:

- Principle for

4
 .

Systems of \leq
Parabolic Equations

Otared Kavian

Laboratoire de Mathématiques Appliquées

Université de Versailles
45, avenue des Etats Unis
78035 Versailles cedex (France)
kavian@math.uvsq.fr
Benasque, September 1, 2005

- Joint work with Luz de Teresa (Universidad Nacional Autónoma de México)

Today's talk

Introduction
Main result
Idea of the proof

Introduction

Introduction

There are several types of unique continuation of interest.

- A first one is the following: let $u \in H^{1}(\Omega)$ satisfy

$$
-\Delta u+V u=0, \quad u \equiv 0 \text { in } \omega \subset \Omega
$$

where $V \in L^{\infty}(\Omega)$ and ω is an open subset of the connected open set Ω.

Introduction

There are several types of unique continuation of interest.

- A first one is the following: let $u \in H^{1}(\Omega)$ satisfy

$$
-\Delta u+V u=0, \quad u \equiv 0 \text { in } \omega \subset \Omega
$$

where $V \in L^{\infty}(\Omega)$ and ω is an open subset of the connected open set Ω.

- Then one can prove that $u \equiv 0$ in Ω.

Introduction

This implies another type of unique continuation: let $u \in H^{1}(\Omega)$ satisfy

$$
\left\{\begin{aligned}
-\Delta u+V u & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma \\
\frac{\partial u}{\partial \mathrm{n}} & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

where Γ is a relatively open subset of $\partial \Omega$.

Introduction

This implies another type of unique continuation: let $u \in H^{1}(\Omega)$ satisfy

$$
\left\{\begin{aligned}
&-\Delta u+V u=0 \\
& u=0 \text { in } \Omega \\
& u u \\
& \frac{\partial u}{\partial \mathrm{n}}=0 \\
& \text { on } \Gamma
\end{aligned}\right.
$$

where Γ is a relatively open subset of $\partial \Omega$. Then $u \equiv 0$ in Ω.

Introduction

Now consider the Stokes equation

$$
\left\{\begin{aligned}
-\Delta u+\nabla p=0 & \text { in } \Omega \\
\operatorname{div}(u)=0 & \text { in } \Omega \\
u=0 & \text { in } \omega \subset \Omega
\end{aligned}\right.
$$

Introduction

Now consider the Stokes equation

$$
\left\{\begin{aligned}
-\Delta u+\nabla p=0 & \text { in } \Omega \\
\operatorname{div}(u)=0 & \text { in } \Omega \\
u=0 & \text { in } \omega \subset \Omega
\end{aligned}\right.
$$

Then one has $u \equiv 0$ in Ω (and p is constant).

Introduction

- Now consider the Stokes equation

$$
\left\{\begin{aligned}
-\Delta u+\nabla p=0 & \text { in } \Omega \\
\operatorname{div}(u)=0 & \text { in } \Omega \\
u=0 & \text { in } \omega \subset \Omega
\end{aligned}\right.
$$

- Then one has $u \equiv 0$ in Ω (and p is constant).
- Proof: Observe that $\nabla p \equiv 0$ in ω, so p is constant in ω, and apply ($\mathrm{N}+1$) times the result concerning the Laplacian.

Introduction

- An analogous result holds for the evolution equation

$$
\left\{\begin{aligned}
& \frac{\partial u}{\partial t}-\Delta u+V u=0 \\
& \text { in }[0, T] \times \Omega \\
& u=0 \\
& \text { on }[0, T] \times \omega \subset \Omega
\end{aligned}\right.
$$

Introduction

An analogous result holds for the evolution equation

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\Delta u+V u=0 & \text { in }[0, T] \times \Omega \\
u=0 & \text { on }[0, T] \times \omega \subset \Omega
\end{aligned}\right.
$$

- Then one has $u \equiv 0$ in $[0, T] \times \Omega$.

Introduction

- An analogous result holds for the evolution equation

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\Delta u+V u=0 & \text { in }[0, T] \times \Omega \\
u=0 & \text { on }[0, T] \times \omega \subset \Omega
\end{aligned}\right.
$$

- Then one has $u \equiv 0$ in $[0, T] \times \Omega$.
- More generally, if $a \in W^{1, \infty}(\Omega)^{N \times N}$ is a positive definite matrix and

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\operatorname{div}(a \nabla u)+V u & =0 & & \text { in }[0, T] \times \Omega \\
u & =0 & & \text { on }[0, T] \times \omega \subset \Omega
\end{aligned}\right.
$$

Introduction

- An analogous result holds for the evolution equation

$$
\left\{\begin{aligned}
& \frac{\partial u}{\partial t}-\Delta u+V u=0 \\
& \text { in }[0, T] \times \Omega \\
& u=0 \\
& \text { on }[0, T] \times \omega \subset \Omega
\end{aligned}\right.
$$

- Then one has $u \equiv 0$ in $[0, T] \times \Omega$.
- More generally, if $a \in W^{1, \infty}(\Omega)^{N \times N}$ is a positive definite matrix and

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\operatorname{div}(a \nabla u)+V u & =0 & & \text { in }[0, T] \times \Omega \\
u & =0 & & \text { on }[0, T] \times \omega \subset \Omega
\end{aligned}\right.
$$

then $u \equiv 0$ in $[0, T] \times \Omega$.

