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Mass transportation theory goes back to
Gaspard Monge (1781) when he presented a

model in a paper on Académie de Sciences

; remblais /

de Paris

The elementary work to move a particle x
into T'(x) is given by |x — T'(x)|, so that the

total work 1is

/ lx — T'(x)| dx .
déblais

A map T is called admissible transport map

if it maps “déblais” into “remblais”.



The Monge problem is then

min {/ lx —T(x)|de : T admiss.}.
déblais

It is convenient to consider the Monge prob-

lem in the framework of metric spaces:
e (X,d) is a metric space;

e f1,f™ are two probabilities on X
(fT = “déblais”, f~ = “remblais”);

e ' is an admissible transport map if
T# ft=f.
The Monge problem is then

min{/Xd(a:,T(a:)) dr : Tadmiss.}.

In general the problem above does not ad-
mit a solution, when the measures f* and
f~ are singular, since the class of admissible

transport maps can be empty.



Example Take fT = d4 and f~ = %53 +
%50; it is clear that no map T transports
f* into f~ so the Monge formulation above

is in this case meaningless.

Example Take the measures in R?, still sin-

gular but nonatomic
1 1
ff=H' 1A and f = 5711 | B+ 5711 C

where A, B, C' are the segments below.

C A B

In this case the class of admissible transport
maps is nonempty but the minimum in the

Monge problem is not attained.



Example (book shifting) Consider in R
the measures ft = 1 yL" and f~ =

1[b,a+b]£1. Then the two maps

Ti(x)=b+=x translation
To(r)=a+b—=x reflection

are both optimal; there are actually in-

finitely many optimal transport maps.

N _
Example Take f* = >7.7 4§, and f~ =
Zfll On,. Then the optimal Monge cost is
given by the minimal connection of the p;
with the n;.



Relaxed formulation (due to Kantorovich):

consider measures v on X X X

e ~ is an admissible transport plan if
¥~y = ftand 7y = f.

Monge-Kantorovich problem:

min{/ d(z,y)dy(x,y) : vadmiss.}.
XXX

Wasserstein distance of exponent p: replace

1/p
the cost by (fXXX dP(x,y) dfy(a:,y)) .

Theorem There exists an optimal trans-
port plan 7yopt; In the Euclidean case Yopt

is actually a transport map 1,,; whenever
fT and f~ arein L*.

We denote by MK (f*, f~,d) the minimum
value in the Monge-Kantorovich problem.
We present now some optimization prob-

lems related to mass transportation theory.



Shape Optimization Problems

Given a force field f in R™ find the elastic

body €2 whose “resistance” to f is maximal

Constraints:
- given volume, Q2] =m
- possible “design region” D given, ) C D
- possible support region > given,

Dirichlet region

Optimization criterion:

- elastic compliance.
Then the shape optimization problem is
min {C(Q) . QC D, Q= m}.

where C(€)) denotes the compliance of the

domain (2.



More precisely, for every admissible domain
() we consider the energy

Q)= inf {/Qj(Du)dx—Q‘,u)}

u=0 OI1 X

and the compliance, which reduces to the

work of external forces

1

C(2) = =&(Q) = 5{/, uq).

being uqn the displacement of minimal en-
ergy in (). In linear elasticity, if z* = sym/(z2)

and «a, 0 are the Lamé constants,
. k 8 >k
i(2) = 12" + Sltre"2

A similar problem can be considered in the
scalar case (optimal conductor), where f is
a scalar function (the heat sources density)

and
1

j(z) = 5\212-



The shape optimization problem above has
in general no solution; in fact minimizing se-
quences may develop wild oscillations which
give raise to limit configurations that are not

in a form of a domain.

Therefore, it is convenient to consider the
analogous problem where domains are re-

placed by densities p of material.

Constraints:
e given mass, [ du=m
e given design region D, i.e. sptu C D

e Dirichlet support region > given.
Optimization criterium: elastic compliance

Energy £(u) defined analogously as above,
and compliance C(u) = —E(u).



