetries (M_N phased away) [Chen, Savage, Rupak]:

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

For |p| ≪ m_π/2, only effective degrees of freedom are nucleons and external electroweak currents: *π*EFT
 Lagrangian involves all possible interactions with correct symmetries (M_N phased away) [Chen, Savage, Rupak]:

$$\mathcal{L}_1 = N^{\dagger} \left[iD_0 + \frac{|\mathbf{D}|^2}{2M} \right] N$$

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

For |p| ≪ m_π/2, only effective degrees of freedom are nucleons and external electroweak currents: *π*EFT
 Lagrangian involves all possible interactions with correct symmetries (M_N phased away) [Chen, Savage, Rupak]:

$$\mathcal{L}_1 = N^{\dagger} \left[iD_0 + \frac{|\mathbf{D}|^2}{2M} \right] N$$

 $\mathcal{L}_{2}^{{}^{3}S_{1}} = C_{0}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}N) + C_{2}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}\mathbf{D}^{2}N) + \dots$ $\mathcal{L}_{2}^{{}^{1}S_{0}} = \hat{C}_{0}(N^{T}\bar{P}^{a}N)^{\dagger}(N^{T}\bar{P}^{a}N) + \hat{C}_{2}(N^{T}\bar{P}^{a}N)^{\dagger}(N^{T}\bar{P}^{a}\mathbf{D}^{2}N) + \dots$

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

For |p| « m_π/2, only effective degrees of freedom are nucleons and external electroweak currents: #EFT
 Lagrangian involves all possible interactions with correct symmetries (M_N phased away) [Chen, Savage, Rupak]:

$$\mathcal{L}_1 = N^{\dagger} \left[iD_0 + \frac{|\mathbf{D}|^2}{2M} \right] N$$

 $\mathcal{L}_{2}^{{}^{3}S_{1}} = C_{0}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}N) + C_{2}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}\mathbf{D}^{2}N) + \dots$ $\mathcal{L}_{2}^{{}^{1}S_{0}} = \hat{C}_{0}(N^{T}\bar{P}^{a}N)^{\dagger}(N^{T}\bar{P}^{a}N) + \hat{C}_{2}(N^{T}\bar{P}^{a}N)^{\dagger}(N^{T}\bar{P}^{a}\mathbf{D}^{2}N) + \dots$

$$\mathcal{L}_{EM} = \frac{e}{2M} N^{\dagger} (\kappa_0 + \kappa_1 \tau_3) \sigma_i B_i N + e L_1 (N^T P_i N)^{\dagger} (N^T \bar{P}^3 N) \mathbf{B}_i + e L_2 \epsilon_{ijk} (N^T P_i N)^{\dagger} (N^T P_j N) \mathbf{B}_k + \dots \kappa_0 = \frac{1}{2} (\kappa_p + \kappa_n) \qquad \kappa_1 = \frac{1}{2} (\kappa_p - \kappa_n)$$

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

For |p| ≪ m_π/2, only effective degrees of freedom are nucleons and external electroweak currents: *π*EFT
 Lagrangian involves all possible interactions with correct symmetries (M_N phased away) [Chen, Savage, Rupak]:

$$\mathcal{L}_1 = N^{\dagger} \left[iD_0 + \frac{|\mathbf{D}|^2}{2M} \right] N$$

 $\mathcal{L}_{2}^{{}^{3}S_{1}} = C_{0}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}N) + C_{2}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}\mathbf{D}^{2}N) + \dots$ $\mathcal{L}_{2}^{{}^{1}S_{0}} = \hat{C}_{0}(N^{T}\bar{P}^{a}N)^{\dagger}(N^{T}\bar{P}^{a}N) + \hat{C}_{2}(N^{T}\bar{P}^{a}N)^{\dagger}(N^{T}\bar{P}^{a}\mathbf{D}^{2}N) + \dots$

$$\mathcal{L}_{EM} = \frac{e}{2M} N^{\dagger} (\kappa_0 + \kappa_1 \tau_3) \sigma_i B_i N + e \mathbf{L}_1 (N^T P_i N)^{\dagger} (N^T \bar{P}^3 N) \mathbf{B}_i + e \mathbf{L}_2 \epsilon_{ijk} (N^T P_i N)^{\dagger} (N^T P_j N) \mathbf{B}_k + \dots$$

$$\mathcal{L}_{EW} = -gW \, \frac{g_A}{2} \, N^{\dagger} \sigma^z \tau^3 N - \frac{gW \, L_{1,A}}{2M} (N^T P_3 N)^{\dagger} (N^T \bar{P}^3 N) + \dots$$

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

Large scattering lengths lead to interesting power counting: small expansion parameter is $Q \sim p/m_{\pi}, \ \gamma/m_{\pi}, \ a_1^{-1}/m_{\pi}$

- Reproduces ERE and describes low energy EW processes
- Mixing with higher partial waves is suppressed by m_{π}^{-J}
- Exact scattering amplitude:

