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Then one can prove that ©u =0 in Q.
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Now consider the Stokes equation

—Au+Vp=0 in
div(u) =0 in Q
u=~0 in w C €.

Then one has « =0 in  (and p is constant).

Proof: Observe that Vp =0 in w, so p is constant in w, and apply (N+1)
times the result concerning the Laplacian.
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A second type of unique continuation is the following: '

Let H be a Hilbert space and (A, D(A)) : H — H a self-adjoint operator
acting on H with (Au|u) > 0.

Then for any uy € H the evolution equation

ou
E—I—Au:(), u(0) = uy

has a unique solution v € C'((0, ), H).

If for some T' > 0 one has u(7T") = 0, then u = 0 = wy.

This is a consequence of a convexity result: ¢ — log ||u(t)||* is convex,

which yields the inequality

(1.1) Ve (0,T),  lu@®)l < lluoll T lu(T)IIF
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Let a be as above, and © ¢ RY a bounded Lipschitz domain. '

For py € L?(Q), let p be the solution of

Op — div(aVp) =0 in (0,7) x
(2.1) p(0,2) = po(x) in
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Let wy C €2 be open and u be solution to

Ou — div(aVu) = ply, in (0,7) x
(2.2) u(0,2) =0 in )
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Assume that w; C €2 is an open subdomain and 1" > 0 is such that « = 0 in
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Question: Can one conclude that py=0=p =wu in Q7
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The idea is to show a representation formula for u, solution to (2.2) , or for '
z, solution to (2.3) , in terms of py, 1.,.

Denote by (Ax, ¢k )r>1 the eigenvalues and eigenfunctions of v — —div(aVv)
on Hj(9).

Define by c;; for k,7 > 1 the numbers
T = Gy — /Qlwo(a:)gok(x)goj(a:)da: :/ or(T)p;(x)dx
wo
we have that ¢, 1, = ZjZl crj;,and

p(t, )1y, = Zﬁk(t)@k(x)a with Gi(t) = chjaj exp(—Ajt).

k>1 j=>1

where pg = ijl a;p;.
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for all ¢ > 0.
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Then one shows that u, solution to (2.2) is represented by the formula '
=gt e*)\jt

e _
(3.4) wu(t,z) = Z Z ChrjCt ———— " wr(z) + tz crrore” op(z).
j

k>1 j£k E>1

for all ¢ > 0.

From this one sees that if u(¢,z) = 0 on [O T] X wy, then for x € wy

k= A)E o= (A=)t

—aenpi(@) =YY arja v =) ()

k>1 j#k
+ ) oncpre” Mg (a).
k>2
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Then one shows that u, solution to (2.2) is represented by the formula '
=gt e*)\jt

e _
(3.4) wu(t,z) = Z Z ChjClj " wr(T) + tz crrore” op(z).
j

k>1 j£k E>1

for all ¢ > 0.

From this one sees that if u(¢,z) = 0 on [O T] X wy, then for x € wy

At o= (A=At

—agenpr(z ZZCkJOéJ 0 — M) er()

k>1 j#k
- Z akckkei()\ki)\l)t%@k(iw'
>2

Letting ¢ — +o00 one concludes that ajci1011,, = 0, and hence a; = 0.
One may repeat this argument for all £k > 1 and conclude that o = 0.
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» In the same manner one shows that z, solution to (2.3) , is represented by '
(here 0 <t < T)

(3.5) 2(t,x) = Z eAkt;k:jozj |:e—()\j+)\k)t _ e—()\j—l—)\k)T} or(2).
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In the same manner one shows that z, solution to (2.3) , is represented by '
(here 0 <t < T)

(35) Z e)\kt Ck‘—Jl_Oéi\ |: —(Aj+HAp)t e—()\j+)\k)Ti| SO]{;(Q:)
k,j>1 &

However here it is somewhat more subtle to show

z2=0 on (0,7T)Xxw = a; =0 forall k>1...
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» One begins by noting that if z = 0 on (0,7") X wy, the representation formula '
implies: for (¢,z) € (0,T) X w;

CLiO; CLiO; N _
(3.6) Z kjtty ] (,Dk- Z >\ k{_]|_ i\k )\]Te )\k(T t)QDk(x)-

>\j‘|‘)\k




|ldea of the proof A

One begins by noting that if z = 0 on (0,7) X w;, the representation formula '
implies: for (¢,z) € (0,T) X w;

(36) Y e Np(n) = 3 A e Mo Mg, (r),
; : )\j + Ak

Since on both sides we have analytic functions of ¢ € (0,7), we may extend
them to the strip {7 +is; 0 <7< T, s€ R} C C.
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One begins by noting that if z = 0 on (0,7) X w;, the representation formula '
implies: for (¢,z) € (0,T) X w;

(36) Y e Np(n) = 3 A e Mo Mg (o),
; : )\j + Ak

Since on both sides we have analytic functions of ¢ € (0,7), we may extend
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One begins by noting that if z = 0 on (0,7) X w;, the representation formula '
implies: for (t,z) € (0,T) X wy

