

Otared Kavian Laboratoire de Mathématiques Appliquées Université de Versailles 45, avenue des Etats Unis 78035 Versailles cedex (France) kavian@math.uvsq.fr Benasque, September 1, 2005

Joint work with Luz de Teresa (Universidad Nacional Autónoma de México)

Today's talk

Introduction Main result Idea of the proof

There are several types of unique continuation of interest.

• A first one is the following: let $u \in H^1(\Omega)$ satisfy

 $-\Delta u + V u = 0, \quad u \equiv 0 \text{ in } \omega \subset \Omega$

where $V \in L^{\infty}(\Omega)$ and ω is an open subset of the connected open set Ω .

There are several types of unique continuation of interest.

• A first one is the following: let $u \in H^1(\Omega)$ satisfy

 $-\Delta u + V u = 0, \quad u \equiv 0 \text{ in } \omega \subset \Omega$

where $V \in L^{\infty}(\Omega)$ and ω is an open subset of the connected open set Ω .

• Then one can prove that $u \equiv 0$ in Ω .

▶ This implies another type of unique continuation: let $u \in H^1(\Omega)$ satisfy

$$\begin{cases} -\Delta u + Vu = 0 & \text{in } \Omega \\ u = 0 & \text{on } \Gamma \\ \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma \end{cases}$$

where Γ is a relatively open subset of $\partial \Omega$.

- This implies another type of unique continuation: let $u \in H^1(\Omega)$ satisfy

$$\begin{cases} -\Delta u + Vu = 0 & \text{in } \Omega \\ u = 0 & \text{on } \Gamma \\ \frac{\partial u}{\partial n} = 0 & \text{on } \Gamma \end{cases}$$

where Γ is a relatively open subset of $\partial \Omega$. Then $u \equiv 0$ in Ω .

Now consider the Stokes equation

$$\begin{aligned} & -\Delta u + \nabla p = 0 & \text{in } \Omega \\ & \operatorname{div}(u) = 0 & \text{in } \Omega \\ & u = 0 & \text{in } \omega \subset \Omega. \end{aligned}$$

Now consider the Stokes equation

$$\begin{cases} -\Delta u + \nabla p = 0 & \text{in } \Omega \\ \operatorname{div}(u) = 0 & \text{in } \Omega \\ u = 0 & \text{in } \omega \subset \Omega. \end{cases}$$

• Then one has $u \equiv 0$ in Ω (and p is constant).

Now consider the Stokes equation

$$\begin{cases} -\Delta u + \nabla p = 0 & \text{in } \Omega \\ \operatorname{div}(u) = 0 & \text{in } \Omega \\ u = 0 & \text{in } \omega \subset \Omega. \end{cases}$$

- Then one has $u \equiv 0$ in Ω (and p is constant).
- **Proof:** Observe that $\nabla p \equiv 0$ in ω , so p is constant in ω , and apply (N+1) times the result concerning the Laplacian.

► An analogous result holds for the evolution equation

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u + Vu = 0 & \text{in } [0,T] \times \Omega \\ u = 0 & \text{on } [0,T] \times \omega \subset \Omega \end{cases}$$

► An analogous result holds for the evolution equation

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u + Vu = 0 & \text{in } [0,T] \times \Omega \\ u = 0 & \text{on } [0,T] \times \omega \subset \Omega \end{cases}$$

► Then one has $u \equiv 0$ in $[0,T] \times \Omega$.

An analogous result holds for the evolution equation

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u + Vu = 0 & \text{ in } [0,T] \times \Omega \\ u = 0 & \text{ on } [0,T] \times \omega \subset \Omega \end{cases}$$

- ▶ Then one has $u \equiv 0$ in $[0,T] \times \Omega$.
- More generally, if $a \in W^{1,\infty}(\Omega)^{N imes N}$ is a positive definite matrix and

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}(a\nabla u) + Vu = 0 & \text{in } [0,T] \times \Omega \\ u = 0 & \text{on } [0,T] \times \omega \subset \Omega \end{cases}$$

An analogous result holds for the evolution equation

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u + Vu = 0 & \text{ in } [0,T] \times \Omega \\ u = 0 & \text{ on } [0,T] \times \omega \subset \Omega \end{cases}$$

- Then one has $u \equiv 0$ in $[0,T] \times \Omega$.
- ▶ More generally, if $a \in W^{1,\infty}(\Omega)^{N imes N}$ is a positive definite matrix and

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}(a\nabla u) + Vu = 0 & \text{in } [0,T] \times \Omega \\ u = 0 & \text{on } [0,T] \times \omega \subset \Omega \end{cases}$$

then $u \equiv 0$ in $[0,T] \times \Omega$.