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies

● #EFT

- EW properties in π EFT
- Scattering in background fields

 \mathcal{A}

Aharonov-Bohm effect

 ΛN scattering

Summary

Large scattering lengths lead to interesting power counting: small expansion parameter is Q ~ p/m_π, γ/m_π, a₁⁻¹/m_π
 Reproduces ERE and describes low energy EW processes

Mixing with higher partial waves is suppressed by m^{-J}
 Exact scattering amplitude:

$$= \left[\sum_{n} C_{2n} p^{2n}\right] + \left[\sum_{n} C_{2n} p^{2n}\right] I_0 \left[\sum_{n} C_{2n} p^{2n}\right] + \dots \\ = \frac{\sum_{n} C_{2n} p^{2n}}{1 - I_0(p) \sum_{n} C_{2n} p^{2n}}$$

Loop integral [Kaplan, Savage & Wise]

$$I_0^{PDS} = \left(\frac{\mu}{2}\right)^{4-D} \int \frac{d^{D-1}\mathbf{k}}{E - |\mathbf{k}|^2/M + i\epsilon} = -\frac{M}{4\pi}(\mu + ip)$$

Electroweak properties in #**EFT**

NPLQCD

Electroweak NN properties

- Neutrino masses and mixing
- Nuclear cross-sections
- Lattice cross-sections
- Two particle energies
- #EFT

• EW properties in π EFT

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- All low energy EW properties of two nucleon states are described
- Eg: deuteron magnetic moment

$$\mu_d = \frac{2}{1 - \gamma r_3} \left(\gamma L_2 + \kappa_0 \right)$$

• Eg: radiative capture $n \ p \rightarrow d\gamma$ near threshold (1S_0 to 3S_1)

$$\sigma(np \to d\gamma) = \frac{4\pi\alpha \left(\gamma_0^2 + |\mathbf{p}|^2\right)^3}{M^4 \gamma_0^3 |\mathbf{p}|} \left[|\tilde{X}_{M1}|^2 + |\tilde{X}_{E1}|^2 + ... \right]$$

$$\tilde{X}_{M1} = \frac{1}{\sqrt{1 - \gamma_0 r_3}} \frac{1}{-\frac{1}{a_1} + \frac{1}{2} r_1 |\mathbf{p}|^2 - i |\mathbf{p}|} \\ \times \left[\frac{\kappa_1 \gamma_0^2}{\gamma_0^2 + |\mathbf{p}|^2} \left(\gamma_0 - \frac{1}{a_1} + \frac{1}{2} r_1 |\mathbf{p}|^2 \right) + L_1 \frac{\gamma_0^2}{2} \right]$$

NPLQCD

Electroweak NN properties

Scattering in background fields

Scattering in Euclidean space

- Scattering on a finite volume
- Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$
- Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Maiani-Testa theorem: cannot obtain S-matrix elements away from kinematic thresholds from infinite volume Euclidean space calculations

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
- Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment

```
\bullet n \ p \ \longrightarrow \ d \ \gamma
```

```
\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+
```

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Maiani-Testa theorem: cannot obtain S-matrix elements away from kinematic thresholds from infinite volume Euclidean space calculations

Lüscher ['86]: elastic scattering amplitude uniquely related to the energy shifts of two particle states at finite volume

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$

```
\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+
```

Mass dependence

Aharonov-Bohm effect

ΛN	scattering
-------------	------------

Summary

Maiani-Testa theorem: cannot obtain S-matrix elements away from kinematic thresholds from infinite volume Euclidean space calculations

Lüscher ['86]: elastic scattering amplitude uniquely related to the energy shifts of two particle states at finite volume

Two particle energies are given by poles in scattering amplitude: solve for eigenvalues $\mathcal{A}^{-1} = 0$

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
 Background fields
- Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$

```
\bullet \overline{\nu}_e \ d \ \longrightarrow \ n \ n \ e^+
```

Mass dependence

Aharonov-Bohm effect

```
\Lambda N scattering
```

Summary

Maiani-Testa theorem: cannot obtain S-matrix elements away from kinematic thresholds from infinite volume Euclidean space calculations

Lüscher ['86]: elastic scattering amplitude uniquely related to the energy shifts of two particle states at finite volume

Two particle energies are given by poles in scattering amplitude: solve for eigenvalues $\mathcal{A}^{-1} = 0$

$$0 = \mathcal{A}^{-1}(L) = p \cot \delta(p) - \frac{M\mu}{4\pi} - I_0^{PDS}(L)$$

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$
- Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

• On a finite volume
$$L \otimes L \otimes L$$
: $\int d^3k \longrightarrow \frac{1}{L^3} \sum_{\mathbf{k}}$

$$I_0^{PDS}(L) = \frac{1}{L^3} \sum_{\mathbf{k}}^{PDS} \frac{1}{E - |\mathbf{k}|^2 / M}$$

