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Mass transportation theory goes back to

Gaspard Monge (1781) when he presented a

model in a paper on Académie de Sciences

de Paris

déblais

remblais

•
x

•
T(x)

The elementary work to move a particle x

into T (x) is given by |x−T (x)|, so that the

total work is∫

déblais
|x− T (x)| dx .

A map T is called admissible transport map

if it maps “déblais” into “remblais”.
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The Monge problem is then

min
{∫

déblais
|x− T (x)| dx : T admiss.

}
.

It is convenient to consider the Monge prob-

lem in the framework of metric spaces:

• (X, d) is a metric space;

• f+, f− are two probabilities on X

(f+ = “déblais”, f− = “remblais”);

• T is an admissible transport map if

T#f+ = f−.

The Monge problem is then

min
{∫

X

d
(
x, T (x)

)
dx : Tadmiss.

}
.

In general the problem above does not ad-

mit a solution, when the measures f+ and

f− are singular, since the class of admissible

transport maps can be empty.
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Example Take f+ = δA and f− = 1
2δB +

1
2δC ; it is clear that no map T transports

f+ into f− so the Monge formulation above

is in this case meaningless.

Example Take the measures in R2, still sin-

gular but nonatomic

f+ = H1bA and f− =
1

2
H1bB+

1

2
H1bC

where A,B,C are the segments below.

A BC

In this case the class of admissible transport

maps is nonempty but the minimum in the

Monge problem is not attained.

3



         

Example (book shifting) Consider in R

the measures f+ = 1[0,a]L1 and f− =

1[b,a+b]L1. Then the two maps

T1(x) = b+ x translation

T2(x) = a+ b− x reflection

are both optimal; there are actually in-

finitely many optimal transport maps.

Example Take f+ =
∑N
i=1 δpi and f− =∑N

i=1 δni . Then the optimal Monge cost is

given by the minimal connection of the pi

with the ni.
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Relaxed formulation (due to Kantorovich):

consider measures γ on X ×X

• γ is an admissible transport plan if

π#
1 γ = f+ and π#

2 γ = f−.

Monge-Kantorovich problem:

min
{∫

X×X
d(x, y) dγ(x, y) : γ admiss.

}
.

Wasserstein distance of exponent p: replace

the cost by
( ∫

X×X d
p(x, y) dγ(x, y)

)1/p

.

Theorem There exists an optimal trans-

port plan γopt; in the Euclidean case γopt

is actually a transport map Topt whenever

f+ and f− are in L1.

We denote by MK(f+, f−, d) the minimum

value in the Monge-Kantorovich problem.

We present now some optimization prob-

lems related to mass transportation theory.
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Shape Optimization Problems

Given a force field f in Rn find the elastic

body Ω whose “resistance” to f is maximal

Constraints:

- given volume, |Ω| = m

- possible “design region” D given, Ω ⊂ D
- possible support region Σ given,

Dirichlet region

Optimization criterion:

- elastic compliance.

Then the shape optimization problem is

min
{
C(Ω) : Ω ⊂ D, |Ω| = m

}
.

where C(Ω) denotes the compliance of the

domain Ω.
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More precisely, for every admissible domain

Ω we consider the energy

E(Ω) = inf
u=0 on Σ

{∫

Ω

j(Du) dx− 〈f, u〉
}

and the compliance, which reduces to the

work of external forces

C(Ω) = −E(Ω) =
1

2
〈f, uΩ〉.

being uΩ the displacement of minimal en-

ergy in Ω. In linear elasticity, if z∗ = sym(z)

and α, β are the Lamé constants,

j(z) = β|z∗|2 +
α

2
|trz∗|2.

A similar problem can be considered in the

scalar case (optimal conductor), where f is

a scalar function (the heat sources density)

and

j(z) =
1

2
|z|2.
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The shape optimization problem above has

in general no solution; in fact minimizing se-

quences may develop wild oscillations which

give raise to limit configurations that are not

in a form of a domain.

Therefore, it is convenient to consider the

analogous problem where domains are re-

placed by densities µ of material.

Constraints:

• given mass,
∫
dµ = m

• given design region D, i.e. sptµ ⊂ D
• Dirichlet support region Σ given.

Optimization criterium: elastic compliance

Energy E(µ) defined analogously as above,

and compliance C(µ) = −E(µ).
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There is a strong link between the mass op-

timization problem and the Monge-Kantoro-

vich mass transfer problem. This is de-

scribed below for simplicity in the scalar

case, for a convex design region D, and for

Σ = ∅. A general theory can be found in

[BB2001]

Writing f = f+ − f− and taking the op-

timal transportation plan γ in the Monge-

Kantorovich problem, we can obtain the op-

timal density µ through the formula

µ(A) =

∫
H1(B ∩ [x, y]) dγ(x, y).