There is a strong link between the mass op-
timization problem and the Monge-Kantoro-
vich mass transfer problem. This is de-
scribed below for simplicity in the scalar
case, for a convex design region D, and for
> = (0. A general theory can be found in
IBB2001]

Writing f = f* — f~ and taking the op-
timal transportation plan v in the Monge-
Kantorovich problem, we can obtain the op-

timal density p through the formula

u(A) = [ 1B O o) dy (o).
Moreover the Monge-Kantorovich PDE holds:
—div (u(z)Dyu) = f in R™\ X

u is 1-Lipschitz on D, u© =0 on X
|1D,u| =1 p-a.e. on R, pu(X)=0.



Here are some cases where the optimal mass
distribution can be computed by using the

Monge-Kantorovich equation (see Bouch-
itté-Buttazzo [JEMS ’01]).

Optimal distribution of a conductor for heat sources

f=HS — Léo.

10



73

Optimal distribution of an elastic material when the

forces are as above.
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Optimal distribution of a conductor, with an obstacle,

for heat sources [ = HE LS — 204.

Optimal distribution of a conductor for heat sources

[ = 2H! LS() — H! le and Dirichlet region 2..
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Problem of Optimal Networks

We consider the following model for the op-
timal planning of an urban transportation
network (Buttazzo-Brancolini 2003).

e () the geographical region or urban area

a compact regular domain of R

o T the density of residents

a probability measure on ()

e = the density of working places

a probability measure on (2

e > the transportation network
a closed connected 1-dimensional

subset of €2, the unknown.

The goal is to introduce a cost functional
F(X) and to minimize it on a class of ad-

missible choices.

13



Consider two functions:

A : RT — R™T continuous and increasing;
A(t) represents the cost to cover a length
t by one’s own means (walking, time con-

sumption, car fuel, ...);

B : Rt — RT ls.c. and increasing; B(t)
represents the cost to cover a length ¢ by us-
ing the transportation network (ticket, time

consumption, ... ).

A

—? -

Small town policy: only one ticket price

14



—T -
Large town policy: several ticket prices

We define
ds(z,y) = inf {A(Hl(F \ X))

+ B(H'(I'NX)) : I connects z to y}

The cost of the network > is defined via the
Monge-Kantorovich functional:

F(S) = MK(f*, f~,ds)
and the admissible X are simply the closed
connected sets with H!(X) < L.
There is a strong link between the conver-
gences of distances and of the associated Ha-

usdorff measures (Buttazzo-Schweizer 2005).
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Therefore the optimization problem is

min{F(E) . ¥ cl. conn., H'(X) < L}.

Theorem There exists an optimal network

Yopt for the optimization problem above.

In the special case A(t) = t and B = 0

(communist model) some necessary condi-

tions of optimality on >,,; have been de-
rived (Buttazzo-Stepanov 2003). For in-

stance:

no closed loops;

at most triple point junctions;
120° at triple junctions;

no triple junctions for small L;

asymptotic behavior of X, as L — 400
(Mosconi-Tilli 2003);

regularity of >,,; is an open problem.
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Problem of Optimal Pricing Policies

With the notation above, we consider the
measures f1, f~ fixed, as well as the trans-
portation network >. The unknown is the
pricing policy the manager of the network
has to choose through the l.s.c. monotone
increasing function B. The goal is to maxi-
mize the total income, a functional F(B),
which can be suitably defined (Buttazzo-
Pratelli-Stepanov, in preparation) by means

of the Monge-Kantorovich transport plans.

Of course, a too low ticket price policy will
not be optimal, but also a too high ticket
price policy will push customers to use their
own transportation means, decreasing the

total income of the company.

17



The function B can be seen as a control vari-
able and the corresponding transport plan
as a state variable, so that the optimization

problem we consider:
min { F(B) : B ls.c. increasing, B(0) = 0}
can be seen as an optimal control problem.

Theorem There exists an optimal pric-
ing policy B,y solving the maximal income

problem above.

Also in this case some necessary conditions
of optimality can be obtained. In particu-
lar, the function B,,; turns out to be con-
tinuous, and its Lipschitz constant can be
bounded by the one of A (the function mea-

suring the own means cost).
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Here is the case of a service pole at the ori-
gin, with a residence pole at (L, H), with a
network Y. We take A(t) =t.

>
O ————————————————————

L
The optimal pricing policy B(t) is given by
B(t)= (H*>+ L»)Y? — (H? + (L —t)®)Y2.

