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Abstract

This paper studies the numerical approximation of the HUM boundary control for the
2-D wave equation. It is known that the discrete and semi-discrete models obtained by dis-
cretizing the wave equation with the classical finite difference or finite element method do not
provide convergent sequences of approximations to the boundary control of the continuous
wave equation, as the mesh size goes to zero (see [9] and [22]). Here we introduce a new
semi-discrete model based on the discretization of the wave equation using a mixed finite
element method with two different basis functions for the position and velocity. This allows
us to construct a convergent sequence of approximations to the HUM control, as the space
discretization parameter h tends to zero.

We also introduce a fully-discrete system, obtained from our semi-discrete scheme, that
is likely to provide a convergent sequence of discrete approximations as both h and ∆t, the
time discretization parameter, go to zero. We illustrate this fact with several numerical
experiments.
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1 Introduction

Let us consider Ω = (0, 1)× (0, 1) ⊂ R2 with boundary Γ = Γ0 ∪ Γ1 divided as follows
{

Γ0 = {(x, 0) : 0 ≤ x ≤ 1} ∪ {(0, y) : 0 ≤ y ≤ 1},
Γ1 = {(x, 1) : 0 < x < 1} ∪ {(1, y) : 0 < y < 1}. (1.1)

We are concerned with the following exact boundary controllability property for the wave equa-
tion in Ω: given T > 2

√
2 and (u0, u1) ∈ L2(Ω) × H−1(Ω) there exists a control function

(v(t, y), z(t, x)) ∈ [L2((0, T )× (0, 1))]2 such that the solution of the equation




u′′ −∆u = 0 for (x, y) ∈ Ω, t > 0,
u(t, x, y) = 0 for (x, y) ∈ Γ0, t > 0,
u(t, 1, y) = v(t, y) for y ∈ (0, 1), t > 0,
u(t, x, 1) = z(t, x) for x ∈ (0, 1), t > 0,
u(0, x, y) = u0(x, y) for (x, y) ∈ Ω,
u′(0, x, y) = u1(x, y) for (x, y) ∈ Ω,

(1.2)

satisfies
u(T, ·) = u′(T, ·) = 0. (1.3)

By ′ we denote the time derivative.
The Hilbert Uniqueness Method (HUM) introduced by J.-L. Lions offered a way to solve this

and other multi-dimensional similar problems (see [12]).
In the last years many works have dealt with the numerical approximations of the control

problem (1.2)-(1.3) using the HUM approach. For instance, in [6], [8] and [9], a numerical
algorithm based on the finite difference approximation of (1.2) was described. However, in these
articles a bad behavior of the approximative controls was observed.

Let us briefly explain this fact. When we are dealing with the exact controllability problem,
a uniform time T > 0 for the control of all solutions is required. This time T depends, roughly,
on the size of the domain and the velocity of propagation of waves. Note that, for the continuous
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wave equation (1.2), the velocity of propagation of all waves is one and the bound of the minimal
controllability time, T > 2

√
2, is exactly the minimum time that requires a wave, starting at

any x ∈ Ω in any direction, to arrive to the controllability zone.
On the other hand, in general, any semi-discrete dynamics generates spurious high-frequency

oscillations that do not exist at the continuous level. Moreover, a numerical dispersion phenom-
enon appears and the velocity of propagation of some high frequency numerical waves may
possibly converge to zero when the mesh size h does. In this case, the controllability property
for the semidiscrete system will not be uniform, as h → 0, for a fixed time T and, consequently,
there will be initial data (even very regular ones) for which the corresponding controls of the
semi-discrete model will diverge, in the L2-norm, as h tends to zero. This is the case when
the semi-discrete model is obtained by discretizing the wave equation with the classical finite
differences or finite element method (see [10] for a detailed analysis of the 1-D case and [22] for
the 2-D case, in the context of the dual observability problem).