Moreover the Monge-Kantorovich PDE holds:




− div

(
µ(x)Dµu

)
= f in Rn \ Σ

u is 1-Lipschitz on D, u = 0 on Σ
|Dµu| = 1 µ-a.e. on Rn, µ(Σ) = 0.
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Here are some cases where the optimal mass

distribution can be computed by using the

Monge-Kantorovich equation (see Bouch-

itté-Buttazzo [JEMS ’01]).
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Optimal distribution of a conductor for heat sources

f = H1bS − LδO .
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A

C

B

O

τ τ

τ

Optimal distribution of an elastic material when the

forces are as above.
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Optimal distribution of a conductor, with an obstacle,

for heat sources f = H1bS − 2δA.
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Optimal distribution of a conductor for heat sources

f = 2H1bS0 −H1bS1 and Dirichlet region Σ.
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Problem of Optimal Networks

We consider the following model for the op-

timal planning of an urban transportation

network (Buttazzo-Brancolini 2003).

• Ω the geographical region or urban area

a compact regular domain of RN

• f+ the density of residents

a probability measure on Ω

• f− the density of working places

a probability measure on Ω

• Σ the transportation network

a closed connected 1-dimensional

subset of Ω, the unknown.

The goal is to introduce a cost functional

F (Σ) and to minimize it on a class of ad-

missible choices.
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Consider two functions:

A : R+ → R+ continuous and increasing;

A(t) represents the cost to cover a length

t by one’s own means (walking, time con-

sumption, car fuel, . . . );

B : R+ → R+ l.s.c. and increasing; B(t)

represents the cost to cover a length t by us-

ing the transportation network (ticket, time

consumption, . . . ).

•

Small town policy: only one ticket price
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•

Large town policy: several ticket prices

We define

dΣ(x, y) = inf
{
A
(
H1(Γ \ Σ)

)

+B
(
H1(Γ ∩ Σ)

)
: Γ connects x to y

}
.

The cost of the network Σ is defined via the

Monge-Kantorovich functional:

F (Σ) = MK(f+, f−, dΣ)

and the admissible Σ are simply the closed

connected sets with H1(Σ) ≤ L.

There is a strong link between the conver-

gences of distances and of the associated Ha-

usdorff measures (Buttazzo-Schweizer 2005).
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Therefore the optimization problem is

min
{
F (Σ) : Σ cl. conn., H1(Σ) ≤ L

}
.

Theorem There exists an optimal network

Σopt for the optimization problem above.

In the special case A(t) = t and B ≡ 0

(communist model) some necessary condi-

tions of optimality on Σopt have been de-

rived (Buttazzo-Stepanov 2003). For in-

stance:

• no closed loops;

• at most triple point junctions;

• 120◦ at triple junctions;

• no triple junctions for small L;

• asymptotic behavior of Σopt as L→ +∞
(Mosconi-Tilli 2003);

• regularity of Σopt is an open problem.
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Problem of Optimal Pricing Policies

With the notation above, we consider the

measures f+, f− fixed, as well as the trans-

portation network Σ. The unknown is the

pricing policy the manager of the network

has to choose through the l.s.c. monotone

increasing function B. The goal is to maxi-

mize the total income, a functional F (B),

which can be suitably defined (Buttazzo-

Pratelli-Stepanov, in preparation) by means

of the Monge-Kantorovich transport plans.

Of course, a too low ticket price policy will

not be optimal, but also a too high ticket

price policy will push customers to use their

own transportation means, decreasing the

total income of the company.
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The function B can be seen as a control vari-

able and the corresponding transport plan

as a state variable, so that the optimization

problem we consider:

min
{
F (B) : B l.s.c. increasing, B(0) = 0

}

can be seen as an optimal control problem.

Theorem There exists an optimal pric-

ing policy Bopt solving the maximal income

problem above.

Also in this case some necessary conditions

of optimality can be obtained. In particu-

lar, the function Bopt turns out to be con-

tinuous, and its Lipschitz constant can be

bounded by the one of A (the function mea-

suring the own means cost).
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Here is the case of a service pole at the ori-

gin, with a residence pole at (L,H), with a

network Σ. We take A(t) = t.

