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Introduction
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Carleman Estimates :

• Highly technical and complicated estimates.

• Weighted Sobolev-type estimates for a solution of a PDE in terms
of local information on the solution on a subdomain.

• Propagates information known on a subdomain along the gradient
lines of the main weight.

• Weights are essential. Can be chosen in different ways but have
to be related to the PDE under consideration.
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Useful tool for :

• Unique continuation properties : If L is a PD operator, does the

information

Lu = 0 and u = 0 in an ad’hoc subdomain imply u = 0 everywhere?

• Backward uniqueness.

• Exact controllability (see below).

• Inverse problems.
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It is essentially a linear tool !!

Here : focus on dissipative equations :

• Heat equations .

• Diffusion convection equations.

• Stokes and Navier-Stokes equations...
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Exact Controllability to Trajectories
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Nonlinear evolution system with a control variable v{
∂Y
∂t + LY + N(Y ) = F + Bv in (0, T ),
Y (0) = Y0,

(1)

L is for example an elliptic operator and N is a nonlinear perturbation.

Think of a nonlinear convection-diffusion equation or Navier-Stokes

equations or...

On the other hand, uncontrolled trajectory of the same operator :

“ideal” trajectory that we want to reach{
∂Ȳ
∂t + LȲ + N(Ȳ ) = F in (0, T ),
Ȳ (0) = Ȳ0,

(2)
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Exact controllability to trajectories : can we find a control v such

that

Y (T ) = Ȳ (T ).

(Linear case : null controllability : v such that Y (T ) = 0.)

Local version : provided (Y0 − Ȳ0) is “small” in a suitable norm, can

we find a control v such that

Y (T ) = Ȳ (T ).

Remark : If the answer is positive and if our evolution system is well-

posed, after time T we can switch off the control and the system will

follow the “ideal” trajectory.
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Important case :

If Ȳ is a stationnary solution (with F independent of time t), namely

LȲ + N(Ȳ ) = F. (3)

Many important nonlinear stationnary systems of this type may have

several solutions and among them unstable solutions. In this case, if Ȳ

is such an unstable solution and if the problem of exact controllability

to trajectories has a positive answer, it corresponds to stabilizing (and

exactly reach) an unstable solution.
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Case of Navier-Stokes Equations
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(ȳ, p̄) : “ideal” solution of Navier-Stokes equations (for example a

stationnary solution).
∂ȳ
∂t − ν∆ȳ + ȳ.∇ȳ +∇p̄ = f in Ω× (0, T ),
div ȳ = 0 in Ω× (0, T ),
ȳ = 0 on Γ× (0, T )
ȳ(0) = ȳ0 in Ω.

(4)

Consider a solution of the controlled system, starting from a different

initial value
∂y
∂t − ν∆y + y.∇y +∇p = f + v.1Iω in Ω× (0, T ),
divy = 0 in Ω× (0, T ),
y = 0 on Γ× (0, T )
y(0) = y0 in Ω,

(5)

1Iω : characteristic function of a (little) subset ω of Ω.
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Exact Controllability to Trajectories :

Can we find a control v such that

y(T ) = ȳ(T ) ?

i.e can we reach exactly in finite time the “ideal” trajectory ȳ?

Local version : same result provided ||y0 − ȳ0|| is small enough.

Remark 1 If there exists such a control v, then, after time T , just
switch off the control (v = 0) and the system will stay on the “ideal”
trajectory.

Last result (Fernandez-Cara, Guerrero, Imanuvilov, Puel, Journal de
Math. Pures et Appl., 2004) (dimension 3):
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H = {y ∈ L2(Ω)3, divy = 0, y.ν = 0 on Γ}.

Theorem 2 Let us assume that

ȳ0 ∈ H ∩ L4(Ω)3, ȳ ∈ L∞(Ω× (0, T ))3

and
∂ȳ

∂t
∈ L2(0, T ;Lσ(Ω))3, σ >

6

5

then there exists η > 0 such that for every y0 ∈ H ∩L4(Ω)3 such that
||y0 − ȳ0||L4(Ω)3 ≤ η, there exists a control v ∈ L2(0, T ;L2(ω))3 and a
solution (y, p) of (5) such that

y(T ) = ȳ(T ).