A second type of unique continuation is the following:

▶ Let H be a Hilbert space and $(A, D(A)) : H \longrightarrow H$ a self-adjoint operator acting on H with $(Au|u) \ge 0$.

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)) : H \longrightarrow H$ a self-adjoint operator acting on H with $(Au|u) \ge 0$.
- Then for any $u_0 \in H$ the evolution equation

$$\frac{\partial u}{\partial t} + Au = 0, \qquad u(0) = u_0$$

has a unique solution $u \in C^1((0,\infty), H)$.

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)) : H \longrightarrow H$ a self-adjoint operator acting on H with $(Au|u) \ge 0$.
- Then for any $u_0 \in H$ the evolution equation

$$\frac{\partial u}{\partial t} + Au = 0, \qquad u(0) = u_0$$

has a unique solution $u \in C^1((0,\infty), H)$.

If for some T > 0 one has u(T) = 0, then $u \equiv 0 \equiv u_0$.

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)) : H \longrightarrow H$ a self-adjoint operator acting on H with $(Au|u) \ge 0$.
- Then for any $u_0 \in H$ the evolution equation

$$\frac{\partial u}{\partial t} + Au = 0, \qquad u(0) = u_0$$

has a unique solution $u \in C^1((0,\infty), H)$.

- If for some T > 0 one has u(T) = 0, then $u \equiv 0 \equiv u_0$.
- This is a consequence of a convexity result: $t \mapsto \log \|u(t)\|^2$ is convex,

A second type of unique continuation is the following:

- Let H be a Hilbert space and $(A, D(A)) : H \longrightarrow H$ a self-adjoint operator acting on H with $(Au|u) \ge 0$.
- Then for any $u_0 \in H$ the evolution equation

$$\frac{\partial u}{\partial t} + Au = 0, \qquad u(0) = u_0$$

has a unique solution $u \in C^1((0,\infty), H)$.

- If for some T > 0 one has u(T) = 0, then $u \equiv 0 \equiv u_0$.
- This is a consequence of a convexity result: $t \mapsto \log ||u(t)||^2$ is convex, which yields the inequality

(1.1) $\forall t \in (0,T), \qquad ||u(t)|| \le ||u_0||^{(T-t)/T} ||u(T)||^{t/T}$

▶ Let a be as above, and $\Omega \subset \mathbb{R}^N$ a bounded Lipschitz domain.

• Let a be as above, and $\Omega \subset \mathbb{R}^N$ a bounded Lipschitz domain.

 $\blacktriangleright \quad \text{For } p_0 \in L^2(\Omega) \text{, let } p \text{ be the solution of }$

(2.1)
$$\begin{cases} \partial_t p - \operatorname{div}(a\nabla p) = 0 & \text{in } (0,T) \times \Omega \\ p(0,x) = p_0(x) & \text{in } \Omega \\ p(t,\sigma) = 0 & \text{on } (0,T) \times \partial \Omega \end{cases}$$

• Let a be as above, and $\Omega \subset \mathbb{R}^N$ a bounded Lipschitz domain.

For $p_0 \in L^2(\Omega)$, let p be the solution of

(2.1)
$$\begin{cases} \partial_t p - \operatorname{div}(a\nabla p) = 0 & \text{in } (0,T) \times \Omega \\ p(0,x) = p_0(x) & \text{in } \Omega \\ p(t,\sigma) = 0 & \text{on } (0,T) \times \partial \Omega \end{cases}$$

• Let $\omega_0 \subset \Omega$ be open and u be solution to

(2.2)
$$\begin{cases} \partial_t u - \operatorname{div}(a\nabla u) = \mathbf{p}\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ u(0,x) = 0 & \text{ in } \Omega \\ u(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

• Let a be as above, and $\Omega \subset \mathbb{R}^N$ a bounded Lipschitz domain.