NPLQCD

Electroweak NN properties

Scattering in background fields

Scattering in Euclidean space
Scattering on a finite volume
Asymptotic Forms

- Background fields
- Asymmetric boxes
- Deuteron magnetic moment

$$\bullet n \ p \ \longrightarrow \ d \ \gamma$$

 $\bullet \overline{\nu}_e \ d \ \longrightarrow \ n \ n \ e^+$

• Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

• On a finite volume
$$L \otimes L \otimes L$$
: $\int d^3k \longrightarrow \frac{1}{L^3} \sum_{\mathbf{k}} d^3k$

$$I_0^{PDS}(L) = \frac{1}{L^3} \sum_{\mathbf{k}}^{\Lambda} \frac{1}{E - |\mathbf{k}|^2 / M} - \int^{\Lambda} \frac{d^3k}{|\mathbf{k}|^2 / M} + \int_{PDS} \frac{d^3k}{|\mathbf{k}|^2 / M}$$

NPLQCD

Electroweak NN properties

Scattering in background fields
Scattering in Euclidean space
Scattering on a finite volume
Asymptotic Forms
Background fields
Asymmetric boxes
Deuteron magnetic moment

Ι

- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\overline{\nu}_e d \longrightarrow n n e^+$ • Mass dependence

·

Aharonov-Bohm effect

 ΛN scattering

Summary

• On a finite volume
$$L \otimes L \otimes L$$
: $\int d^3k \longrightarrow \frac{1}{L^3} \sum_{\mathbf{k}} d^3k$

$$\mathbf{n} \left(= \frac{L}{2\pi} \mathbf{k}\right) \in \mathbb{Z}_3, \, \tilde{p}^2 = \frac{L^2}{4\pi} E \, M$$

Defines dimensionally regulated (PDS) sum

Equivalent to Lüscher's analytically continuation of generalized ζ-function

NPLQCD

Electroweak NN properties

Scattering in background fields

Scattering in Euclidean space
Scattering on a finite volume
Asymptotic Forms
Background fields
Asymmetric boxes
Deuteron magnetic moment

1

- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\overline{\nu}_e d \longrightarrow n n e^+$ • Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

• On a finite volume
$$L \otimes L \otimes L$$
: $\int d^3k \longrightarrow \frac{1}{L^3} \sum_{\mathbf{k}} d^3k$

$$\mathbf{n} \left(= \frac{L}{2\pi} \mathbf{k}\right) \in \mathbb{Z}_3, \, \tilde{p}^2 = \frac{L^2}{4\pi} E \, M$$

Defines dimensionally regulated (PDS) sum

- Equivalent to Lüscher's analytically continuation of generalized ζ-function
- Numerically determine energy eigenstates:

$$p \cot \delta(p) - \frac{1}{\pi L} S(\tilde{p}^2) = 0$$

$$S(\tilde{p}^2) = \sum_{\mathbf{n}}^{\Lambda_n} \frac{1}{|\mathbf{n}|^2 - \tilde{p}^2} - 4\pi\Lambda_n$$

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume

 Asymptotic Forms

 Background fields
 Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\overline{\nu}_e d \longrightarrow n n e^+$ • Mass dependence

E'

Aharonov-Bohm effect

 ΛN scattering

Summary

• Asymptotic expansions [Lüscher]: $L \to \infty$

$$E_{0} = \frac{4\pi a}{ML^{3}} \left[1 - c_{1} \left(\frac{a}{L}\right) + c_{2} \left(\frac{a}{L}\right)^{2} + \dots \right]$$

$$E_{1} = \frac{4\pi^{2}}{ML^{2}} - \frac{12 \tan \delta_{0}}{ML^{2}} \left[1 + c_{1}' \tan \delta_{0} + c_{2}' \tan \delta_{0} + \dots \right]$$

$$\stackrel{(^{3}S_{1})}{_{-1}} = -\frac{\gamma_{0}^{2}}{M} \left[1 + \frac{12}{\gamma_{0}L(1 - \gamma_{0}r_{3})} e^{-\gamma_{0}L} + \dots \right]$$

Small L expansion also exists: $L/a \ll 1$ [Beane et al.]

- Minimum *L* set by range of interaction: $L > r \sim m_{\pi}^{-1}$
- Two-particle energy levels have been studied on the lattice:
 - Scalar theory [Göckeler et al. '94]
 - NN, KN, πN quenched, large masses [Aoki et al., '95]
 - $\pi\pi$ (I=2) unquenched [Aoki et al., '03]
- So far (hadronic results) not realistic

Background fields in QCD

NPLQCD

Electroweak NN properties

- Scattering in background fields • Scattering in Euclidean space • Scattering on a finite volume
- Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$
- Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

$E \begin{vmatrix} B=0 & B=B_{0} \\ & 1S_{0} & m=0 \\ & m=+1 \\ & m=0 \\ & 3S_{1} & m=-1 \end{vmatrix}$

Also split two particle mass eigenstates

Background fields in QCD

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
 Background fields
 Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