13



Where do Carleman Estimates come in?

Go back to general setting and linearize....

Null controllability for linearized system.

Then fixed point argument.
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{
∂Y
∂t + LY = Bv in (0, T ),
Y (0) = Y0,

(6)

Look for v such that Y (T ) = 0.

First step : ε > 0.

Look for v such that ||Y (T )|| ≤ ε.

If such a v exists there may be many of them. Select the one which
minimizes the norm of controls :

min
v s.t. ||Y (T )||≤ε

1

2

∫ T

0
||v(t)||2dt.
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As v → Y is affine, it can be rewritten in following form

min
v

(
1

2

∫ T

0
||v(t)||2dt + IndB(0,ε)(Y

0(T ) + L(v)(T )))

where L is linear.

Apply Fenchel-Rockafellar duality result.

Adjoint equation : {
−∂Φ

∂t + LΦ = 0 in (0, T ),
Φ(T ) = ΦT ,

(7)

Dual problem :

min
ΦT

Jε(ΦT ) =: (
1

2

∫ T

0
||B∗Φ(t)||2dt + ε||ΦT ||+ (Φ(0), Y0)).



It can be shown (C.Fabre,J-P.P.,E.Zuazua) that dual problem has a

solution provided (in fact if and only if) unique continuation property

holds

B∗Φ = 0 implies Φ = 0 (and ΦT = 0).

Then if the minimum is Φε
T corresponding to a solution of (7) Φε and

if

vε = B∗Φε

then vε is solution of primal problem (minimizes the norm over ad-

missible controls).
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Second step : Passage to the limit when ε → 0.

Estimates on vε. We have :
∫ T
0 ||vε||2dt =

∫ T
0 ||B∗Φε||2dt.

Jε(Φε
T ) ≤ Jε(0) = 0. This implies

1

2

∫ T

0
||B∗Φε(t)||2dt ≤ ||Y0||.||Φε(0)||.

If we know an observability inequality for solutions of adjoint equation
like

||Φ(0)||2 ≤ C
∫ T

0
||B∗Φ(t)||2dt,

we obtain an estimate on the control∫ T

0
||vε||2dt =

∫ T

0
||B∗Φε||2dt ≤ 4C||Y0||2.
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Then we can pass to the limit :

For a subsequence vε converges weakly to v,

Y (vε)(T ) → Y (v)(T ) and ||Y (vε(T )|| ≤ ε imply

Y (v)(T ) = 0

and we have solved the null controllability problem.

Problem : To obtain Observability Inequality for adjoint system !!
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For linearized Navier-Stokes equations around the trajectory ȳ

∂y
∂t − ν∆y +∇ · (ȳ ⊗ y + y ⊗ ȳ) +∇p = v.1Iω

in Ω× (0, T ),
divy = 0 in Ω× (0, T ),
y = 0 on Γ× (0, T )
y(0) = y0 in Ω,

(8)

(Pseudo-)adjoint system (backward equation)
−∂ϕ

∂t − ν∆ϕ− ȳ ·D(ϕ) +∇π = 0 in Ω× (0, T ),
divϕ = 0 in Ω× (0, T ),
ϕ = 0 on Γ× (0, T )
ϕ(T ) = ϕ0 in Ω,

(9)

with Dϕ = ∇ϕ +∇ϕT .
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We want to show the Observability Inequality

|ϕ(0)|2
L2(Ω) ≤ C

∫ T

0

∫
ω
|ϕ|2dxdt (10)

(no reference to the “initial” value ϕ0).

How to prove observability inequality?