Introduction

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)): H \longrightarrow H$ a self-adjoint operator acting on H with $(A u \mid u) \geq 0$.

Introduction

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)): H \longrightarrow H$ a self-adjoint operator acting on H with $(A u \mid u) \geq 0$.
- Then for any $u_{0} \in H$ the evolution equation

$$
\frac{\partial u}{\partial t}+A u=0, \quad u(0)=u_{0}
$$

has a unique solution $u \in C^{1}((0, \infty), H)$.

Introduction

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)): H \longrightarrow H$ a self-adjoint operator acting on H with $(A u \mid u) \geq 0$.
- Then for any $u_{0} \in H$ the evolution equation

$$
\frac{\partial u}{\partial t}+A u=0, \quad u(0)=u_{0}
$$

has a unique solution $u \in C^{1}((0, \infty), H)$.

- If for some $T>0$ one has $u(T)=0$, then $u \equiv 0 \equiv u_{0}$.

Introduction

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)): H \longrightarrow H$ a self-adjoint operator acting on H with $(A u \mid u) \geq 0$.
- Then for any $u_{0} \in H$ the evolution equation

$$
\frac{\partial u}{\partial t}+A u=0, \quad u(0)=u_{0}
$$

has a unique solution $u \in C^{1}((0, \infty), H)$.

- If for some $T>0$ one has $u(T)=0$, then $u \equiv 0 \equiv u_{0}$.
- This is a consequence of a convexity result: $t \mapsto \log \|u(t)\|^{2}$ is convex,

Introduction

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)): H \longrightarrow H$ a self-adjoint operator acting on H with $(A u \mid u) \geq 0$.
- Then for any $u_{0} \in H$ the evolution equation

$$
\frac{\partial u}{\partial t}+A u=0, \quad u(0)=u_{0}
$$

has a unique solution $u \in C^{1}((0, \infty), H)$.

- If for some $T>0$ one has $u(T)=0$, then $u \equiv 0 \equiv u_{0}$.
- This is a consequence of a convexity result: $t \mapsto \log \|u(t)\|^{2}$ is convex, which yields the inequality

$$
\begin{equation*}
\forall t \in(0, T), \quad\|u(t)\| \leq\left\|u_{0}\right\|^{(T-t) / T}\|u(T)\|^{t / T} \tag{1.1}
\end{equation*}
$$

Main result

Main result

Let a be as above, and $\Omega \subset \mathbb{R}^{N}$ a bounded Lipschitz domain.

Main result

Let a be as above, and $\Omega \subset \mathbb{R}^{N}$ a bounded Lipschitz domain.

- For $p_{0} \in L^{2}(\Omega)$, let p be the solution of

$$
\left\{\begin{align*}
\partial_{t} p-\operatorname{div}(a \nabla p) & =0 & & \text { in }(0, T) \times \Omega \tag{2.1}\\
p(0, x) & =p_{0}(x) & & \text { in } \Omega \\
p(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega
\end{align*}\right.
$$

Main result

Let a be as above, and $\Omega \subset \mathbb{R}^{N}$ a bounded Lipschitz domain.

- For $p_{0} \in L^{2}(\Omega)$, let p be the solution of

$$
\left\{\begin{align*}
\partial_{t} p-\operatorname{div}(a \nabla p) & =0 & & \text { in }(0, T) \times \Omega \tag{2.1}\\
p(0, x) & =p_{0}(x) & & \text { in } \Omega \\
p(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega
\end{align*}\right.
$$

- Let $\omega_{0} \subset \Omega$ be open and u be solution to

$$
\left\{\begin{align*}
\partial_{t} u-\operatorname{div}(a \nabla u) & =p 1_{\omega_{0}} & & \text { in }(0, T) \times \Omega \tag{2.2}\\
u(0, x) & =0 & & \text { in } \Omega \\
u(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega .
\end{align*}\right.
$$

Main result

- Let a be as above, and $\Omega \subset \mathbb{R}^{N}$ a bounded Lipschitz domain.
- For $p_{0} \in L^{2}(\Omega)$, let p be the solution of

$$
\left\{\begin{align*}
\partial_{t} p-\operatorname{div}(a \nabla p) & =0 & & \text { in }(0, T) \times \Omega \tag{2.1}\\
p(0, x) & =p_{0}(x) & & \text { in } \Omega \\
p(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega
\end{align*}\right.
$$

- Let $\omega_{0} \subset \Omega$ be open and u be solution to

$$
\left\{\begin{align*}
\partial_{t} u-\operatorname{div}(a \nabla u) & =p 1_{\omega_{0}} & & \text { in }(0, T) \times \Omega \tag{2.2}\\
u(0, x) & =0 & & \text { in } \Omega \\
u(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega .
\end{align*}\right.
$$

- Assume that $\omega_{1} \subset \Omega$ is an open subdomain and $T>0$ is such that $u \equiv 0$ in $(0, T) \times \omega_{1}$.