Also split two particle mass eigenstates
 Magnetic fields on the lattice: U_µ(x) → U^{ext}_µ(x)U_µ(x)

 $U_{0,3}^{ext}(x) = 1$ $U_1^{ext}(x) = e^{+i\beta x_2}$ $U_2^{ext}(x) = e^{-i\beta x_1}$

- Weak background fields can be implemented: couple differently to left- and right- chirality quarks
 - eg: DW fermions with background field varying in 5th direction
 - Similar shifts in two particle states

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
- Background fields

Asymmetric boxes

- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$
- Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Landau levels: in magnetic field, single particle states are not plane waves in transverse directions

Two particle states also have analogous effects
Modifications small if

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
 Background fields

 Asymmetric boxes

 Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Landau levels: in magnetic field, single particle states are not plane waves in transverse directions

 $|eB_0| \ll \frac{8\sqrt{3\pi}}{L^2}$

Two particle states also have analogous effects
Modifications small if

Use an asymmetric box [Li & Liu]
 Redo Lüscher analysis η₂L

Small transverse directions (~ 4 fm) move transverse levels up in spectrum

η₁L

Low lying excitations are all longitudinal

Deuteron magnetic moment

NPLQCD

Electroweak NN properties

- Scattering in background fields • Scattering in Euclidean space • Scattering on a finite volume • Asymptotic Forms • Background fields • Asymmetric boxes • Deuteron magnetic moment • $n \ p \ \longrightarrow d \ \gamma$
- $\overline{\nu}_e d \longrightarrow n n e^+$ • Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Eigenvalue equation in presence of background magnetic field

$$p \cot \delta_3 - \frac{1}{\pi L} S(\tilde{p}^2 \pm \tilde{u}_0^2; \eta_1, \eta_2) \mp \frac{eB_0}{2} (L_2 - r_3 \kappa_0) = 0$$

where $\tilde{u}_0^2 = \frac{L^2}{4\pi^2} eB_0 \kappa_0$ and \mp correspond to 3S_1 ($m = \pm 1$) states
Asymptotic behaviour of first continuum [$\mathbf{p} = (0, 0, 0)$]:

$$E_0^{(m=\pm 1)} = \mp \frac{eB_0}{M} \kappa_0 + \frac{4\pi A_3}{ML^3} \left[1 - c_1 \frac{A_3}{L} + c_2 \left(\frac{A_3}{L} \right)^2 + \dots \right]$$

Effective scattering length:

$$\frac{1}{A_3} = \frac{1}{a_3} \pm \frac{eB_0}{2}L_2$$

Deuteron magnetic moment

NPLQCD

Electroweak NN properties

Aharonov-Bohm effect

 ΛN scattering

Summary

 $\eta_1 = \eta_2 = 1, |eB_0| = 1000 \text{ MeV}^2$

L_1 counterterm: $n p \longrightarrow d \gamma$

NPLQCD

Electroweak NN properties

- Scattering in background fields• Scattering in Euclidean space• Scattering on a finite volume• Asymptotic Forms• Background fields• Asymmetric boxes• Deuteron magnetic moment• $n \ p \ \longrightarrow \ d \ \gamma$
- $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

L₁ induces mixing between ¹S₀ and ³S₁ states
 Need to diagonalize coupled channel system
 Eigenvalue equation:

$$\begin{bmatrix} p \cot \delta_1 - \frac{S_1 + S_2}{2\pi L} \end{bmatrix} \begin{bmatrix} p \cot \delta_3 - \frac{S_1 + S_2}{2\pi L} \end{bmatrix} = \begin{bmatrix} \frac{eB_0L_1}{2} + \frac{S_1 - S_2}{2\pi L} \end{bmatrix}^2$$
$$S_1 = S(\eta_1, \eta_2; \tilde{p}^2 + \tilde{u}_1^2) \quad , \quad S_2 = S(\eta_1, \eta_2; \tilde{p}^2 - \tilde{u}_1^2)$$
$$\tilde{u}_1^2 = \frac{L^2}{4\pi^2} eB_0 \kappa_1$$

- How could we determine *L*₁?
- Bound state:
 - Fine tuning between kinetic and potential terms
 - Very sensitive to short distance physics (L_1)

L_1 counterterm: $n p \longrightarrow d \gamma$

NPLQCD

Electroweak NN properties

Aharonov-Bohm effect

 ΛN scattering

Summary

 $\eta_1 = \eta_2 = 0.1, |eB_0| = 500 \text{ MeV}^2$

L_1 counterterm: $n p \longrightarrow d \gamma$

NPLQCD

Electroweak NN properties Scattering in background fields Scattering in Euclidean space • Scattering on a finite volume • Asymptotic Forms Background fields Asymmetric boxes • Deuteron magnetic moment $ullet n \ p \ \longrightarrow \ d \ \gamma$ $\bullet \overline{\nu}_e d \longrightarrow n n e^+$ • Mass dependence Aharonov-Bohm effect ΛN scattering Summary _____

$$\eta_1 = \eta_2 = 0.1$$
, $|eB_0| = 4000 \; {\sf MeV^2}$

Deuteron breakup: $\overline{\nu}_e d \longrightarrow n n e^+$

NPLQCD

Electroweak NN properties

Scattering in background fields • Scattering in Euclidean space

- Scattering on a finite volume
- Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment

```
\bullet n \ p \ \longrightarrow \ d \ \gamma
```