Consequence of a Global Carleman estimate plus standard energy

estimates

Carleman estimate gives in particular∫ T

0

∫
Ω

ρ2|ϕ|2dxdt ≤ C
∫ T

0

∫
ω

ρ̄θ|ϕ|2dxdt
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for some θ and with suitable weights ρ and ρ̄ which are C2 and > 0

on Ω×]0, T [ and

ρ(t) → 0 if t → T.

Notice that this gives the unique continuation property but gives much

more !!

Estimate requires a very long multistep proof and does not deal di-

rectly with the Stokes structure...
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We obtain the following precise estimate :

There exist C, s̄, λ̄ such that for every s > s̄ and λ > λ̄,∫∫
Ω×(0,T )

e−2sα(sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2) dx dt

≤ Cs16λ40
∫∫

ω×(0,T )
e−8sα̂+6sα∗ξ̂ 16 |ϕ|2 dx dt
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where

α(x, t) = e5/4λ m ‖η0‖∞−eλ(m ‖η0‖∞+η0(x))

t4(T−t)4
,

ξ(x, t) = eλ(m ‖η0‖∞+η0(x))

t4(T−t)4
,

α̂(t) = minx∈Ω α(x, t),

α∗(t) = maxx∈Ω α(x, t),

ξ̂(t) = maxx∈Ω ξ(x, t),

with m > 4 and η0 ∈ C2(Ω) such that

η0 > 0 in Ω, η0 = 0 on Γ, |∇η0| > 0 in Ω \ ω′,

ω′ being a nonempty subset of ω.
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Some references for the nonlinear convection diffusion equations.

Linear case : Lebeau-Robbiano, Fursikov-Imanuvilov

Nonlinear case, local results : Fursikov-Imanuvilov

Nonlinear case, global results : Fernandez Cara-Zuazua (nonlinearity

slightly superlinear), Anita-Tataru (nice and surprising result for more

superlinear nonlinearities), Doubova-Osses-P. (transmission problem),

Fernandez Cara-Gonzales Burgos-Guerrero-P. (nonlinear Fourier bound-

ary conditions),....
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Extensions :

Boussinesq system (Navier-Stokes coupled with an energy equation)

(Guerrero)

Alternative approach with a second control in the divergence term in

a first step (Gonzales Burgos, Guerrero, P.)

Reducing the number of controls for Navier-Stokes or Boussinesq

(Fernandez Cara, Guerrero, Imanuvilov, P.)

Controllability (to zero) for a fluid structure interacting system (M.Boulakia,

A.Osses preprint)
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Among open problems :

Can the result be global ? Can we use a more “nonlinear” method ?

Can we get rid of the L∞ condition on ȳ?

What is the situation for compressible viscous fluids ? Completely

open question !!

∂ρ
∂t + div (ρ.y) = 0,
∂y
∂t − ν∆y + y.∇y +∇p = f + v.1Iω,
y = 0 on Γ× (0, T )
y(0) = y0,
p = Cργ

(11)

with γ as close as possible to 1.4 !!
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For heat-type equations, how robust are these estimates (and their

consequences)? What happens when we have oscillating coefficients ?

What happens for discretized problems in connexion with numerical

approximations ? (some work by E. Zuazua and his group)

In convection diffusion equations, what happens when the diffusion

parameter tends to zero ? (some interesting results by Coron-Guerrero

and Lebeau-Guerrero).
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Backward uniqueness
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Classical results by J-L.Lions-B.Malgrange. Also by A.Friedman

Very nice recent result by Escauriaza-Seregin-Sverak (revisited by
S.Ervedoza). Used for proving regularity and uniqueness results for
Navier-Stokes equations in exterior domains in the class L∞(0, T ;L3(Ω))

Ω is an exterior domain. If u grows at most exponentially in space
and satisfies the heat equation

∂u

∂t
−∆u = f(u,∇u) in Ω× (0, T )

with |f(s, p)| ≤ C(1 + |s|+ |p|) (NO BOUNDARY CONDITION)

and

u(T ) = 0
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then u is identically zero !!

Use of Carleman estimates with particular weights (not the same as

for controllability....)