Σ

L

H

The optimal pricing policy B(t) is given by

B(t) = (H2 + L2)1/2 − (H2 + (L− t)2)1/2.

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

The case L = 2 and H = 1.

19



        

Here is another case, with a single service

pole at the origin, with two residence poles

at (L,H1) and (L,H2), with a network Σ.

Σ

L H1

H2

The optimal pricing policy B(t) is then

B(t) =

{
B2(t) in [0, T ]
B2(T )−B1(T ) +B1(t) in [T, L]

.
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The case L = 2, H1 = 0.5, H2 = 2.
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Problem of Optimal City Structures

We consider the following model for the op-

timal planning of an urban area (Buttazzo-

Santambrogio 2003).

• Ω the geographical region or urban area

a compact regular domain of RN

• f+ the density of residents

a probability measure on Ω

• f− the density of services

a probability measure on Ω.

Here the distance d in Ω is fixed (for simplic-

ity the Euclidean one) while the unknowns

are f+ and f− that have to be determined

in an optimal way taking into account the

following facts:
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• there is a transportation cost for moving

from the residential areas to the services

poles;

• people desire not to live in areas where

the density of population is too high;

• services need to be concentrated as much

as possible, in order to increase efficiency

and decrease management costs.

The transportation cost will be described

through a Monge-Kantorovich mass trans-

portation model; it is indeed given by a p-

Wasserstein distance (p ≥ 1) Wp(f
+, f−),

being p = 1 the classical Monge case.

The total unhappiness of citizens due to

high density of population will be described

by a penalization functional, of the form

H(f+) =

{∫
Ω
h(u) dx if f+ = u dx

+∞ otherwise,
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where h is assumed convex and superlinear

(i.e. h(t)/t → +∞ as t → +∞). The in-

creasing and diverging function h(t)/t then

represents the unhappiness to live in an area

with population density t.

Finally, there is a third term G(f−) which

penalizes sparse services. We force f− to

be a sum of Dirac masses and we consider

G(f−) a functional defined on measures, of

the form studied by Bouchitté-Buttazzo in

1990:

G(f−) =

{∑
n g(an) if f− =

∑
n anδxn

+∞ otherwise,

where g is concave and with infinite slope

at the origin. Every single term g(an) in

the sum represents here the cost for building

and managing a service pole of dimension

an, located at the point xn ∈ Ω.
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We have then the optimization problem

min
{
Wp(f

+, f−) +H(f+) +G(f−) :

f+, f− probabilities on Ω
}
.

Theorem There exists an optimal pair

(f+, f−) solving the problem above.

Also in this case we obtain some necessary

conditions of optimality. In particular, if

Ω is sufficiently large, the optimal structure

of the city consists of a finite number of

disjoint subcities: circular residential areas

with a service pole at the center.
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Problem of Optimal Riemannian Metrics

Here the domain Ω and the probabilities f+

and f− are given, whereas the distance d

is supposed to be conformally flat, that is

generated by a coefficient a(x) through the

formula

da(x, y) = inf
{∫ 1

0

a
(
γ(t)

)
|γ′(t)| dt :

γ ∈ Lip(]0, 1[; Ω), γ(0) = x, γ(1) = y
}
.

We can then consider the cost functional

F (a) = MK(f+, f−, da).

The goal is to prevent as much as possible

the transportation of f+ onto f− by maxi-

mizing the cost F (a) among the admissible

coefficients a(x). Of course, increasing a(x)

would increase the values of the distance da
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and so the value of the cost F (a). The fact is

that the class of admissible controls is taken

as

A =
{
a(x) Borel measurable :

α ≤ a(x) ≤ β,
∫

Ω

a(x) dx ≤ m
}
.

In the case when f+ = δx and f− = δy

are Dirac masses concentrated on two fixed

points x, y ∈ Ω, the problem of maximizing

F (a) is nothing else than that of proving

the existence of a conformally flat Euclidean

metric whose geodesics joining x and y are

as long as possible.

This problem has several natural motiva-

tions; indeed, in many concrete examples,

one can be interested in making as diffi-

cult as possible the communication between

some masses f+ and f−. For instance, it
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is easy to imagine that this situation may

arise in economics, or in medicine, or simply

in traffic planning, each time the connec-

tion between two “enemies” is undesired.

Of course, the problem is made non trivial

by the integral constraint
∫

Ω
a(x) dx ≤ m,

which has a physical meaning: it prescribes

the quantity of material at one’s disposal to

solve the problem.