Main result

- Let a be as above, and $\Omega \subset \mathbb{R}^{N}$ a bounded Lipschitz domain.
- For $p_{0} \in L^{2}(\Omega)$, let p be the solution of

$$
\left\{\begin{align*}
\partial_{t} p-\operatorname{div}(a \nabla p) & =0 & & \text { in }(0, T) \times \Omega \tag{2.1}\\
p(0, x) & =p_{0}(x) & & \text { in } \Omega \\
p(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega
\end{align*}\right.
$$

- Let $\omega_{0} \subset \Omega$ be open and u be solution to

$$
\left\{\begin{align*}
\partial_{t} u-\operatorname{div}(a \nabla u) & =p 1_{\omega_{0}} & & \text { in }(0, T) \times \Omega \tag{2.2}\\
u(0, x) & =0 & & \text { in } \Omega \\
u(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega .
\end{align*}\right.
$$

- Assume that $\omega_{1} \subset \Omega$ is an open subdomain and $T>0$ is such that $u \equiv 0$ in $(0, T) \times \omega_{1}$.
- Question: Can one conclude that $p_{0} \equiv 0 \equiv p \equiv u$ in Ω ?

Main result

Answer: Yes...

Main result

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):

Main result

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For $T>0$ fixed and $\omega_{0} \subset \Omega$ open, consider $z(t, x)$ the solution of the backward heat equation let z be solution to
(2.3) $\left\{\begin{aligned}-\partial_{t} z(t, x)-\operatorname{div}(a \nabla z(t, x)) & =p(t, x) 1_{\omega_{0}} \\ z(T, x) & =0 \\ z(t, \sigma) & =0\end{aligned}\right.$

$$
\begin{aligned}
& \text { in }(0, T) \times \Omega \\
& \text { in } \Omega \\
& \text { on }(0, T) \times \partial \Omega \text {. }
\end{aligned}
$$

Main result

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For $T>0$ fixed and $\omega_{0} \subset \Omega$ open, consider $z(t, x)$ the solution of the backward heat equation let z be solution to
(2.3) $\left\{\begin{aligned}-\partial_{t} z(t, x)-\operatorname{div}(a \nabla z(t, x)) & =p(t, x) 1_{\omega_{0}} \\ z(T, x) & =0 \\ z(t, \sigma) & =0\end{aligned}\right.$

$$
\begin{aligned}
& \text { in }(0, T) \times \Omega \\
& \text { in } \Omega \\
& \text { on }(0, T) \times \partial \Omega \text {. }
\end{aligned}
$$

- Assume that $\omega_{1} \subset \Omega$ is an open subdomain and that $z \equiv 0$ in $(0, T) \times \omega_{1}$.

Main result

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For $T>0$ fixed and $\omega_{0} \subset \Omega$ open, consider $z(t, x)$ the solution of the backward heat equation let z be solution to
(2.3) $\left\{\begin{aligned}-\partial_{t} z(t, x)-\operatorname{div}(a \nabla z(t, x)) & =p(t, x) 1_{\omega_{0}} & & \text { in }(0, T) \times \Omega \\ z(T, x) & =0 & & \text { in } \Omega \\ z(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega .\end{aligned}\right.$
- Assume that $\omega_{1} \subset \Omega$ is an open subdomain and that $z \equiv 0$ in $(0, T) \times \omega_{1}$.
- Question: Can one conclude that $p_{0} \equiv 0 \equiv p \equiv z$ in Ω ?

Main result

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For $T>0$ fixed and $\omega_{0} \subset \Omega$ open, consider $z(t, x)$ the solution of the backward heat equation let z be solution to
(2.3) $\left\{\begin{aligned}-\partial_{t} z(t, x)-\operatorname{div}(a \nabla z(t, x)) & =p(t, x) 1_{\omega_{0}} & & \text { in }(0, T) \times \Omega \\ z(T, x) & =0 & & \text { in } \Omega \\ z(t, \sigma) & =0 & & \text { on }(0, T) \times \partial \Omega .\end{aligned}\right.$
- Assume that $\omega_{1} \subset \Omega$ is an open subdomain and that $z \equiv 0$ in $(0, T) \times \omega_{1}$.
- Question: Can one conclude that $p_{0} \equiv 0 \equiv p \equiv z$ in Ω ?
- Answer: Yes...

Idea of the proof

Idea of the proof

The idea is to show a representation formula for u, solution to (2.2), or for z, solution to (2.3), in terms of $p_{0}, 1_{\omega_{0}}$.

Idea of the proof

- The idea is to show a representation formula for u, solution to (2.2) , or for z, solution to (2.3), in terms of $p_{0}, 1_{\omega_{0}}$.
- Denote by $\left(\lambda_{k}, \varphi_{k}\right)_{k \geq 1}$ the eigenvalues and eigenfunctions of $v \mapsto-\operatorname{div}(a \nabla v)$ on $H_{0}^{1}(\Omega)$.