For $p_0 \in L^2(\Omega)$, let p be the solution of

(2.1)
$$\begin{cases} \partial_t p - \operatorname{div}(a\nabla p) = 0 & \text{in } (0,T) \times \Omega \\ p(0,x) = p_0(x) & \text{in } \Omega \\ p(t,\sigma) = 0 & \text{on } (0,T) \times \partial \Omega \end{cases}$$

• Let $\omega_0 \subset \Omega$ be open and u be solution to

(2.2)
$$\begin{cases} \partial_t u - \operatorname{div}(a\nabla u) = \mathbf{p}\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ u(0,x) = 0 & \text{ in } \Omega \\ u(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

Assume that $\omega_1 \subset \Omega$ is an open subdomain and T > 0 is such that $u \equiv 0$ in $(0,T) \times \omega_1$.

• Let a be as above, and $\Omega \subset \mathbb{R}^N$ a bounded Lipschitz domain.

For $p_0 \in L^2(\Omega)$, let p be the solution of

(2.1)
$$\begin{cases} \partial_t p - \operatorname{div}(a\nabla p) = 0 & \text{in } (0,T) \times \Omega \\ p(0,x) = p_0(x) & \text{in } \Omega \\ p(t,\sigma) = 0 & \text{on } (0,T) \times \partial \Omega \end{cases}$$

• Let $\omega_0 \subset \Omega$ be open and u be solution to

(2.2)
$$\begin{cases} \partial_t u - \operatorname{div}(a\nabla u) = \mathbf{p}\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ u(0,x) = 0 & \text{ in } \Omega \\ u(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

- Assume that $\omega_1 \subset \Omega$ is an open subdomain and T > 0 is such that $u \equiv 0$ in $(0,T) \times \omega_1$.
- Question: Can one conclude that $p_0 \equiv 0 \equiv p \equiv u$ in Ω ?

► Answer: Yes...

- Answer: Yes...
- ► Another variant of the above question (appearing in Control Theory):

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For T > 0 fixed and $\omega_0 \subset \Omega$ open, consider z(t, x) the solution of the backward heat equation let z be solution to

(2.3)
$$\begin{cases} -\partial_t z(t,x) - \operatorname{div}(a\nabla z(t,x)) = p(t,x)\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ z(T,x) = 0 & \text{ in } \Omega \\ z(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For T > 0 fixed and $\omega_0 \subset \Omega$ open, consider z(t, x) the solution of the backward heat equation let z be solution to

(2.3)
$$\begin{cases} -\partial_t z(t,x) - \operatorname{div}(a\nabla z(t,x)) = p(t,x)\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ z(T,x) = 0 & \text{ in } \Omega \\ z(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

• Assume that $\omega_1 \subset \Omega$ is an open subdomain and that $z \equiv 0$ in $(0,T) \times \omega_1$.

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For T > 0 fixed and $\omega_0 \subset \Omega$ open, consider z(t, x) the solution of the backward heat equation let z be solution to

(2.3)
$$\begin{cases} -\partial_t z(t,x) - \operatorname{div}(a\nabla z(t,x)) = \mathbf{p}(t,x)\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ z(T,x) = 0 & \text{ in } \Omega \\ z(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

- Assume that $\omega_1 \subset \Omega$ is an open subdomain and that $z \equiv 0$ in $(0,T) \times \omega_1$.
- Question: Can one conclude that $p_0 \equiv 0 \equiv p \equiv z$ in Ω ?

- Answer: Yes...
- Another variant of the above question (appearing in Control Theory):
- For T > 0 fixed and $\omega_0 \subset \Omega$ open, consider z(t, x) the solution of the backward heat equation let z be solution to

(2.3)
$$\begin{cases} -\partial_t z(t,x) - \operatorname{div}(a\nabla z(t,x)) = \mathbf{p}(t,x)\mathbf{1}_{\omega_0} & \text{ in } (0,T) \times \Omega \\ z(T,x) = 0 & \text{ in } \Omega \\ z(t,\sigma) = 0 & \text{ on } (0,T) \times \partial\Omega. \end{cases}$$

- Assume that $\omega_1 \subset \Omega$ is an open subdomain and that $z \equiv 0$ in $(0,T) \times \omega_1$.
- **Question:** Can one conclude that $p_0 \equiv 0 \equiv p \equiv z$ in Ω ?
- Answer: Yes...