The analogous problem of minimizing the

cost functional F (a) over the class A, which

corresponds to favor the transportation of

f+ into f−, is trivial, since

inf
{
F (a) : a ∈ A

}
= F (α).

The existence of a solution for the maxi-

mization problem

max
{
F (a) : a ∈ A

}
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is a delicate matter. Indeed, maximizing

sequences {an} ⊂ A could develop an os-

cillatory behavior producing only a relaxed

solution. This phenomenon is well known;

basically what happens is that the class A is

not closed with respect to the natural con-

vergence

an → a ⇐⇒ dan → da uniformly

and actually it can be proved thatA is dense

in the class of all geodesic distances (in par-

ticular, in all the Riemannian ones).

Nevertheless, we were able to prove the fol-

lowing existence result.

Theorem The maximization problem above

admits a solution in aopt ∈ A.
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Several questions remain open:

• Under which conditions is the optimal so-

lution unique?

• Is the optimal solution of bang-bang type?

In other words do we have aopt ∈ {α, β}
or intermediate values (homogenization)

are more performant?

• Can we characterize explicitely the opti-

mal coefficient aopt in the case f+ = δx

and f− = δy?
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Some Numerical Computations

Here are some numerical computations per-

formed (Buttazzo-Oudet-Stepanov 2002) in

the simpler case of the so-called problem of

optimal irrigation.

This is the optimal network Problem 1 in

the case f− ≡ 0, where customers only want

to minimize the averaged distance from the

network.

In other words, the optimization criterion

becomes simply

F (Σ) =

∫

Ω

dist(x,Σ) df+(x) .

Due to the presence of many local minima

the method is based on a genetic algorithm.
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Optimal sets of length 0.5 and 1 in a unit disk

Optimal sets of length 1.25 and 1.5 in a unit disk

Optimal sets of length 2 and 3 in a unit disk
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Optimal sets of length 0.5 and 1 in a unit square

Optimal sets of length 1.5 and 2.5 in a unit square

Optimal sets of length 3 and 4 in a unit square
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Optimal sets of length 1 and 2 in the unit ball of R3

Optimal sets of length 3 and 4 in the unit ball of R3
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The usual Monge-Kantorovich theory does

not however provide an explaination to sev-

eral natural structures (see figures) present-

ing some interesting features that should be

interpreted in terms of mass transportation.

For instance, if the source is a Dirac mass

and the target is a segment, as in figure

below, the Monge-Kantorovich theory pro-

vides a behaviour quite different from what

expected.

The Monge transport rays.
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Various approaches have been proposed to

give more appropriated models:

• Q. Xia (Comm. Cont. Math. 2003) by

the minimization of a suitable functional

defined on currents;

• V. Caselles, J. M. Morel, S. Solimini, . . .

(Preprint 2003 http://www.cmla.ens-

cachan.fr/Cmla/, Interfaces and Free

Boundaries 2003, PNLDE 51 2002) by a

kind of analogy of fluid flow in thin tubes.

• A. Brancolini, G. Buttazzo, E. Oudet, E.

Stepanov, (see http://cvgmt.sns.it)

by a variational model for irrigation trees.

Here we propose a different approach based

on a definition of path length in a Wasser-

stein space (A. Brancolini, G. Buttazzo, F.

Santambrogio 2004).
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We also give a model where the opposite

feature occurs: instead of favouring the con-

centration of transport rays, the variational

functional gives a lower cost to diffused mea-

sures. We do not know of natural phenom-

ena where this diffusive behaviour occurs.

The framework is a metric space (X, d); we

assume that closed bounded subsets of X

are compact. Consider the path functional

J (γ) =

∫ 1

0

J(γ(t))|γ′|(t) dt

for all Lipschitz curves γ : [0, 1] → X such

that γ(0) = x0 and γ(1) = x1.

• J : X → [0,+∞] is a given mapping;

• |γ′|(t) is the metric derivative of γ at the

point t, i.e.

|γ′|(t) = lim sup
s→t

d
(
γ(s), γ(t)

)

|s− t| .
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Theorem Assume:

• J is lower semicontinuous in X;

• J ≥ c with c > 0, or more generally∫ +∞
0

(
infB(r) J

)
dr = +∞.

Then, for every x0, x1 ∈ X there exists an

optimal path for the problem

min
{
J (γ) : γ(0) = x0, γ(1) = x1

}

provided there exists a curve γ0, connecting

x0 to x1, such that J (γ0) < +∞.

The application of the theorem above con-

sists in taking as X a Wasserstein space

Wp(Ω) (p ≥ 1), being Ω a compact subset

of RN .