Idea of the proof

- The idea is to show a representation formula for u, solution to (2.2) , or for z, solution to (2.3), in terms of $p_{0}, 1_{\omega_{0}}$.
- Denote by $\left(\lambda_{k}, \varphi_{k}\right)_{k \geq 1}$ the eigenvalues and eigenfunctions of $v \mapsto-\operatorname{div}(a \nabla v)$ on $H_{0}^{1}(\Omega)$.
- Define by $c_{k j}$ for $k, j \geq 1$ the numbers

$$
c_{k j}=c_{j k}=\int_{\Omega} 1_{\omega_{0}}(x) \varphi_{k}(x) \varphi_{j}(x) d x=\int_{\omega_{0}} \varphi_{k}(x) \varphi_{j}(x) d x
$$

Idea of the proof

- The idea is to show a representation formula for u, solution to (2.2) , or for z, solution to (2.3), in terms of $p_{0}, 1_{\omega_{0}}$.
- Denote by $\left(\lambda_{k}, \varphi_{k}\right)_{k \geq 1}$ the eigenvalues and eigenfunctions of $v \mapsto-\operatorname{div}(a \nabla v)$ on $H_{0}^{1}(\Omega)$.
- Define by $c_{k j}$ for $k, j \geq 1$ the numbers

$$
c_{k j}=c_{j k}=\int_{\Omega} 1_{\omega_{0}}(x) \varphi_{k}(x) \varphi_{j}(x) d x=\int_{\omega_{0}} \varphi_{k}(x) \varphi_{j}(x) d x
$$

we have that $\varphi_{k} 1_{\omega_{0}}=\sum_{j \geq 1} c_{k j} \varphi_{j}$, and

$$
p(t, x) 1_{\omega_{0}}=\sum_{k \geq 1} \beta_{k}(t) \varphi_{k}(x), \quad \text { with } \beta_{k}(t)=\sum_{j \geq 1} c_{k j} \alpha_{j} \exp \left(-\lambda_{j} t\right) .
$$

where $p_{0}=\sum_{j \geq 1} \alpha_{j} \varphi_{j}$.

Idea of the proof

Then one shows that u, solution to (2.2) is represented by the formula
(3.4) $u(t, x)=\sum_{k \geq 1} \sum_{j \neq k} c_{k j} \alpha_{j} \frac{\mathrm{e}^{-\lambda_{k} t}-\mathrm{e}^{-\lambda_{j} t}}{\lambda_{j}-\lambda_{k}} \varphi_{k}(x)+t \sum_{k \geq 1} c_{k k} \alpha_{k} \mathrm{e}^{-\lambda_{k} t} \varphi_{k}(x)$. for all $t>0$.

Idea of the proof

Then one shows that u, solution to (2.2) is represented by the formula
(3.4) $u(t, x)=\sum_{k \geq 1} \sum_{j \neq k} c_{k j} \alpha_{j} \frac{\mathrm{e}^{-\lambda_{k} t}-\mathrm{e}^{-\lambda_{j} t}}{\lambda_{j}-\lambda_{k}} \varphi_{k}(x)+t \sum_{k \geq 1} c_{k k} \alpha_{k} \mathrm{e}^{-\lambda_{k} t} \varphi_{k}(x)$.
for all $t>0$.

- From this one sees that if $u(t, x)=0$ on $[0, T] \times \omega_{1}$, then for $x \in \omega_{1}$

$$
\begin{array}{r}
-\alpha_{1} c_{11} \varphi_{1}(x)=\sum_{k \geq 1} \sum_{j \neq k} c_{k j} \alpha_{j} \frac{\mathrm{e}^{-\left(\lambda_{k}-\lambda_{1}\right) t}-\mathrm{e}^{-\left(\lambda_{j}-\lambda_{1}\right) t}}{t\left(\lambda_{j}-\lambda_{k}\right)} \varphi_{k}(x) \\
+\sum_{k \geq 2} \alpha_{k} c_{k k} \mathrm{e}^{-\left(\lambda_{k}-\lambda_{1}\right) t} \varphi_{k}(x)
\end{array}
$$

Idea of the proof

Then one shows that u, solution to (2.2) is represented by the formula

$$
\begin{equation*}
u(t, x)=\sum_{k \geq 1} \sum_{j \neq k} c_{k j} \alpha_{j} \frac{\mathrm{e}^{-\lambda_{k} t}-\mathrm{e}^{-\lambda_{j} t}}{\lambda_{j}-\lambda_{k}} \varphi_{k}(x)+t \sum_{k \geq 1} c_{k k} \alpha_{k} \mathrm{e}^{-\lambda_{k} t} \varphi_{k}(x) . \tag{3.4}
\end{equation*}
$$

for all $t>0$.