▶ The idea is to show a representation formula for u, solution to (2.2), or for z, solution to (2.3), in terms of $p_0, 1_{\omega_0}$.

- ▶ The idea is to show a representation formula for u, solution to (2.2), or for z, solution to (2.3), in terms of $p_0, 1_{\omega_0}$.
- Denote by $(\lambda_k, \varphi_k)_{k \ge 1}$ the eigenvalues and eigenfunctions of $v \mapsto -\operatorname{div}(a\nabla v)$ on $H_0^1(\Omega)$.

- The idea is to show a representation formula for u, solution to (2.2), or for z, solution to (2.3), in terms of $p_0, 1_{\omega_0}$.
- Denote by $(\lambda_k, \varphi_k)_{k \ge 1}$ the eigenvalues and eigenfunctions of $v \mapsto -\operatorname{div}(a\nabla v)$ on $H_0^1(\Omega)$.
- ▶ Define by c_{kj} for $k, j \ge 1$ the numbers

$$c_{kj} = c_{jk} = \int_{\Omega} 1_{\omega_0}(x)\varphi_k(x)\varphi_j(x)dx = \int_{\omega_0} \varphi_k(x)\varphi_j(x)dx$$

- The idea is to show a representation formula for u, solution to (2.2), or for z, solution to (2.3), in terms of $p_0, 1_{\omega_0}$.
- Denote by $(\lambda_k, \varphi_k)_{k \ge 1}$ the eigenvalues and eigenfunctions of $v \mapsto -\operatorname{div}(a\nabla v)$ on $H_0^1(\Omega)$.
- Define by c_{kj} for $k, j \ge 1$ the numbers

$$c_{kj} = c_{jk} = \int_{\Omega} 1_{\omega_0}(x)\varphi_k(x)\varphi_j(x)dx = \int_{\omega_0} \varphi_k(x)\varphi_j(x)dx$$

we have that $arphi_k 1_{\omega_0} = \sum_{j\geq 1} c_{kj} arphi_j$,and

$$p(t,x)1_{\omega_0} = \sum_{k\geq 1} \beta_k(t)\varphi_k(x), \quad \text{with } \beta_k(t) = \sum_{j\geq 1} c_{kj}\alpha_j \exp(-\lambda_j t).$$

where $p_0 = \sum_{j \ge 1} \alpha_j \varphi_j$.

▶ Then one shows that u, solution to (2.2) is represented by the formula

(3.4)
$$u(t,x) = \sum_{k\geq 1} \sum_{j\neq k} c_{kj} \alpha_j \frac{\mathrm{e}^{-\lambda_k t} - \mathrm{e}^{-\lambda_j t}}{\lambda_j - \lambda_k} \varphi_k(x) + t \sum_{k\geq 1} c_{kk} \alpha_k \mathrm{e}^{-\lambda_k t} \varphi_k(x).$$

for all t > 0.

▶ Then one shows that u, solution to (2.2) is represented by the formula

(3.4)
$$u(t,x) = \sum_{k\geq 1} \sum_{j\neq k} c_{kj}\alpha_j \frac{\mathrm{e}^{-\lambda_k t} - \mathrm{e}^{-\lambda_j t}}{\lambda_j - \lambda_k} \varphi_k(x) + t \sum_{k\geq 1} c_{kk}\alpha_k \mathrm{e}^{-\lambda_k t} \varphi_k(x).$$

for all t > 0.

From this one sees that if u(t,x)=0 on $[0,T]\times\omega_1$, then for $x\in\omega_1$

$$-\alpha_1 c_{11} \varphi_1(x) = \sum_{k \ge 1} \sum_{j \ne k} c_{kj} \alpha_j \frac{\mathrm{e}^{-(\lambda_k - \lambda_1)t} - \mathrm{e}^{-(\lambda_j - \lambda_1)t}}{t(\lambda_j - \lambda_k)} \varphi_k(x) + \sum_{k \ge 2} \alpha_k c_{kk} \mathrm{e}^{-(\lambda_k - \lambda_1)t} \varphi_k(x).$$

Then one shows that u, solution to (2.2) is represented by the formula

(3.4)
$$u(t,x) = \sum_{k\geq 1} \sum_{j\neq k} c_{kj}\alpha_j \frac{\mathrm{e}^{-\lambda_k t} - \mathrm{e}^{-\lambda_j t}}{\lambda_j - \lambda_k} \varphi_k(x) + t \sum_{k\geq 1} c_{kk}\alpha_k \mathrm{e}^{-\lambda_k t} \varphi_k(x).$$

for all t > 0.