= N

0.6¢

0.4;

0.2}

0.5 1 1.5 2

The case . = 2 and H = 1.
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Here is another case, with a single service

pole at the origin, with two residence poles
at (L, Hy) and (L, Hs), with a network 3.

o
Hj
>
Prrr———————————————————————
L H,
o

The optimal pricing policy B(t) is then

Bs(t) in {0, 7]
B(t) = {32(T) — By(T)+ By(t) in[T,L]"

N ~ ()] (o] = N

e o @ ©

0.5 1 1.5 2

The case L = 2, H1 = 0.5, Hy = 2.
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Problem of Optimal City Structures

We consider the following model for the op-

timal planning of an urban area (Buttazzo-
Santambrogio 2003).

e () the geographical region or urban area

a compact regular domain of RV

o [T the density of residents

a probability measure on (2

e = the density of services

a probability measure on (2.

Here the distance d in €2 is fixed (for simplic-
ity the Euclidean one) while the unknowns
are fT and f~ that have to be determined
in an optimal way taking into account the

tollowing facts:

21



e there is a transportation cost for moving
from the residential areas to the services

poles;

e people desire not to live in areas where

the density of population is too high;

e services need to be concentrated as much
as possible, in order to increase efficiency

and decrease management costs.

The transportation cost will be described
through a Monge-Kantorovich mass trans-
portation model; it is indeed given by a p-
Wasserstein distance (p > 1) W,(f*, f7),

being p = 1 the classical Monge case.

The total unhappiness of citizens due to
high density of population will be described

by a penalization functional, of the form

H(f*) = {iﬂog(u) de if f* =udz

otherwise,

22



where h is assumed convex and superlinear
(i.e. h(t)/t - 400 ast — +00). The in-
creasing and diverging function h(t)/t then
represents the unhappiness to live in an area

with population density t.

Finally, there is a third term G(f~) which
penalizes sparse services. We force f~ to
be a sum of Dirac masses and we consider
G(f~) a functional defined on measures, of
the form studied by Bouchitté-Buttazzo in
1990:

G(f) = {Zn glan) if f7 = Zn ansz,

+00 otherwise,

where ¢ is concave and with infinite slope
at the origin. Every single term g¢(a,) in
the sum represents here the cost for building
and managing a service pole of dimension

a,, located at the point x,, € €.

23



We have then the optimization problem

min {W, (£, /) + H(f*) + G(f)
fT, f~ probabilities on Q}

Theorem There exists an optimal pair

(f*, f7) solving the problem above.

Also in this case we obtain some necessary
conditions of optimality. In particular, if
() is sufficiently large, the optimal structure
of the city consists of a finite number of
disjoint subcities: circular residential areas

with a service pole at the center.
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Problem of Optimal Riemannian Metrics

Here the domain 2 and the probabilities f+
and f~ are given, whereas the distance d
is supposed to be conformally flat, that is
generated by a coefficient a(x) through the

formula

ot =it { [ ab@) @
7€ Lip(0,16.2), 7(0) =, 7(1) =y} .
We can then consider the cost functional
F(a) = MK(f", f~,da).

The goal is to prevent as much as possible
the transportation of f* onto f~ by maxi-
mizing the cost F'(a) among the admissible
coefficients a(x). Of course, increasing a(x)

would increase the values of the distance d,

25



and so the value of the cost F'(a). The fact is

that the class of admissible controls is taken

as
A = {a(a:) Borel measurable
a<a(r) <p, /Qa(x) dr < m}.
In the case when f* = 0, and f~ = J,

are Dirac masses concentrated on two fixed
points x,y € (), the problem of maximizing
F(a) is nothing else than that of proving
the existence of a conformally flat Euclidean
metric whose geodesics joining x and y are

as long as possible.

This problem has several natural motiva-
tions; indeed, in many concrete examples,
one can be interested in making as diffi-
cult as possible the communication between

some masses fT and f~. For instance, it

26



is easy to imagine that this situation may
arise in economics, or in medicine, or simply
in traffic planning, each time the connec-
tion between two “enemies” is undesired.
Of course, the problem is made non trivial
by the integral constraint [, a(x)dx < m,
which has a physical meaning: it prescribes
the quantity of material at one’s disposal to

solve the problem.