- From this one sees that if $u(t, x)=0$ on $[0, T] \times \omega_{1}$, then for $x \in \omega_{1}$

$$
\begin{array}{r}
-\alpha_{1} c_{11} \varphi_{1}(x)=\sum_{k \geq 1} \sum_{j \neq k} c_{k j} \alpha_{j} \frac{\mathrm{e}^{-\left(\lambda_{k}-\lambda_{1}\right) t}-\mathrm{e}^{-\left(\lambda_{j}-\lambda_{1}\right) t}}{t\left(\lambda_{j}-\lambda_{k}\right)} \varphi_{k}(x) \\
+\sum_{k \geq 2} \alpha_{k} c_{k k} \mathrm{e}^{-\left(\lambda_{k}-\lambda_{1}\right) t} \varphi_{k}(x)
\end{array}
$$

- Letting $t \rightarrow+\infty$ one concludes that $\alpha_{1} c_{11} \varphi_{1} 1_{\omega_{1}} \equiv 0$, and hence $\alpha_{1}=0$. One may repeat this argument for all $k>1$ and conclude that $\alpha_{k}=0$.

Idea of the proof

In the same manner one shows that z, solution to (2.3), is represented by (here $0<t<T$)

$$
\begin{equation*}
z(t, x)=\sum_{k, j \geq 1} \mathrm{e}^{\lambda_{k} t} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}}\left[\mathrm{e}^{-\left(\lambda_{j}+\lambda_{k}\right) t}-\mathrm{e}^{-\left(\lambda_{j}+\lambda_{k}\right) T}\right] \varphi_{k}(x) . \tag{3.5}
\end{equation*}
$$

Idea of the proof

- In the same manner one shows that z, solution to (2.3), is represented by (here $0<t<T$)

$$
\begin{equation*}
z(t, x)=\sum_{k, j \geq 1} \mathrm{e}^{\lambda_{k} t} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}}\left[\mathrm{e}^{-\left(\lambda_{j}+\lambda_{k}\right) t}-\mathrm{e}^{-\left(\lambda_{j}+\lambda_{k}\right) T}\right] \varphi_{k}(x) . \tag{3.5}
\end{equation*}
$$

- However here it is somewhat more subtle to show

$$
z \equiv 0 \text { on }(0, T) \times \omega_{1} \Longrightarrow \alpha_{k}=0 \text { for all } k \geq 1 \ldots
$$

Idea of the proof

- One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_{1}$, the representation formula implies: for $(t, x) \in(0, T) \times \omega_{1}$
(3.6)

$$
\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} t} \varphi_{k}(x)=\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} T} \mathrm{e}^{-\lambda_{k}(T-t)} \varphi_{k}(x)
$$

Idea of the proof

- One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_{1}$, the representation formula implies: for $(t, x) \in(0, T) \times \omega_{1}$

$$
\begin{equation*}
\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} t} \varphi_{k}(x)=\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} T} \mathrm{e}^{-\lambda_{k}(T-t)} \varphi_{k}(x) . \tag{3.6}
\end{equation*}
$$

- Since on both sides we have analytic functions of $t \in(0, T)$, we may extend them to the strip $\{\tau+$ is $; 0<\tau<T, s \in \mathbb{R}\} \subset \mathbb{C}$.

Idea of the proof

- One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_{1}$, the representation formula implies: for $(t, x) \in(0, T) \times \omega_{1}$

$$
\begin{equation*}
\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} t} \varphi_{k}(x)=\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} T} \mathrm{e}^{-\lambda_{k}(T-t)} \varphi_{k}(x) . \tag{3.6}
\end{equation*}
$$

- Since on both sides we have analytic functions of $t \in(0, T)$, we may extend them to the strip $\{\tau+$ is $; 0<\tau<T, s \in \mathbb{R}\} \subset \mathbb{C}$. Upon choosing $t:=\frac{T}{2}+\mathrm{i}$ one gets for all $s \in \mathbb{R}$

$$
\sum_{n \geq 1} b_{1 n}(x) \mathrm{e}^{-\mathrm{i} \lambda_{n} s}=\sum_{n \geq 1} b_{2 n}(x) \mathrm{e}^{\mathrm{i} \lambda_{n} s}
$$

Idea of the proof

- One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_{1}$, the representation formula implies: for $(t, x) \in(0, T) \times \omega_{1}$

$$
\begin{equation*}
\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} t} \varphi_{k}(x)=\sum_{k, j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} T} \mathrm{e}^{-\lambda_{k}(T-t)} \varphi_{k}(x) . \tag{3.6}
\end{equation*}
$$

