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I Now consider the Stokes equation
−∆u+∇p = 0

div(u) = 0
u = 0

in Ω
in Ω
in ω ⊂ Ω.

I Then one has u ≡ 0 in Ω (and p is constant).

I Proof: Observe that ∇p ≡ 0 in ω , so p is constant in ω, and apply (N+1)
times the result concerning the Laplacian.
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∂t
− div(a∇u) + V u = 0

u = 0
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A second type of unique continuation is the following:

I Let H be a Hilbert space and (A,D(A)) : H −→ H a self-adjoint operator
acting on H with (Au|u) ≥ 0.

I Then for any u0 ∈ H the evolution equation
∂u

∂t
+Au = 0, u(0) = u0

has a unique solution u ∈ C1((0,∞),H).

I If for some T > 0 one has u(T ) = 0, then u ≡ 0 ≡ u0.

I This is a consequence of a convexity result: t 7→ log ‖u(t)‖2 is convex,
which yields the inequality

(1.1) ∀ t ∈ (0, T ), ‖u(t)‖ ≤ ‖u0‖(T−t)/T ‖u(T )‖t/T
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I The idea is to show a representation formula for u, solution to (2.2) , or for
z, solution to (2.3) , in terms of p0, 1ω0.

I Denote by (λk, ϕk)k≥1 the eigenvalues and eigenfunctions of v 7→ −div(a∇v)
on H1

0(Ω).

I Define by ckj for k, j ≥ 1 the numbers

ckj = cjk =
∫

Ω
1ω0(x)ϕk(x)ϕj(x)dx =

∫
ω0

ϕk(x)ϕj(x)dx

we have that ϕk 1ω0 =
∑

j≥1 ckjϕj,and

p(t, x)1ω0 =
∑
k≥1

βk(t)ϕk(x), with βk(t) =
∑
j≥1

ckjαj exp(−λjt).

where p0 =
∑

j≥1 αjϕj.
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I Then one shows that u, solution to (2.2) is represented by the formula

(3.4) u(t, x) =
∑
k≥1

∑
j 6=k

ckjαj
e−λkt − e−λjt

λj − λk
ϕk(x) + t

∑
k≥1

ckkαke−λktϕk(x).

for all t > 0.

I From this one sees that if u(t, x) = 0 on [0, T ]× ω1, then for x ∈ ω1

−α1c11ϕ1(x) =
∑
k≥1

∑
j 6=k

ckjαj
e−(λk−λ1)t − e−(λj−λ1)t

t(λj − λk)
ϕk(x)

+
∑
k≥2

αkckke−(λk−λ1)tϕk(x).

I Letting t → +∞ one concludes that α1c11ϕ1 1ω1 ≡ 0, and hence α1 = 0.
One may repeat this argument for all k > 1 and conclude that αk = 0.



Idea of the proof

I In the same manner one shows that z, solution to (2.3) , is represented by
(here 0 < t < T )

(3.5) z(t, x) =
∑
k,j≥1

eλkt
ckjαj
λj + λk

[
e−(λj+λk)t − e−(λj+λk)T

]
ϕk(x).



Idea of the proof

I In the same manner one shows that z, solution to (2.3) , is represented by
(here 0 < t < T )

(3.5) z(t, x) =
∑
k,j≥1

eλkt
ckjαj
λj + λk

[
e−(λj+λk)t − e−(λj+λk)T

]
ϕk(x).

I However here it is somewhat more subtle to show

z ≡ 0 on (0, T )× ω1 =⇒ αk = 0 for all k ≥ 1 . . .
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e−λjTe−λk(T−t)ϕk(x).

I Since on both sides we have analytic functions of t ∈ (0, T ), we may extend
them to the strip {τ + is ; 0 < τ < T, s ∈ R} ⊂ C.
Upon choosing t := T

2 + is one gets for all s ∈ R∑
n≥1

b1n(x)e−iλns =
∑
n≥1

b2n(x)eiλns

where we have set

(3.7)

b1j(x) :=
∑
k≥1

ckjαj
λj + λk

e−λjT/2ϕk(x)1ω1(x)

b2k(x) :=
∑
j≥1

ckjαj
λj + λk

e−(λk+2λj)T/2ϕk(x)1ω1(x).
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I From (3.8) one concludes that for all n ≥ 1: αnψn(x) ≡ 0 in ω1 and
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∑
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αj e−λjT = 0.

I In fact (3.9) implies that for all n ≥ 1 we have αn = 0 (and p0 ≡ 0).

I Let the operator L be defined on L2(Ω) by Lϕn := ψn.

I Then L is a bounded self-adjoint operator and (3.9) means (ϕn|Lp(T )) = 0
for all n ≥ 1.

I We have thus Lp(T ) = 0. And next we show that this implies that
p(T ) = 0.
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where S(t)f := exp(−tA)f is the heat semi-group generated by A.



Idea of proof

I One shows a representation formula for L: for all f ∈ L2(Ω) one has

(3.10) (Lf |f) =
∫ ∞

0
‖1ω0S(t)f‖2

2dt

where S(t)f := exp(−tA)f is the heat semi-group generated by A.

I Thus (3.9) implies that S(t)p(T ) ≡ 0 on (0,∞) × ω0, and the unique
continuation principle for the heat equation implies p(T ) ≡ 0 in Ω.
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I For t > 0 define

F (t) := S(t)f =
∑
n≥1

e−λnt(f |ϕn)ϕn..
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∑
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∑
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∑
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cnk(g|ϕn)(g|ϕk)
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Proof of (3.10)

I So one sees that∫ ∞

0
‖1ω0S(t)f‖2

2dt =
∫ ∞

0

 ∑
n,k≥1

cnke−λnt(f |ϕn)e−λkt(f |ϕk)

 dt
=

∑
n,k≥1

cnk(f |ϕn)(f |ϕk)
∫ ∞

0
e−(λn+λk)tdt

=
∑
n,k≥1

cnk
λn + λk

(f |ϕn)(f |ϕk) = (Lf |f).

I This recalls the known exercises about Hilbert matrices: prove that the m-
dimensional Hilbert matrix (

1
i+ j − 1

)
1≤i,j≤m

is a self-adjoint positive definite matrix. . .