The analogous problem of minimizing the
cost functional F'(a) over the class A, which
corresponds to favor the transportation of

fT into f—, is trivial, since
inf{F(a) L a€ A} = F(a).

The existence of a solution for the maxi-

mization problem
max{F(a) L a € A}

27



is a delicate matter. Indeed, maximizing
sequences {a,} C A could develop an os-
cillatory behavior producing only a relaxed
solution. This phenomenon is well known;
basically what happens is that the class A is
not closed with respect to the natural con-

vergence
a, —a << dg — dg uniformly

and actually it can be proved that A is dense
in the class of all geodesic distances (in par-

ticular, in all the Riemannian ones).

Nevertheless, we were able to prove the fol-

lowing existence result.

Theorem The maximization problem above

admits a solution in aq, € A.

28



Several questions remain open:

e Under which conditions is the optimal so-

lution unique?

e Isthe optimal solution of bang-bang type?
In other words do we have a,,: € {«a, 3}
or intermediate values (homogenization)

are more performant?

e Can we characterize explicitely the opti-

mal coefficient a,,: in the case ft =4,
and f~ = 9,7

29



Some Numerical Computations

Here are some numerical computations per-
formed (Buttazzo-Oudet-Stepanov 2002) in
the simpler case of the so-called problem of

optimal irrigation.

This is the optimal network Problem 1 in
the case f~ = 0, where customers only want
to minimize the averaged distance from the

network.

In other words, the optimization criterion

becomes simply

F(3) = /Q dist (2, 2) df * ()

Due to the presence of many local minima

the method is based on a genetic algorithm.
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(D&

Optimal sets of length 0.5 and 1 in a unit disk

O (©

Optimal sets of length 1.25 and 1.5 in a unit disk

G

Optimal sets of length 2 and 3 in a unit disk
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Optimal sets of length 0.5 and 1 in a unit square

1

Optimal sets of length 1.5 and 2.5 in a unit square

Optimal sets of length 3 and 4 in a unit square

32



Optimal sets of length 3 and 4 in the unit ball of R3

33



The usual Monge-Kantorovich theory does
not however provide an explaination to sev-
eral natural structures (see figures) present-
ing some interesting features that should be

interpreted in terms of mass transportation.

For instance, if the source is a Dirac mass
and the target is a segment, as in figure
below, the Monge-Kantorovich theory pro-
vides a behaviour quite different from what

expected.

The Monge transport rays.
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Various approaches have been proposed to

give more appropriated models:

e (). Xia (Comm. Cont. Math. 2003) by
the minimization of a suitable functional

defined on currents;

o V. Caselles, J. M. Morel, S. Solimini, ...
(Preprint 2003 http://www.cmla.ens-
cachan.fr/Cmla/, Interfaces and Free
Boundaries 2003, PNLDE 51 2002) by a
kind of analogy of fluid flow in thin tubes.

e A. Brancolini, G. Buttazzo, E. Oudet, E.
Stepanov, (see http://cvgmt.sns.it)

by a variational model for irrigation trees.

Here we propose a different approach based
on a definition of path length in a Wasser-
stein space (A. Brancolini, G. Buttazzo, F.
Santambrogio 2004).
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We also give a model where the opposite
feature occurs: instead of favouring the con-
centration of transport rays, the variational
functional gives a lower cost to diffused mea-
sures. We do not know of natural phenom-

ena where this diffusive behaviour occurs.

The framework is a metric space (X, d); we
assume that closed bounded subsets of X

are compact. Consider the path functional

7(y) = / T(v(t) Y |(t) dt

for all Lipschitz curves v : [0,1] — X such
that v(0) = zg and v(1) = ;.

e J: X — [0,400] is a given mapping;

e [7'|(¢) is the metric derivative of v at the

point ¢, 1.e.

/() = lim sup d (V‘fk Z\(t)) |
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Theorem Assume:
e J is lower semicontinuous in X ;

e J > ¢ with ¢ > 0, or more generally

f0+oo (infB(f,a) J) dr = +00.
Then, for every xg,xr1 € X there exists an

optimal path for the problem

min{J(v) : 7(0) = o, (1) :;,;1}

provided there exists a curve vy, connecting
ro to x1, such that J(vy) < +o0.

The application of the theorem above con-
sists in taking as X a Wasserstein space
W,(2) (p > 1), being £ a compact subset
of RY.