The result is NOT TRUE in bounded domains.... Open question : Is

this result also true for Stokes system ? for Navier-Stokes ?



Data assimilation problem

(Non standard approach)
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We consider a (linearized) Navier-Stokes system on a time interval

(−T0,0) (from yesterday to to-day)
∂y
∂t − ν∆y +∇ · (ȳ ⊗ y + y ⊗ ȳ) +∇p = f

in Ω× (−T0,0),
divy = 0 in Ω× (−T0,0),
y = 0 on Γ× (−T0,0)

(12)

y(−T0) = y0 in Ω, (13)

where the initial data y0 is unknown. On the other hand we know

some measurments of the solution on a subdomain ω during the time

period (−T0,0)

y = h in ω × (−T0,0).

Goal : to be able to predict y on (0, T ) (from to-day to to-morrow).
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Usual method (variational data assimilation):

Try to recover y0 and then solve (simulate) system (12) on (−T0, T )
(from yesterday to to-morrow).

Define

J(y0) =
1

2

∫ T

0

∫
ω
|y − h|2dxdt + α||y0||2

where α > 0 is a Tychonov regularization parameter.

To find ȳ0 such that

J(ȳ0) = min
y0

J(y0)

This problem is known to be unstable when α → 0 (ill-posed when
α = 0).
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Non standard approach : Try to recover y(0) (value to-day) from
measurements between −T0 and 0 (without knowing anything on
y(−T0) of course).

Claim : Well-posed problem.

Reason : Global Carleman inequality and observability inequality (valid
if ȳ ∈ W1,∞) .

|y(0)|2
L2(Ω) ≤ C

∫ 0

−T0

∫
Ω
|f |2dxdt + C

∫ 0

−T0

∫
ω
|h|2dxdt (14)

if

h = y on ω × (−T0,0).

This implies stability.
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Consider a controllability problem for the adjoint system : if ϕ0 ∈
H = {z ∈ L2(Ω)3, div z = 0, z.ν = 0 on Γ}, find v = v(ϕ0) such that

the solution of
−∂ϕ

∂t − ν∆ϕ + ȳ ·D(ϕ) +∇π = v.1Iω in Ω× (−T0,0),
divϕ = 0 in Ω× (−T0,0),
ϕ = 0 on Γ× (−T0,0)
ϕ(0) = ϕ0 in Ω,

(15)

satisfies

ϕ(−T0) = 0.

This is possible because of (14). Now multiplying (12) by ϕ we obtain
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∀ϕ0 ∈ H,
∫
Ω

y(0).ϕ0dx =
∫ 0

−T0

∫
Ω

f .ϕdxdt +
∫ 0

−T0

∫
ω

h.v(ϕ0)dxdt.

Therefore we can recover for example all the coefficients of y(0) on a

Hilbert basis, at the price of solving a controllability problem for each

element of the basis.

Of course we can obtain an approximation of y(0) by considering a

finite number of elements ϕ0.

Importance of considering reduced basis.

Notice that we can estimate the sensitivity of this procedure to errors

in the measures h.
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We can also use an “optimal control” approximation.

Consider, for ϕ0 fixed, the functional

Jα(v) =
1

α

∫
Ω
|ϕ(−T0)|2dx +

1

2

∫ 0

−T0

∫
ω
|v|2dxdt

where ϕ is solution to (15), and the optimal control problem :

min
v∈L2(−T0,0;L2(ω))3

Jα(v)

which gives a solution vα(ϕ0) and a corresponding solution ϕα to (15)
for which we can define

lα(ϕ0) =
∫ 0

−T0

∫
Ω

f .ϕαdxdt +
∫ 0

−T0

∫
ω

h.vα(ϕ0)dxdt.

It can be shown that when α → 0,

lα →
∫
Ω

y(0).ϕ0dx.
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Example of application with numerical experiments to large-scale

ocean circulation model by G. Garcia, A. Osses, J.-P. Puel with very

promising numerical results. To be continued ....
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