 $\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

Deuteron breakup: $\overline{\nu}_e d \longrightarrow n n e^+$

NPLQCD

Electroweak NN properties

- Scattering in background fields
- Scattering in Euclidean space
- Scattering on a finite volume
- Asymptotic Forms
- Background fields
- Asymmetric boxes
- Deuteron magnetic moment

```
\bullet n \ p \ \longrightarrow \ d \ \gamma
```

$\bullet \overline{\nu}_e \ d \longrightarrow n \ n \ e^+$

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

 $\eta_1 = \eta_2 = 0.1, \, gW = 6 \, \text{MeV}$

m_q dependence of NN scattering

NPLQCD

Electroweak NN properties

- Scattering in background fields

 Scattering in Euclidean space
 Scattering on a finite volume
 Asymptotic Forms
 Background fields
 Asymmetric boxes
- Deuteron magnetic moment
- $\bullet n \ p \ \longrightarrow \ d \ \gamma$

• $\overline{\nu}_e d \longrightarrow n n e^+$ • Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

• Above discussion all at $m_q \simeq m_q^{\rm phys}$

Explicitly makes use of a near-threshold state (large scattering lengths)

For $m_q = m_q^{\text{lattice}} \gg m_q^{\text{phys}}$, scattering lengths will relax to natural size [Beane & Savage; Epelbaum, Meißner & Glöckle]:

$$a_{1S_{0}}^{-1} = \gamma + \frac{g_{A}^{2}M}{8\pi f_{\pi}^{2}} \left[m_{\pi}^{2}\log\frac{\mu}{m_{\pi}} + (\gamma - m_{\pi})^{2} - (\gamma - \mu)^{2} \right] - \frac{Mm_{\pi}^{2}}{4\pi} (\gamma - \mu)^{2} D_{2}(\mu) \qquad [\gamma = \mu + 4\pi/MC_{0}(\mu)]$$

(NLO analysis)

m_q dependence of NN scattering

NPLQCD

Electroweak NN properties

Scattering in background fields • Scattering in Euclidean space • Scattering on a finite volume • Asymptotic Forms • Background fields • Asymmetric boxes • Deuteron magnetic moment • $n \ p \ \longrightarrow \ d \ \gamma$ • $\overline{\nu}_e \ d \ \longrightarrow \ n \ n \ e^+$

```
    Mass dependence
```

Aharonov-Bohm effect

 ΛN scattering

Summary

• Above discussion all at $m_q \simeq m_q^{\rm phys}$

Explicitly makes use of a near-threshold state (large scattering lengths)

For $m_q = m_q^{\text{lattice}} \gg m_q^{\text{phys}}$, scattering lengths will relax to natural size [Beane & Savage; Epelbaum, Meißner & Glöckle]:

m_q dependence of NN scattering

NPLQCD

Electroweak NN properties

Scattering in background fields • Scattering in Euclidean space • Scattering on a finite volume • Asymptotic Forms • Background fields • Asymmetric boxes • Deuteron magnetic moment • $n \ p \ \longrightarrow \ d \ \gamma$ • $\overline{\nu}_e \ d \ \longrightarrow \ n \ n \ e^+$

Mass dependence

Aharonov-Bohm effect

 ΛN scattering

Summary

• Above discussion all at $m_q \simeq m_q^{\rm phys}$

Explicitly makes use of a near-threshold state (large scattering lengths)

For $m_q = m_q^{\text{lattice}} \gg m_q^{\text{phys}}$, scattering lengths will relax to natural size [Beane & Savage; Epelbaum, Meißner & Glöckle]:

No longer see extreme sensitivity to short-distance physics

Aharonov-Bohm effect [Bedaque]

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

NPLQCD

```
_____
```

Background field: $A_{\mu} = (0, 0, 0, \frac{\phi}{3L})$

Modifies two-particle energy levels (Aharonov-Bohm effect) even though $\mathbf{E} = \mathbf{B} = 0$

Aharonov-Bohm effect [Bedaque]

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

Background field: $A_{\mu} = (0, 0, 0, \frac{\phi}{3L})$

Modifies two-particle energy levels (Aharonov-Bohm effect) even though $\mathbf{E} = \mathbf{B} = 0$

Equivalent to twisted boundary conditions (c.f. [Petronzio et al.])