From this one sees that if u(t,x)=0 on $[0,T] imes \omega_1$, then for $x\in \omega_1$

$$-\alpha_1 c_{11} \varphi_1(x) = \sum_{k \ge 1} \sum_{j \ne k} c_{kj} \alpha_j \frac{\mathrm{e}^{-(\lambda_k - \lambda_1)t} - \mathrm{e}^{-(\lambda_j - \lambda_1)t}}{t(\lambda_j - \lambda_k)} \varphi_k(x) + \sum_{k \ge 2} \alpha_k c_{kk} \mathrm{e}^{-(\lambda_k - \lambda_1)t} \varphi_k(x).$$

• Letting $t \to +\infty$ one concludes that $\alpha_1 c_{11} \varphi_1 \mathbf{1}_{\omega_1} \equiv 0$, and hence $\alpha_1 = 0$. One may repeat this argument for all k > 1 and conclude that $\alpha_k = 0$.

▶ In the same manner one shows that z, solution to (2.3), is represented by (here 0 < t < T)

(3.5)
$$z(t,x) = \sum_{k,j\geq 1} e^{\lambda_k t} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} \left[e^{-(\lambda_j + \lambda_k)t} - e^{-(\lambda_j + \lambda_k)T} \right] \varphi_k(x).$$

In the same manner one shows that z, solution to (2.3), is represented by (here 0 < t < T)

(3.5)
$$z(t,x) = \sum_{k,j\geq 1} e^{\lambda_k t} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} \left[e^{-(\lambda_j + \lambda_k)t} - e^{-(\lambda_j + \lambda_k)T} \right] \varphi_k(x).$$

However here it is somewhat more subtle to show

 $z \equiv 0$ on $(0,T) \times \omega_1 \Longrightarrow \alpha_k = 0$ for all $k \ge 1 \dots$

- One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_1$, the representation formula implies: for $(t, x) \in (0, T) \times \omega_1$
 - (3.6) $\sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j t} \varphi_k(x) = \sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j T} e^{-\lambda_k (T-t)} \varphi_k(x).$

- One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_1$, the representation formula implies: for $(t, x) \in (0, T) \times \omega_1$
 - (3.6) $\sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j t} \varphi_k(x) = \sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j T} e^{-\lambda_k (T-t)} \varphi_k(x).$
- Since on both sides we have analytic functions of $t \in (0, T)$, we may extend them to the strip $\{\tau + is ; 0 < \tau < T, s \in \mathbb{R}\} \subset \mathbb{C}$.

• One begins by noting that if $z \equiv 0$ on $(0, T) \times \omega_1$, the representation formula implies: for $(t, x) \in (0, T) \times \omega_1$

(3.6)
$$\sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j t} \varphi_k(x) = \sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j T} e^{-\lambda_k (T-t)} \varphi_k(x).$$

Since on both sides we have analytic functions of $t \in (0, T)$, we may extend them to the strip $\{\tau + is; 0 < \tau < T, s \in \mathbb{R}\} \subset \mathbb{C}$. Upon choosing $t := \frac{T}{2} + is$ one gets for all $s \in \mathbb{R}$

$$\sum_{n\geq 1} b_{1n}(x) \mathrm{e}^{-\mathrm{i}\lambda_n s} = \sum_{n\geq 1} b_{2n}(x) \mathrm{e}^{\mathrm{i}\lambda_n s}$$

• One begins by noting that if $z \equiv 0$ on $(0,T) \times \omega_1$, the representation formula implies: for $(t,x) \in (0,T) \times \omega_1$

(3.6)
$$\sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j t} \varphi_k(x) = \sum_{k,j\geq 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j T} e^{-\lambda_k (T-t)} \varphi_k(x).$$