From the numerical point of view, several techniques have been proposed as possible cures of
the high frequency spurious oscillations. For example, in [9] a Tychonoff regularization procedure
was successfully implemented in several experiments. Roughly speaking, this method introduces
an additional control, tending to zero with the mesh size, but acting on the interior of the domain.
Other proposed numerical techniques are multi-grid or mixed finite element methods (see [7]).
To our knowledge, no proof of convergence has been given for any of these methods, as h → 0,
so far.

In this paper we construct, for any fixed T > 2
√

3, a convergent sequence (as h → 0) of
semi-discrete approximations of the HUM control (v, z) of (1.2), for any initial data. The main
idea is to introduce a new space discretization scheme for the wave equation (1.2), based on
a mixed finite element method, in which different base functions for the position u and the
velocity u′ are considered. More precisely, while the classical first order splines are used for
the former, discontinuous elements approximate the latter. This new scheme still has spurious
high-frequency oscillations but, in this case, the numerical dispersion makes them to have larger
velocity of propagation as h → 0. We prove that this fast numerical waves are not an obstacle
to the uniform controllability of the semi-dicrete scheme.

The semi-discrete approximations (vh, zh)h>0 of the HUM control (v, z) of (1.2) are obtained,
for any initial data, by minimizing the HUM functional of the associated semi-discrete adjoint
system. The main result of the paper is Theorem 6.2 which says, roughly, that if a weakly con-
vergent sequence of approximations of the continuous initial data to be controlled is considered,
then (vh, zh)h>0 converges weakly to (v, z). This result is based on a uniform (in h) observability
inequality for the corresponding adjoint system (see Theorem 4.1 below).

The scheme introduced in this paper is different to the mixed element method used in [7]
where u and ∇u are approximated in different finite dimensional spaces.

We also introduce a fully-discrete approximation of the wave equation for which the velocity
of propagation of all numerical waves does not vanish as both h and ∆t, the time discretization
parameter, tend to zero. Based on this fact, we conjecture that this scheme also provides
convergent approximations of the control as h,∆t → 0, but we do not have a proof of this.
However we show some numerical examples that somehow exhibits this convergence.

To our knowledge, this mixed finite element approach was used by the first time in the context
of the wave equation in [2], in order to obtain a uniform decay rate of the energy associated to
the semi-discrete wave equation by a boundary dissipation. It is well known that this boundary
stabilization problem is closely related to the boundary controllability problem stated in this
paper. However, in [2] the study of the 2-D case is not complete and no rigorous proof is given
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for the uniform decay property.
We also mention that the convergence and error estimates of the mixed finite element method

described in this paper, for the (uncontrolled) wave equation, is given in [11].
In this paper, we concentrate on the simplest 2-D domain consisting of a unit square. How-

ever, the method is easily adapted to general 2-D domains where corresponding boundary con-
trollability properties should hold.

Finally, we refer to [4] for the analysis and numerical implementation of the 1-D version of
the numerical method described in this article.

The rest of the paper is organized in the following way. The second section briefly recalls
some controllability results for the wave equation (1.2). In the third section the semi-discrete
model under consideration is deduced. In the fourth section the main properties of this system
are discussed and, in particular, a uniform observability inequality which will be fundamental
for our study (Theorem 4.1). Its very technical proof is given in an Appendix at the end of the
paper. In the fifth section an approximation sequence is constructed and in the sixth section its
convergence to the HUM control of the continuous equation (1.2) is proved. The final section is
devoted to present the fully-discrete scheme and the numerical results.

2 The continuous problem: results and notations

In this section we recall some of the controllability properties of the wave equation (1.2) and
introduce some notations that will be used in the article. The following classical result may be
found, for instance, in [12].

Theorem 2.1 For any (u0, u1) ∈ L2(Ω) × H−1(Ω) there exists a control function (v, z) ∈
[L2((0, T )× (0, 1))]2 such that the solution (u, u′) of (1.2) verifies (1.3).