$$q(x + \hat{\mathbf{z}}L) = \exp(i\phi/3)q(x)$$

Phase shifts can be probed for continuous (NN COM) momenta

$$\mathbf{q} = \frac{2\pi}{L} \left(n_1, n_2, n_3 + \frac{\phi}{2\pi} \right)$$

- Allows ground state energy level to be tuned to be within range of #EFT for smaller lattices
- Perhaps tune $m_q = m_q^{\text{lattice}}$ systems to large (infinite) scattering lengths too (Feshbach resonances) \Rightarrow EW properties

ΛN scattering

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• Important in hypernuclear structure and decays: ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{12}_{\Lambda}$ C [CERN, BNL, KEK, DA Φ NE]

Very poorly known [CERN '60s]

$$\begin{split} 0 > a_{1S_{0}}^{\Lambda} > -15\,\mathrm{fm} & 0 < r_{1S_{0}}^{\Lambda} < 15\,\mathrm{fm} \\ -0.6 > a_{3S_{1}}^{\Lambda} > -3.2\,\mathrm{fm} & 2.5 < r_{3S_{1}}^{\Lambda} < 15\,\mathrm{fm} \end{split}$$

but no reason to expect scattering lengths and effective ranges to be unnaturally large

EFT developed [Beane, Bedaque, Parreño & Savage]. E.g.

$$a_{{}^{1}S_{0}}^{\Lambda} = -\frac{\mu_{\Lambda N}}{2\pi} \left[\frac{}{\Lambda \Lambda} C_{0}^{{}^{1}S_{0}} + \ldots - \frac{3g_{\Sigma \Lambda}^{2}g_{A}^{2}\mu_{\Lambda N}}{4\pi f^{4}} f(m_{\pi}, \Delta_{\Lambda \Sigma}) \right]$$

- Lattice calculation of ΛN energy levels (even at current masses) would improve this dramatically
- Partial-quenching might be an obstacle

Summary

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

Can use lattice QCD to calculate electroweak nuclear properties of two baryon states:

- Measure two-nucleon energy levels in background field
- Match #EFT to energy levels to fix two-body counterterms
- Calculate observables in #EFT

Will allow extraction of NC and CC cross-sections for SNO

- Just a first step, much to be done:
 - Analyze higher orders (include Landau levels)
 - Extend to larger energies (include pions)
 - Polarisibilities
 - Three nucleon system
 - • •
- \blacksquare Twisted boundary conditions, ΛN scattering

#EFT details

NPLQCD

. .

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Projectors

$$P_3^j = \frac{1}{\sqrt{8}} \tau_2 \otimes \sigma_2 \sigma^j \qquad P_1^a = \frac{1}{\sqrt{8}} \tau_2 \tau^a \otimes \sigma_2$$

Dibaryon formalism

$$y_{1,3}^2 = \frac{8\pi}{M^2 r_{1,3}}$$
 $\Delta_{1,3} = \frac{2}{M r_{1,3}} \left(\frac{1}{a_{1,3}} - \mu\right)$

Binding momentum and energy of the deuteron

$$\gamma_0 - \frac{1}{a_3} - \frac{1}{2}r_3\gamma_0^2 = 0$$

 $B = -\gamma_0^2/M$

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

Landau levels: single particle states are not plane waves in transverse directions

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

BF in Lattice QCD

Asymmetric boxes

Asymmetric scattering

Integral representation

Asymmetric asymptotics

Magic boxes

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

Landau levels: single particle states are not plane waves in transverse directions

Infinite volume particle moves in SHO potential:

$$\hat{H} = \frac{|\hat{\mathbf{p}}|^2}{2M} + \frac{1}{2}M\omega^2(\hat{x}^2 + \hat{y}^2) + \frac{eB_0}{2M}\hat{l}_z \qquad \omega = |\frac{eB_0}{2M}|$$

• Tower of eigenstates with energy shifts $\sim B_0$:

$$E_{p\uparrow}^{(n)}(B_0) = M + \frac{|eB_0|}{M}\left(n + \frac{1}{2}\right) + \frac{p_z^2}{2M} + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2$$

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

Landau levels: single particle states are not plane waves in transverse directions

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation

Asymmetric asymptotics

Magic boxes

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

Landau levels: single particle states are not plane waves in transverse directions

At finite volume potential is bounded and perturbative: shift is $\sim B_0^2$

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

NPLQCD

• π EFT details

Background EW fields

Background EW fields

- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field shifts single particle mass eigenstates

$$M_{p\uparrow}(B_0) = M_0 + \mu_p B_0 + 4\pi \frac{\beta_p}{2} B_0^2 + \dots$$

Landau levels: single particle states are not plane waves in transverse directions

At finite volume potential is bounded and perturbative: shift is $\sim B_0^2$

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- _____
- π EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic fields: split two particle mass eigenstates

- Two-particle states also have Landau like effects
- Deuteron deformed
- Weak background field gives similar shifts
- No weak Landau levels