Since on both sides we have analytic functions of t ∈ (0,T), we may extend them to the strip {τ + is; 0 < τ < T, s ∈ ℝ} ⊂ C. Upon choosing t := T/2 + is one gets for all s ∈ ℝ

$$\sum_{n\geq 1} b_{1n}(x) \mathrm{e}^{-\mathrm{i}\lambda_n s} = \sum_{n\geq 1} b_{2n}(x) \mathrm{e}^{\mathrm{i}\lambda_n s}$$

where we have set

(3)

(.7)
$$b_{1j}(x) := \sum_{k \ge 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-\lambda_j T/2} \varphi_k(x) \mathbf{1}_{\omega_1}(x)$$
$$b_{2k}(x) := \sum_{j \ge 1} \frac{c_{kj}\alpha_j}{\lambda_j + \lambda_k} e^{-(\lambda_k + 2\lambda_j)T/2} \varphi_k(x) \mathbf{1}_{\omega_1}(x).$$

Lemma. Let $(b_n)_{n\geq 1}$ be complex numbers such that $\sum_{n\geq 1} |b_n| < \infty$, and let $(\lambda_n)_{n\geq 1}$ be distinct real numbers. If for all $s \in \mathbb{R}$

$$\sum_{n\geq 1} b_n \mathrm{e}^{i\lambda_n s} = 0,$$

then for all $n \ge 1$ we have $b_n = 0$.

Lemma. Let $(b_n)_{n\geq 1}$ be complex numbers such that $\sum_{n\geq 1} |b_n| < \infty$, and let $(\lambda_n)_{n\geq 1}$ be distinct real numbers. If for all $s \in \mathbb{R}$

$$\sum_{n\geq 1} b_n \mathrm{e}^{i\lambda_n s} = 0,$$

then for all $n \ge 1$ we have $b_n = 0$.

▶ **Proof.** If k is the least integer $n \ge 1$ such that $b_n \ne 0$, multiply by $e^{-i\lambda_k s}$ and integrate over [-L, L] to get

$$0 = b_k + \sum_{n \ge k+1} b_n \frac{1}{2L} \int_{-L}^{+L} e^{i(\lambda_n - \lambda_k)s} ds = b_k + \sum_{n \ge k+1} b_n \frac{\sin((\lambda_n - \lambda_k)L)}{(\lambda_n - \lambda_k)L}.$$

Lemma. Let $(b_n)_{n\geq 1}$ be complex numbers such that $\sum_{n\geq 1} |b_n| < \infty$, and let $(\lambda_n)_{n\geq 1}$ be distinct real numbers. If for all $s \in \mathbb{R}$

$$\sum_{n\geq 1} b_n \mathrm{e}^{i\lambda_n s} = 0,$$

then for all $n \ge 1$ we have $b_n = 0$.

▶ **Proof.** If k is the least integer $n \ge 1$ such that $b_n \ne 0$, multiply by $e^{-i\lambda_k s}$ and integrate over [-L, L] to get

$$0 = b_k + \sum_{n \ge k+1} b_n \frac{1}{2L} \int_{-L}^{+L} e^{i(\lambda_n - \lambda_k)s} ds = b_k + \sum_{n \ge k+1} b_n \frac{\sin((\lambda_n - \lambda_k)L)}{(\lambda_n - \lambda_k)L}.$$

Letting $L \to +\infty$ it follows that $b_k = 0$.

Corlollary. if $z \equiv 0$ on $(0,T) \times \omega_1$ then for all $n \geq 1$

 $b_{1n}(x) \equiv b_{2n}(x) \equiv 0.$

Corlollary. if $z \equiv 0$ on $(0,T) \times \omega_1$ then for all $n \ge 1$ $b_{1n}(x) \equiv b_{2n}(x) \equiv 0.$

• Let ψ_n be the solution to

$$A\psi_n+\lambda_n\psi_n=arphi_n\,1_{\omega_0},\qquad \psi_n=0 \ \ {
m on} \ \ \partial\Omega.$$

Corlollary. if $z \equiv 0$ on $(0,T) \times \omega_1$ then for all $n \ge 1$ $b_{1n}(x) \equiv b_{2n}(x) \equiv 0.$

• Let ψ_n be the solution to

$$A\psi_n + \lambda_n \psi_n = \varphi_n \, \mathbf{1}_{\omega_0}, \qquad \psi_n = 0 \ \text{ on } \ \partial \Omega.$$