- Since on both sides we have analytic functions of $t \in(0, T)$, we may extend them to the strip $\{\tau+$ is $; 0<\tau<T, s \in \mathbb{R}\} \subset \mathbb{C}$. Upon choosing $t:=\frac{T}{2}+\mathrm{i}$ one gets for all $s \in \mathbb{R}$

$$
\sum_{n \geq 1} b_{1 n}(x) \mathrm{e}^{-\mathrm{i} \lambda_{n} s}=\sum_{n \geq 1} b_{2 n}(x) \mathrm{e}^{\mathrm{i} \lambda_{n} s}
$$

where we have set

$$
\begin{align*}
b_{1 j}(x) & :=\sum_{k \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\lambda_{j} T / 2} \varphi_{k}(x) 1_{\omega_{1}}(x) \\
b_{2 k}(x) & :=\sum_{j \geq 1} \frac{c_{k j} \alpha_{j}}{\lambda_{j}+\lambda_{k}} \mathrm{e}^{-\left(\lambda_{k}+2 \lambda_{j}\right) T / 2} \varphi_{k}(x) 1_{\omega_{1}}(x) \tag{3.7}
\end{align*}
$$

Idea of proof

Lemma. Let $\left(b_{n}\right)_{n \geq 1}$ be complex numbers such that $\sum_{n \geq 1}\left|b_{n}\right|<\infty$, and let $\left(\lambda_{n}\right)_{n \geq 1}$ be distinct real numbers. If for all $s \in \mathbb{R}$

$$
\sum_{n \geq 1} b_{n} \mathrm{e}^{i \lambda_{n} s}=0
$$

then for all $n \geq 1$ we have $b_{n}=0$.

Idea of proof

Lemma. Let $\left(b_{n}\right)_{n \geq 1}$ be complex numbers such that $\sum_{n \geq 1}\left|b_{n}\right|<\infty$, and let $\left(\lambda_{n}\right)_{n \geq 1}$ be distinct real numbers. If for all $s \in \mathbb{R}$

$$
\sum_{n \geq 1} b_{n} \mathrm{e}^{i \lambda_{n} s}=0
$$

then for all $n \geq 1$ we have $b_{n}=0$.

- Proof. If k is the least integer $n \geq 1$ such that $b_{n} \neq 0$, multiply by $\mathrm{e}^{-\mathrm{i} \lambda_{k} s}$ and integrate over $[-L, L]$ to get

$$
0=b_{k}+\sum_{n \geq k+1} b_{n} \frac{1}{2 L} \int_{-L}^{+L} \mathrm{e}^{\mathrm{i}\left(\lambda_{n}-\lambda_{k}\right) s} d s=b_{k}+\sum_{n \geq k+1} b_{n} \frac{\sin \left(\left(\lambda_{n}-\lambda_{k}\right) L\right)}{\left(\lambda_{n}-\lambda_{k}\right) L} .
$$

Idea of proof

Lemma. Let $\left(b_{n}\right)_{n \geq 1}$ be complex numbers such that $\sum_{n \geq 1}\left|b_{n}\right|<\infty$, and let $\left(\lambda_{n}\right)_{n \geq 1}$ be distinct real numbers. If for all $s \in \mathbb{R}$

$$
\sum_{n \geq 1} b_{n} \mathrm{e}^{i \lambda_{n} s}=0
$$

then for all $n \geq 1$ we have $b_{n}=0$.

- Proof. If k is the least integer $n \geq 1$ such that $b_{n} \neq 0$, multiply by $\mathrm{e}^{-\mathrm{i} \lambda_{k} s}$ and integrate over $[-L, L]$ to get

$$
0=b_{k}+\sum_{n \geq k+1} b_{n} \frac{1}{2 L} \int_{-L}^{+L} \mathrm{e}^{\mathrm{i}\left(\lambda_{n}-\lambda_{k}\right) s} d s=b_{k}+\sum_{n \geq k+1} b_{n} \frac{\sin \left(\left(\lambda_{n}-\lambda_{k}\right) L\right)}{\left(\lambda_{n}-\lambda_{k}\right) L} .
$$

Letting $L \rightarrow+\infty$ it follows that $b_{k}=0$.

Idea of proof

Corlollary. if $z \equiv 0$ on $(0, T) \times \omega_{1}$ then for all $n \geq 1$

$$
b_{1 n}(x) \equiv b_{2 n}(x) \equiv 0
$$

Idea of proof

Corlollary. if $z \equiv 0$ on $(0, T) \times \omega_{1}$ then for all $n \geq 1$

$$
b_{1 n}(x) \equiv b_{2 n}(x) \equiv 0
$$

Let ψ_{n} be the solution to

$$
A \psi_{n}+\lambda_{n} \psi_{n}=\varphi_{n} 1_{\omega_{0}}, \quad \psi_{n}=0 \text { on } \partial \Omega .
$$

Idea of proof

Corlollary. if $z \equiv 0$ on $(0, T) \times \omega_{1}$ then for all $n \geq 1$

$$
b_{1 n}(x) \equiv b_{2 n}(x) \equiv 0
$$

Let ψ_{n} be the solution to

$$
A \psi_{n}+\lambda_{n} \psi_{n}=\varphi_{n} 1_{\omega_{0}}, \quad \psi_{n}=0 \text { on } \partial \Omega
$$