Background Fields in Lattice QCD

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- _____
- # EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic fields

$$U_{\mu}(x) \longrightarrow U_{\mu}^{\text{ext}}(x)U_{\mu}(x)$$
$$U_{0,3}^{ext}(x) = 1 \qquad \qquad U_{1}^{ext}(x) = e^{+i\beta x_{2}}$$

$$U_2^{ext}(x) = e^{-i\beta x_1}$$

• generates $\mathbf{B} = B_0 \mathbf{e}_z$, $eB_0 a^2 \sim \beta$

Homogeneity requires $eB_0A_{xy}/2\pi \in \mathbb{Z}$

- Have been used to compute:
 - Magnetic moments
 - Electric and magnetic polarisabilities
 - Neutron EDM (unsuccessfully)
- Weak background fields can be implemented: couple differently to left- and right- chirality quarks
 - eg: DW fermions with background field varying in 5th direction
 - used in first calculation of g_A

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- π EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD

Asymmetric boxes

- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field introduce a problem: Landau levels

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- π EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD

Asymmetric boxes

- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field introduce a problem: Landau levels
These effects can be controlled by ...

Background EW fields

BF in Lattice QCD

Asymmetric boxes

Asymmetric scattering

- Integral representation
- Asymmetric asymptotics
- Magic boxes

Magnetic field introduce a problem: Landau levels
These effects can be controlled by ...

- Small transverse directions ($\sim 4 \text{ fm}$) move Landau levels up in spectrum
- Low lying excitations are all longitudinal

Scattering in asymmetric boxes

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- π EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Momentum mode sum:

$$S(\tilde{p}^2) \longrightarrow S(\tilde{p}^2; \eta_1, \eta_2) = \frac{1}{\eta_1 \eta_2} \sum_{\tilde{\mathbf{n}}}^{\Lambda_n} \frac{1}{|\tilde{\mathbf{n}}|^2 - \tilde{p}^2} - 4\pi \Lambda_n$$

where

$$\tilde{\mathbf{n}} = (\frac{1}{\eta_1}n_1, \frac{1}{\eta_2}n_2, n_3)$$

Energy levels now given by eigenvalues of

$$p \cot \delta(p) - \frac{1}{\pi L} S(\tilde{p}^2; \eta_1, \eta_2) = 0$$

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

BF in Lattice QCD

Asymmetric boxes

Asymmetric scattering

Integral representation

Asymmetric asymptotics

Magic boxes

Momentum mode sums are slowly convergent (or divergent)

$$S(\tilde{p}^{2};\eta_{1},\eta_{2};s) = \sum_{|\tilde{\mathbf{n}}|^{2} \neq \tilde{p}^{2}} \frac{1}{(|\tilde{\mathbf{n}}|^{2} - \tilde{p}^{2})^{s}}$$

Integral representation of ζ functions

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

- #EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering

Integral representation

- Asymmetric asymptotics
- Magic boxes

Momentum mode sums are slowly convergent (or divergent)

$$S(\tilde{p}^{2};\eta_{1},\eta_{2};s) = \sum_{|\tilde{\mathbf{n}}|^{2} \neq \tilde{p}^{2}} \frac{1}{(|\tilde{\mathbf{n}}|^{2} - \tilde{p}^{2})^{s}}$$

Using Poisson summation formula \Longrightarrow

$$S(\tilde{p}^{2};\eta_{1},\eta_{2};s) = \sum_{|\tilde{\mathbf{n}}|^{2} \neq \tilde{p}^{2}} \frac{E_{1-s}\left(|\tilde{\mathbf{n}}|^{2} - |\mathbf{m}|^{2}\right)}{\Gamma(s)} - \frac{n_{\text{deg}}(\eta_{1},\eta_{2})}{s\Gamma(s)} + \frac{\eta_{1}\eta_{2}\pi^{\frac{3}{2}}}{\Gamma(s)} \left\{ \int_{0}^{1} dt \, t^{s-\frac{5}{2}} e^{t\tilde{p}^{2}} \sum_{|\mathbf{n}|^{2} \neq 0} e^{-\frac{\pi^{2}|\bar{\mathbf{n}}|^{2}}{t}} + \frac{1F_{1}(s-\frac{3}{2},s-\frac{1}{2},\tilde{p}^{2})}{s-3/2} \right\}$$

where $n_{\text{deg}}(\eta_1, \eta_2) = \sum_{|\tilde{\mathbf{n}}|^2 = \tilde{p}^2}$ and $|\bar{\mathbf{n}}|^2 = \eta_1^2 n_1^2 + \eta_2^2 n_2^2 + n_3^2$ Remaining sums converge exponentially

Asymmetric asymptotics

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

BF in Lattice QCD

Asymmetric boxes

Asymmetric scattering

Integral representation

Asymmetric asymptotics

Magic boxes

Asymptotic expansions are simple generalisations
Bound states:

$$E_{-1}^{(^{3}S_{1})} = \frac{\gamma_{0}^{2}}{M} \left[1 + \frac{4}{\gamma_{0}L(1-\gamma_{0}r_{3})} \left(e^{-\gamma_{0}L} + \frac{e^{-\gamma_{0}\eta_{1}L}}{\eta_{1}} + \frac{e^{-\gamma_{0}\eta_{2}L}}{\eta_{2}} \right) \right]$$