Then b_{1n}, b_{2n} defined by (3.7) can be written as

(3.8)
$$b_{1n}(x) = \alpha_n \psi_n(x) \mathbf{1}_{\omega_1}(x) \mathrm{e}^{-\lambda_n T/2}$$
$$b_{2n}(x) = (\psi_n | p(T)) \varphi_n(x) \mathbf{1}_{\omega_1}(x) \mathrm{e}^{-\lambda_n T/2}$$

From (3.8) one concludes that for all $n \ge 1$: $\alpha_n \psi_n(x) \equiv 0$ in ω_1 and

(3.9)
$$(\psi_n | p(T)) = \sum_{j>1} \frac{c_{nj}}{\lambda_j + \lambda_n} \alpha_j e^{-\lambda_j T} = 0.$$

From (3.8) one concludes that for all $n \ge 1$: $\alpha_n \psi_n(x) \equiv 0$ in ω_1 and

(3.9)
$$(\psi_n | p(T)) = \sum_{j \ge 1} \frac{c_{nj}}{\lambda_j + \lambda_n} \alpha_j e^{-\lambda_j T} = 0.$$

▶ In fact (3.9) implies that for all $n \ge 1$ we have $\alpha_n = 0$ (and $p_0 \equiv 0$).

- From (3.8) one concludes that for all $n \ge 1$: $\alpha_n \psi_n(x) \equiv 0$ in ω_1 and (3.9) $(\psi_n | p(T)) = \sum_{j>1} \frac{c_{nj}}{\lambda_j + \lambda_n} \alpha_j e^{-\lambda_j T} = 0.$
- ▶ In fact (3.9) implies that for all $n \ge 1$ we have $\alpha_n = 0$ (and $p_0 \equiv 0$).
- Let the operator L be defined on $L^2(\Omega)$ by $L\varphi_n := \psi_n$.

- From (3.8) one concludes that for all $n \ge 1$: $\alpha_n \psi_n(x) \equiv 0$ in ω_1 and (3.9) $(\psi_n | p(T)) = \sum_{j>1} \frac{c_{nj}}{\lambda_j + \lambda_n} \alpha_j e^{-\lambda_j T} = 0.$
- ▶ In fact (3.9) implies that for all $n \ge 1$ we have $\alpha_n = 0$ (and $p_0 \equiv 0$).
- Let the operator L be defined on $L^2(\Omega)$ by $L\varphi_n := \psi_n$.
- ▶ Then L is a bounded self-adjoint operator and (3.9) means $(\varphi_n | Lp(T)) = 0$ for all $n \ge 1$.

- From (3.8) one concludes that for all $n \ge 1$: $\alpha_n \psi_n(x) \equiv 0$ in ω_1 and (3.9) $(\psi_n | p(T)) = \sum_{i>1} \frac{c_{nj}}{\lambda_j + \lambda_n} \alpha_j e^{-\lambda_j T} = 0.$
- ▶ In fact (3.9) implies that for all $n \ge 1$ we have $\alpha_n = 0$ (and $p_0 \equiv 0$).
- Let the operator L be defined on $L^2(\Omega)$ by $L\varphi_n := \psi_n$.
- ▶ Then L is a bounded self-adjoint operator and (3.9) means $(\varphi_n | Lp(T)) = 0$ for all $n \ge 1$.
- We have thus Lp(T) = 0.

- From (3.8) one concludes that for all $n \ge 1$: $\alpha_n \psi_n(x) \equiv 0$ in ω_1 and (3.9) $(\psi_n | p(T)) = \sum_{i>1} \frac{c_{nj}}{\lambda_j + \lambda_n} \alpha_j e^{-\lambda_j T} = 0.$
- In fact (3.9) implies that for all $n \ge 1$ we have $\alpha_n = 0$ (and $p_0 \equiv 0$).
- Let the operator L be defined on $L^2(\Omega)$ by $L\varphi_n := \psi_n$.
- ▶ Then L is a bounded self-adjoint operator and (3.9) means $(\varphi_n | Lp(T)) = 0$ for all $n \ge 1$.
- We have thus Lp(T) = 0. And next we show that this implies that p(T) = 0.