When €2 is compact, W, (2) is the space of
all Borel probability measures on {2, and the
p-Wasserstein distance is equivalent to the

weak™ convergence.
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The behaviour of geodesics curves for the
length functional J will be determined by
the choice of the “coeflicient” functional J.

We take for J a l.s.c. functional on the space
of measures, of the kind considered by Bou-
chitté and Buttazzo (Nonlinear Anal. 1990,
Ann. THP 1992, Ann. THP 1993):

J(p) = / Pt yo+ | 1)+ / g(u(x))d#.

o 1= pu% -dr+puc+p” is the decomposition
of 1 into absolutely continuous, Cantor,
and atomic parts;

e f:R — |0,+0¢] is convex, l.s.c., proper;

e f°° is the recession function of f;

e g: R — [0,400] is l.s.c. and subadditive,
with ¢g(0) = 0;

e 7 is the counting measure;

e f and g verify the compatibility condition

fts) _ g(ts)
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The functional J is L.s.c. for the weak™ con-
vergence of measures and, if f(s) > 0 for
s > 0 and g(1) > 0, the assumptions of the
abstract framework are fulfilled. In order to
obtain an optimal path for J between two
fixed probabilities g and pq, it remains to

ensure that 7 is not identically 4 oc.
We now study two prototypical cases.

Concentration f = 4o0, g(z) = |z|” with
r €]0,1[. We have then

T () = / @) d#  p atomic

Diffusion f(z) = |2]|? with ¢ > 1, g = +oc.
We have then

J(,LL):/ lu(x)|? dx pw=u-dr, uec L1
Q

39



CONCENTRATION CASE. The following facts

in the concentration case hold:

e If 9o and p; are convex combinations
(also countable) of Dirac masses, then
they can be connected by a path (¢) of

finite minimal cost 7.

e If r > 1—1/N then every pair of proba-
bilities pug and p; can be connected by a

path v(t) of finite minimal cost J.

e The bound above is sharp. Indeed, if r <
1 — 1/N there are measures that cannot
be connected by a finite cost path (for
instance a Dirac mass and the Lebesgue

measure).
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Example. (Y-shape versus V-shape). We
want to connect (concentration case r < 1
fixed) a Dirac mass to two Dirac masses (of
weight 1/2 each) as in figure below, [ and A
are fixed. The value of the functional J is

given by
Jy)=x+ 21_7"\/([ — x)? + h?.

Then the minimum is achieved for
h
- \/41—7“ 1
When r = 1/2 we have a Y-shape if [ > h
and a V-shape if [ < h.

/)
N

r =

X

_— -
—~tll -

1

_—
-}

A Y-shaped path for r = 1/2.
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DIFFUSION CASE. The following facts in the

diffusion case hold:

o If iy and py are in L9(2), then they can
be connected by a path ~(t) of finite min-
imal cost J. The proof uses the displace-
ment convexity (McCann 1997) which,
for a functional F' and every pg, f1, is the
convexity of the map t +— F(T'(t)), being
T(t) = [(1 — t)Id + tT)# g and T an op-

timal transportation between g and .

e If ¢ <1+ 1/N then every pair of proba-
bilities g and w1 can be connected by a

path v(¢) of finite minimal cost 7.
e The bound above is sharp. Indeed, if ¢ >

1 + 1/N there are measures that cannot
be connected by a finite cost path (for
instance a Dirac mass and the Lebesgue

measure).
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A more refined approach in necessary when
() is unbounded; indeed, in this case several

assumptions fail:

e the Wasserstein spaces W,({2) are not

even locally compact;

e WW,(2) do not contain all the probabili-
ties on (2 but only those with finite mo-

mentum of order p

/ z|P dp < o0 ;
Q

e the Wasserstein convergence does not co-

incide with the weak™® convergence.

However, some of the previous results can be
generalized to the unbounded setting, even
if the analysis in not so complete as in the

case {2 compact.
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OPEN PROBLEMS

e linking two LY measures in the diffusion-

unbounded case;
e concentration case in unbounded setting;

e () unbounded but not necessarily the

whole space;
e working with the space W, (Q);

e comparing this model to the ones by Xia

and by Morel, Solimini, ...;
e numerical computations:;

e evolution models?
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