Then $b_{1 n}, b_{2 n}$ defined by (3.7) can be written as

$$
\begin{align*}
& b_{1 n}(x)=\alpha_{n} \psi_{n}(x) 1_{\omega_{1}}(x) \mathrm{e}^{-\lambda_{n} T / 2} \tag{3.8}\\
& b_{2 n}(x)=\left(\psi_{n} \mid p(T)\right) \varphi_{n}(x) 1_{\omega_{1}}(x) \mathrm{e}^{-\lambda_{n} T / 2}
\end{align*}
$$

Idea of proof

From (3.8) one concludes that for all $n \geq 1: \alpha_{n} \psi_{n}(x) \equiv 0$ in ω_{1} and
(3.9)

$$
\left(\psi_{n} \mid p(T)\right)=\sum_{j \geq 1} \frac{c_{n j}}{\lambda_{j}+\lambda_{n}} \alpha_{j} \mathrm{e}^{-\lambda_{j} T}=0 .
$$

Idea of proof

From (3.8) one concludes that for all $n \geq 1: \alpha_{n} \psi_{n}(x) \equiv 0$ in ω_{1} and

$$
\begin{equation*}
\left(\psi_{n} \mid p(T)\right)=\sum_{j \geq 1} \frac{c_{n j}}{\lambda_{j}+\lambda_{n}} \alpha_{j} \mathrm{e}^{-\lambda_{j} T}=0 . \tag{3.9}
\end{equation*}
$$

- In fact (3.9) implies that for all $n \geq 1$ we have $\alpha_{n}=0$ (and $p_{0} \equiv 0$).

Idea of proof

From (3.8) one concludes that for all $n \geq 1: \alpha_{n} \psi_{n}(x) \equiv 0$ in ω_{1} and

$$
\begin{equation*}
\left(\psi_{n} \mid p(T)\right)=\sum_{j \geq 1} \frac{c_{n j}}{\lambda_{j}+\lambda_{n}} \alpha_{j} \mathrm{e}^{-\lambda_{j} T}=0 . \tag{3.9}
\end{equation*}
$$

- In fact (3.9) implies that for all $n \geq 1$ we have $\alpha_{n}=0$ (and $p_{0} \equiv 0$).

Let the operator L be defined on $L^{2}(\Omega)$ by $L \varphi_{n}:=\psi_{n}$.

Idea of proof

From (3.8) one concludes that for all $n \geq 1: \alpha_{n} \psi_{n}(x) \equiv 0$ in ω_{1} and

$$
\begin{equation*}
\left(\psi_{n} \mid p(T)\right)=\sum_{j \geq 1} \frac{c_{n j}}{\lambda_{j}+\lambda_{n}} \alpha_{j} \mathrm{e}^{-\lambda_{j} T}=0 . \tag{3.9}
\end{equation*}
$$

- In fact (3.9) implies that for all $n \geq 1$ we have $\alpha_{n}=0$ (and $p_{0} \equiv 0$).

Let the operator L be defined on $L^{2}(\Omega)$ by $L \varphi_{n}:=\psi_{n}$.
Then L is a bounded self-adjoint operator and (3.9) means $\left(\varphi_{n} \mid L p(T)\right)=0$ for all $n \geq 1$.

Idea of proof

From (3.8) one concludes that for all $n \geq 1: \alpha_{n} \psi_{n}(x) \equiv 0$ in ω_{1} and

$$
\begin{equation*}
\left(\psi_{n} \mid p(T)\right)=\sum_{j \geq 1} \frac{c_{n j}}{\lambda_{j}+\lambda_{n}} \alpha_{j} \mathrm{e}^{-\lambda_{j} T}=0 . \tag{3.9}
\end{equation*}
$$

- In fact (3.9) implies that for all $n \geq 1$ we have $\alpha_{n}=0$ (and $p_{0} \equiv 0$).
- Let the operator L be defined on $L^{2}(\Omega)$ by $L \varphi_{n}:=\psi_{n}$.
- Then L is a bounded self-adjoint operator and (3.9) means $\left(\varphi_{n} \mid L p(T)\right)=0$ for all $n \geq 1$.
- We have thus $\operatorname{Lp}(T)=0$.

Idea of proof

From (3.8) one concludes that for all $n \geq 1: \alpha_{n} \psi_{n}(x) \equiv 0$ in ω_{1} and

$$
\begin{equation*}
\left(\psi_{n} \mid p(T)\right)=\sum_{j \geq 1} \frac{c_{n j}}{\lambda_{j}+\lambda_{n}} \alpha_{j} \mathrm{e}^{-\lambda_{j} T}=0 . \tag{3.9}
\end{equation*}
$$

- In fact (3.9) implies that for all $n \geq 1$ we have $\alpha_{n}=0$ (and $p_{0} \equiv 0$).
- Let the operator L be defined on $L^{2}(\Omega)$ by $L \varphi_{n}:=\psi_{n}$.
- Then L is a bounded self-adjoint operator and (3.9) means $\left(\varphi_{n} \mid L p(T)\right)=0$ for all $n \geq 1$.
- We have thus $L p(T)=0$. And next we show that this implies that $p(T)=0$.