• One shows a representation formula for L: for all $f \in L^2(\Omega)$ one has

(3.10) $(Lf|f) = \int_0^\infty \|\mathbf{1}_{\omega_0} S(t)f\|_2^2 dt$

• One shows a representation formula for L: for all $f \in L^2(\Omega)$ one has

(3.10) $(Lf|f) = \int_0^\infty \|1_{\omega_0} S(t)f\|_2^2 dt$

where $S(t)f := \exp(-tA)f$ is the heat semi-group generated by A.

• One shows a representation formula for L: for all $f \in L^2(\Omega)$ one has

(3.10)
$$(Lf|f) = \int_0^\infty \|1_{\omega_0} S(t)f\|_2^2 dt$$

where $S(t)f := \exp(-tA)f$ is the heat semi-group generated by A.

• Thus (3.9) implies that $S(t)p(T) \equiv 0$ on $(0,\infty) \times \omega_0$, and the unique continuation principle for the heat equation implies $p(T) \equiv 0$ in Ω .

▶ For t > 0 define

$$F(t) := S(t)f = \sum_{n \ge 1} e^{-\lambda_n t} (f|\varphi_n) \varphi_n..$$

▶ For t > 0 define

$$F(t) := S(t)f = \sum_{n \ge 1} e^{-\lambda_n t} (f|\varphi_n) \varphi_n..$$

 $\blacktriangleright \quad {\rm Since \ for} \ g \in L^2(\Omega)$

$$\int_{\omega_0} g(x)^2 dx = \sum_{n,k \ge 1} (g|\varphi_n) (g|\varphi_k) \int_{\omega_0} \varphi_n(x) \varphi_k(x) dx = \sum_{n,k \ge 1} c_{nk} (g|\varphi_n) (g|\varphi_k)$$

Proof of (3.10)

► So one sees that

$$\int_0^\infty \|\mathbf{1}_{\omega_0} S(t)f\|_2^2 dt = \int_0^\infty \left[\sum_{n,k\ge 1} c_{nk} \mathrm{e}^{-\lambda_n t} (f|\varphi_n) \mathrm{e}^{-\lambda_k t} (f|\varphi_k)\right] dt$$

► So one sees that

$$\int_0^\infty \|1_{\omega_0} S(t)f\|_2^2 dt = \int_0^\infty \left[\sum_{n,k\ge 1} c_{nk} e^{-\lambda_n t} (f|\varphi_n) e^{-\lambda_k t} (f|\varphi_k) \right] dt$$
$$= \sum_{n,k\ge 1} c_{nk} (f|\varphi_n) (f|\varphi_k) \int_0^\infty e^{-(\lambda_n + \lambda_k)t} dt$$

► So one sees that

$$\begin{split} \int_0^\infty \|\mathbf{1}_{\omega_0} S(t)f\|_2^2 dt &= \int_0^\infty \left[\sum_{n,k\ge 1} c_{nk} \mathrm{e}^{-\lambda_n t} (f|\varphi_n) \mathrm{e}^{-\lambda_k t} (f|\varphi_k) \right] dt \\ &= \sum_{n,k\ge 1} c_{nk} (f|\varphi_n) (f|\varphi_k) \int_0^\infty \mathrm{e}^{-(\lambda_n + \lambda_k) t} dt \\ &= \sum_{n,k\ge 1} \frac{c_{nk}}{\lambda_n + \lambda_k} (f|\varphi_n) (f|\varphi_k) = (Lf|f). \end{split}$$

So one sees that

$$\begin{split} \int_0^\infty \|\mathbf{1}_{\omega_0} S(t)f\|_2^2 dt &= \int_0^\infty \left[\sum_{n,k\ge 1} c_{nk} \mathrm{e}^{-\lambda_n t} (f|\varphi_n) \mathrm{e}^{-\lambda_k t} (f|\varphi_k) \right] dt \\ &= \sum_{n,k\ge 1} c_{nk} (f|\varphi_n) (f|\varphi_k) \int_0^\infty \mathrm{e}^{-(\lambda_n + \lambda_k) t} dt \\ &= \sum_{n,k\ge 1} \frac{c_{nk}}{\lambda_n + \lambda_k} (f|\varphi_n) (f|\varphi_k) = (Lf|f). \end{split}$$

This recalls the known exercises about Hilbert matrices: prove that the mdimensional Hilbert matrix

$$\left(\frac{1}{i+j-1}\right)_{1 \le i,j \le m}$$

is a self-adjoint positive definite matrix...