When Ω is compact, Wp(Ω) is the space of

all Borel probability measures on Ω, and the

p-Wasserstein distance is equivalent to the

weak* convergence.
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The behaviour of geodesics curves for the

length functional J will be determined by

the choice of the “coefficient” functional J .

We take for J a l.s.c. functional on the space

of measures, of the kind considered by Bou-

chitté and Buttazzo (Nonlinear Anal. 1990,

Ann. IHP 1992, Ann. IHP 1993):

J(µ) =

∫

Ω

f(µa)dx+

∫

Ω

f∞(µc)+

∫

Ω

g(µ(x))d#.

• µ = µa ·dx+µc+µ# is the decomposition

of µ into absolutely continuous, Cantor,

and atomic parts;

• f : R→ [0,+∞] is convex, l.s.c., proper;

• f∞ is the recession function of f ;

• g : R→ [0,+∞] is l.s.c. and subadditive,

with g(0) = 0;

• # is the counting measure;

• f and g verify the compatibility condition

lim
t→+∞

f(ts)

t
= lim
t→0+

g(ts)

t
.
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The functional J is l.s.c. for the weak* con-

vergence of measures and, if f(s) > 0 for

s > 0 and g(1) > 0, the assumptions of the

abstract framework are fulfilled. In order to

obtain an optimal path for J between two

fixed probabilities µ0 and µ1, it remains to

ensure that J is not identically +∞.

We now study two prototypical cases.

Concentration f ≡ +∞, g(z) = |z|r with

r ∈]0, 1[. We have then

J(µ) =

∫

Ω

|µ(x)|r d# µ atomic

Diffusion f(z) = |z|q with q > 1, g ≡ +∞.

We have then

J(µ) =

∫

Ω

|u(x)|q dx µ = u ·dx, u ∈ Lq.
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Concentration case. The following facts

in the concentration case hold:

• If µ0 and µ1 are convex combinations

(also countable) of Dirac masses, then

they can be connected by a path γ(t) of

finite minimal cost J .

• If r > 1− 1/N then every pair of proba-

bilities µ0 and µ1 can be connected by a

path γ(t) of finite minimal cost J .

• The bound above is sharp. Indeed, if r ≤
1 − 1/N there are measures that cannot

be connected by a finite cost path (for

instance a Dirac mass and the Lebesgue

measure).
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Example. (Y-shape versus V-shape). We

want to connect (concentration case r < 1

fixed) a Dirac mass to two Dirac masses (of

weight 1/2 each) as in figure below, l and h

are fixed. The value of the functional J is

given by

J (γ) = x+ 21−r√(l − x)2 + h2.

Then the minimum is achieved for

x = l − h√
41−r − 1

.

When r = 1/2 we have a Y-shape if l > h

and a V-shape if l ≤ h.

•

•

•

h

l

x

A Y-shaped path for r = 1/2.
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Diffusion case. The following facts in the

diffusion case hold:

• If µ0 and µ1 are in Lq(Ω), then they can

be connected by a path γ(t) of finite min-

imal cost J . The proof uses the displace-

ment convexity (McCann 1997) which,

for a functional F and every µ0, µ1, is the

convexity of the map t 7→ F (T (t)), being

T (t) = [(1− t)Id + tT ]#µ0 and T an op-

timal transportation between µ0 and µ1.

• If q < 1 + 1/N then every pair of proba-

bilities µ0 and µ1 can be connected by a

path γ(t) of finite minimal cost J .

• The bound above is sharp. Indeed, if q ≥
1 + 1/N there are measures that cannot

be connected by a finite cost path (for

instance a Dirac mass and the Lebesgue

measure).
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A more refined approach in necessary when

Ω is unbounded; indeed, in this case several

assumptions fail:

• the Wasserstein spaces Wp(Ω) are not

even locally compact;

• Wp(Ω) do not contain all the probabili-

ties on Ω but only those with finite mo-

mentum of order p

∫

Ω

|x|p dµ < +∞ ;

• the Wasserstein convergence does not co-

incide with the weak* convergence.

However, some of the previous results can be

generalized to the unbounded setting, even

if the analysis in not so complete as in the

case Ω compact.
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Open Problems

• linking two Lq measures in the diffusion-

unbounded case;

• concentration case in unbounded setting;

• Ω unbounded but not necessarily the

whole space;

• working with the space W∞(Ω);

• comparing this model to the ones by Xia

and by Morel, Solimini, . . . ;

• numerical computations;

• evolution models?
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