Idea of proof

- One shows a representation formula for L : for all $f \in L^{2}(\Omega)$ one has
(3.10)

$$
(L f \mid f)=\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t
$$

Idea of proof

- One shows a representation formula for L : for all $f \in L^{2}(\Omega)$ one has (3.10)

$$
(L f \mid f)=\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t
$$

where $S(t) f:=\exp (-t A) f$ is the heat semi-group generated by A.

Idea of proof

- One shows a representation formula for L : for all $f \in L^{2}(\Omega)$ one has (3.10)

$$
(L f \mid f)=\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t
$$

where $S(t) f:=\exp (-t A) f$ is the heat semi-group generated by A.

- Thus (3.9) implies that $S(t) p(T) \equiv 0$ on $(0, \infty) \times \omega_{0}$, and the unique continuation principle for the heat equation implies $p(T) \equiv 0$ in Ω.

Proof of (3.10)

For $t>0$ define

$$
F(t):=S(t) f=\sum_{n \geq 1} \mathrm{e}^{-\lambda_{n} t}\left(f \mid \varphi_{n}\right) \varphi_{n}
$$

Proof of (3.10)

For $t>0$ define

$$
F(t):=S(t) f=\sum_{n \geq 1} \mathrm{e}^{-\lambda_{n} t}\left(f \mid \varphi_{n}\right) \varphi_{n} .
$$

- Since for $g \in L^{2}(\Omega)$

$$
\int_{\omega_{0}} g(x)^{2} d x=\sum_{n, k \geq 1}\left(g \mid \varphi_{n}\right)\left(g \mid \varphi_{k}\right) \int_{\omega_{0}} \varphi_{n}(x) \varphi_{k}(x) d x=\sum_{n, k \geq 1} c_{n k}\left(g \mid \varphi_{n}\right)\left(g \mid \varphi_{k}\right)
$$

Proof of (3.10)

- So one sees that

$$
\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t=\int_{0}^{\infty}\left[\sum_{n, k \geq 1} c_{n k} \mathrm{e}^{-\lambda_{n} t}\left(f \mid \varphi_{n}\right) \mathrm{e}^{-\lambda_{k} t}\left(f \mid \varphi_{k}\right)\right] d t
$$

Proof of (3.10)

- So one sees that

$$
\begin{aligned}
\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t & =\int_{0}^{\infty}\left[\sum_{n, k \geq 1} c_{n k} \mathrm{e}^{-\lambda_{n} t}\left(f \mid \varphi_{n}\right) \mathrm{e}^{-\lambda_{k} t}\left(f \mid \varphi_{k}\right)\right] d t \\
& =\sum_{n, k \geq 1} c_{n k}\left(f \mid \varphi_{n}\right)\left(f \mid \varphi_{k}\right) \int_{0}^{\infty} \mathrm{e}^{-\left(\lambda_{n}+\lambda_{k}\right) t} d t
\end{aligned}
$$

Proof of (3.10)

- So one sees that

$$
\begin{aligned}
\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t & =\int_{0}^{\infty}\left[\sum_{n, k \geq 1} c_{n k} \mathrm{e}^{-\lambda_{n} t}\left(f \mid \varphi_{n}\right) \mathrm{e}^{-\lambda_{k} t}\left(f \mid \varphi_{k}\right)\right] d t \\
& =\sum_{n, k \geq 1} c_{n k}\left(f \mid \varphi_{n}\right)\left(f \mid \varphi_{k}\right) \int_{0}^{\infty} \mathrm{e}^{-\left(\lambda_{n}+\lambda_{k}\right) t} d t \\
& =\sum_{n, k \geq 1} \frac{c_{n k}}{\lambda_{n}+\lambda_{k}}\left(f \mid \varphi_{n}\right)\left(f \mid \varphi_{k}\right)=(L f \mid f)
\end{aligned}
$$

Proof of (3.10)

- So one sees that

$$
\begin{aligned}
\int_{0}^{\infty}\left\|1_{\omega_{0}} S(t) f\right\|_{2}^{2} d t & =\int_{0}^{\infty}\left[\sum_{n, k \geq 1} c_{n k} \mathrm{e}^{-\lambda_{n} t}\left(f \mid \varphi_{n}\right) \mathrm{e}^{-\lambda_{k} t}\left(f \mid \varphi_{k}\right)\right] d t \\
& =\sum_{n, k \geq 1} c_{n k}\left(f \mid \varphi_{n}\right)\left(f \mid \varphi_{k}\right) \int_{0}^{\infty} \mathrm{e}^{-\left(\lambda_{n}+\lambda_{k}\right) t} d t \\
& =\sum_{n, k \geq 1} \frac{c_{n k}}{\lambda_{n}+\lambda_{k}}\left(f \mid \varphi_{n}\right)\left(f \mid \varphi_{k}\right)=(L f \mid f)
\end{aligned}
$$

- This recalls the known exercises about Hilbert matrices: prove that the m dimensional Hilbert matrix

$$
\left(\frac{1}{i+j-1}\right)_{1 \leq i, j \leq m}
$$

is a self-adjoint positive definite matrix...