CrjOy _CriQy o NT o= Ae(T—1)
(3.6) > —X+Ak = > e e T 0 ().

kgj>1"" k,j>1

Since on both sides we have analytic functions of ¢ € (0,7), we may extend
them to the strip {7 +is; 0 <7< T, s€e R} C C.
Upon choosing ¢ := % + is one gets for all s € R

Z bln(x)e*“”s = Z bay, (a:)eM”S

n>1 n>1
where we have set
CriO; .
bl] Z Y j_;\ AjT/290k(55)1wl(33)
(3.7) k>1 k
- Ci Y ,
bor() = Zﬁe AT ()1, ().

j>1
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Lemma. Let (b,),>1 be complex numbers such that ), [b,| < oo, and let '
(An)n>1 be distinct real numbers. If for all s € R

Z bnei)\ns _ 0,

n>1

then for all n > 1 we have b,, = 0.
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Lemma. Let (b,),>1 be complex numbers such that ), [b,| < oo, and let '
(An)n>1 be distinct real numbers. If for all s € R

AnS __
g b,e"""* =0,

n>1

then for all n > 1 we have b,, = 0.

Proof. |If k is the least integer n > 1 such that b, # 0, multiply by e "+
and integrate over [—L, L] to get

1 [t sin((A, — Ar)L)
—b § by i(An=Ar)sJg = § by n .
0=+ /_L © 5= 0kt v — M) L
n>k+1 n>k+1
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Lemma. Let (b,),>1 be complex numbers such that ), [b,| < oo, and let '
(An)n>1 be distinct real numbers. If for all s € R

1AnS __
g b,e"""* =0,

n>1

then for all n > 1 we have b,, = 0.

Proof. |If k is the least integer n > 1 such that b, # 0, multiply by e "+
and integrate over [—L, L] to get

1 [t sin((A, — Ax)L)
—b § by i(An=Ar)sJg = § by n .
0=+ /_L © § =0kt CHEWY;
n>k+1 n>k+1

Letting L — +o0 it follows that b, = 0.
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Corlollary. if z=0on (0,7) x w; then for all n > 1

» Let 1, be the solution to

Awn + )\nwn = ©n 1w07 Tpn =0 on 0Of).

Then by, by, defined by (3.7) can be written as

bin(®) = antpn ()L, ()e 72
bon(z) = (¢n|p(T))S0n($)1w1(x)e_)\nT/Q-

(3.8)
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@

_ nj o NT
(3.9) (¢nlp(T)) = Z; y e =0.
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From (3.8) one concludes that for all n > 1: «,%,(x) =0 in w; and '

(3.9) (Wulp(T)) = Y 55 ae ™ =0,
9 n

>1

In fact (3.9) implies that for all n > 1 we have a,, = 0 (and py = 0).
Let the operator L be defined on L?*(Q) by Ly, := 1,,.

Then L is a bounded self-adjoint operator and (3.9) means (y,|Lp(T)) =0
forall n > 1.

We have thus Lp(T) = 0.  And next we show that this implies that
p(T) =0.
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» One shows a representation formula for L: for all f € L*(2) one has

(3.10) (LfIf) = / 1S 13t

where S(t)f := exp(—tA)f is the heat semi-group generated by A.
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One shows a representation formula for L: for all f € L?(Q2) one has '
(310 LS = [ IS5

where S(t)f := exp(—tA)f is the heat semi-group generated by A.

Thus (3.9) implies that S(¢)p(T) = 0 on (0,00) X wy, and the unique
continuation principle for the heat equation implies p(7)) = 0 in 2.
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» For t > 0 define

F(t):=St)f =Y e (flon)en.-

n>1

» Since for g € L*(Q)

[ s@riz =Y (glen)talen [

on(@)or(T)dz = ) curl(glon)(gler)

“o n,k>1 = n,k>1
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» So one sees that

| s = [ [Z “(flpn)e ™ (Flen) |

n,k>1
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» So one sees that

k>1

= 3 el Flen) (Flor) / e Ot gy

n,k>1

/0 ||1w05(t)f||%dt / [Z ane f|90n Akt(f@‘%)] dt




Proof of (3.10)

» So one sees that

/0 110,S () fll5dt = / [Z cure M (flon)e A’“t(fsf?k)] dt

k>1

= 3 culFlen)(Flew) / o= Ot N gy

n,k>1

=2 AcfA (flen) (flor) = (LIf)-

n,k>1




Proof of (3.10)

So one sees that

/0 11.,5() £ |13t = / S e (flipn)e M Flox) | dt

n,k>1

= 3 culfle(flen) [ e trray

n,k>1
. Cnk _
= MZE1 " )\k(flson)(flsozﬂ) = (LfIf).

This recalls the known exercises about Hilbert matrices: prove that the m-

is a self-adjoint positive definite matrix. . .