• Lowest continuum [$\mathbf{p} = (0, 0, 0)$]

$$E_0 = \frac{4\pi a}{\eta_1 \eta_2 M L^3} \left[1 - c_1(\eta_1, \eta_2) \left(\frac{a}{L}\right) + c_2(\eta_1, \eta_2) \left(\frac{a}{L}\right)^2 + \ldots \right]$$

Second continuum [$\mathbf{p} = (0, 0, \pm \frac{2\pi}{L})$ for $\eta_{1,2} \le 1$]

$$E_1 = \frac{4\pi^2}{ML^2} - \frac{4d\tan\hat{\delta}}{\eta_1\eta_2ML^2} \left[1 + c_1'(\eta_1,\eta_2)\tan\hat{\delta} + c_2'(\eta_1,\eta_2)\tan^2\hat{\delta} + \ldots \right]$$

 $[\hat{\delta} = \delta(|\mathbf{p}|^2 = 4\pi^2/L^2)$, and d is a degeneracy factor]

Asymmetric asymptotics

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

■ #EFT details

Background EW fields

Background EW fields

BF in Lattice QCD

Asymmetric boxes

Asymmetric scattering

Integral representation

Asymmetric asymptotics

Magic boxes

Lüscher (Zucker) coefficients:

$$c_{1}(\eta_{1},\eta_{2}) = \frac{1}{\pi} \left(\frac{1}{\eta_{1}\eta_{2}} \sum_{\tilde{\mathbf{n}}\neq 0}^{\Lambda_{n}} \frac{1}{|\tilde{\mathbf{n}}|^{2}} - 4\pi\Lambda_{n} \right)$$

$$c_{2}(\eta_{1},\eta_{2}) = c_{1}^{2}(\eta_{1},\eta_{2}) - \frac{1}{\pi^{2}\eta_{1}^{2}\eta_{2}^{2}} \sum_{\tilde{\mathbf{n}}\neq 0}^{\Lambda_{n}} \frac{1}{|\tilde{\mathbf{n}}|^{4}}$$

$$c_{1}'(\eta_{1},\eta_{2}) = \frac{1}{2\pi^{2}} \left(\frac{1}{\eta_{1}\eta_{2}} \sum_{\tilde{\mathbf{n}}\neq 1}^{\Lambda_{n}} \frac{1}{|\tilde{\mathbf{n}}|^{2} - 1} - 4\pi\Lambda_{n} \right)$$

$$c_{2}'(\eta_{1},\eta_{2}) = (c_{1}'(\eta_{1},\eta_{2}))^{2} - \frac{1}{2\pi^{4}\eta_{1}^{2}\eta_{2}^{2}} \sum_{\tilde{\mathbf{n}}\neq 1}^{\Lambda_{n}} \frac{1}{(|\tilde{\mathbf{n}}|^{2}-1)^{2}}$$

Asymmetric asymptotics

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

Background EW fields

Background EW fields

BF in Lattice QCD

Asymmetric boxes

Asymmetric scattering

Integral representation

Asymmetric asymptotics

Magic boxes

Lüscher (Zucker) coefficients:

<u>s</u>	η_1, η_2	$c_1(\eta_1,\eta_2)$	$c_2(\eta_1,\eta_2)$	$c_1'(\eta_1,\eta_2)$	$c_2'(\eta_1,\eta_2)$	d
_	0.1,0.1	65.7171	2111.12	-3.60224	-52.944	1
	0.2,0.2	6.67861	-99.6627	-2.3242	0.950737	1
	0.5 , 0.5	-3.61168	6.65945	0.73400	0.24642	1
	1,1	-2.837297	6.375183	-0.061367	-0.354156	3
	2,2	-1.466654	1.278623			2
	2,1	-1.805872	1.664979			1
	1.5 , 1.25	-2.200918	3.647224			1

Magic boxes

NPLQCD

- Electroweak NN properties
- Scattering in background fields
- Aharonov-Bohm effect
- ΛN scattering
- Summary
- #EFT details
- Background EW fields
- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics
- Magic boxes

Can find magic boxes such that subleading finite volume effects are supressed: $c_i^{(\prime)}(\eta_1\eta_2) = 0$

$\Lambda_Q \Lambda_Q$ potential

NPLQCD

Electroweak NN properties

Scattering in background fields

Aharonov-Bohm effect

 ΛN scattering

Summary

• π EFT details

- Background EW fields
- Background EW fields
- BF in Lattice QCD
- Asymmetric boxes
- Asymmetric scattering
- Integral representation
- Asymmetric asymptotics

Magic boxes

For infinitely heavy Qqq baryons, a potential is well-defined
 LHP collaboration will hopefully measure it (Qq-Qq already studied [Richards et al.; Markum et al.])

NLO pionful EFT analysis [Arndt, Beane & Savage '03]