In fact, given (u0, u1) ∈ L2(Ω)×H−1(Ω), a control of minimal L2−norm may be obtained. To
do that, let us introduce the map J : H1

0 (Ω)× L2(Ω) → R defined by

J (w0, w1) =
1
2

∫ T

0

∫ 1

0
(wx)2(t, 1, y)dydt +

1
2

∫ T

0

∫ 1

0
(wy)2(t, x, 1)dxdt

+
∫

Ω
u0(x, y)w′(0, x, y)dxdy − 〈

u1, w(0, · )〉−1,1
,

(2.1)

where (w, w′) is the solution of the backward homogeneous equation




w′′ −∆w = 0, for (x, y) ∈ Ω, t > 0,

w(t, 0, y) = w(t, x, 0) = w(t, x, 1) = w(t, 1, y) = 0, for x, y ∈ (0, 1), t > 0,

w(T, x, y) = w0(x, y), w′(T, x, y) = w1(x, y), for (x, y) ∈ Ω.

(2.2)

In (2.1), < · , · >−1,1 denotes the duality product between H−1(Ω) and H1
0 (Ω).

Theorem 2.2 For any (u0, u1) ∈ L2(Ω) × H−1(Ω), J has an unique minimizer (ŵ0, ŵ1) ∈
H1

0 (Ω)×L2(Ω). If (ŵ, ŵ′) is the corresponding solution of (2.2) with initial data (ŵ0, ŵ1), then

(v(t, y), z(t, x)) = (ŵx(t, 1, y), ŵy(t, x, 1)), (2.3)

is the control of (1.2) with minimal L2−norm.
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We recall that the main ingredient of the proof of the Theorem 2.2 is the following observ-
ability inequality for (2.2): given T > 2

√
2 there exists a constant C > 0 such that, for any

solution of (2.2),

E(t) ≤ C

(∫ T

0

∫ 1

0
|wx(t, 1, y)|2dydt +

∫ T

0

∫ 1

0
|wy(t, x, 1)|2dxdt

)
, (2.4)

where
E(t) =

1
2

∫

Ω

(|∇w|2 + |wt|2
)
dxdy, (2.5)

is the energy corresponding to (2.2).

Remark 2.1 The control (v, z) from Theorem 2.2 is usually called the HUM control. It may be
characterized by the following two properties:

1. (v, z) is a control for (1.2), or equivalently,
∫ T

0

∫ 1

0
v(t, y)wx(t, 1, y)dydt +

∫ T

0

∫ 1

0
z(t, x)wy(t, x, 1)dxdt

=< u1, w(0) >−1,1 −
∫

Ω
u0(x, y)w′(0, x, y)dxdy,

(2.6)

for any (w0, w1) ∈ H1
0 (Ω)× L2(Ω), being w the solution of the adjoint equation (2.2).

2. There exists (ŵ0, ŵ1) ∈ H1
0 (Ω) × L2(Ω) such that v(t, y) = ŵx(t, 1, y) and z(t, x) =

ŵy(t, x, 1), where (ŵ, ŵ′) is the solution of the adjoint system (2.2) with initial data
(ŵ0, ŵ1).

Much of our analysis will be based on Fourier expansion of solutions. Therefore, let us now
introduce the eigenvalues of the wave equation (2.2)

λnm = sgn(n)
√

n2 + m2π, (2.7)

and the corresponding eigenfunctions

Ψnm(x, y) =
√

2
(

(iλnm)−1

−1

)
sin(nπx) sin(mπy), (n,m) ∈ Z∗ × N∗, i =

√−1. (2.8)

The sequence (Ψnm)(n,m)∈Z∗×N∗ forms an orthonormal basis in H1
0 (Ω)× L2(Ω). Moreover,

||Ψnm||L2(Ω)×H−1(Ω) =
1

λnm
.

Remark 2.2 Note that it is sufficient to show that (2.6) is verified by (w0, w1) = Ψnm for all
(n,m) ∈ Z∗×N∗. Indeed, from the continuity of the linear form Λ : H1

0 (Ω)×L2(Ω) → C, defined
by

Λ(w0, w1) =
∫ T

0

∫ 1

0
v(t, y)wx(t, 1, y)dydt +

∫ T

0

∫ 1

0
z(t, x)wy(t, x, 1)dxdt

− < u1, w(0) >H−1,H1
0

+
∫

Ω
u0(x, y)w′(0, x, y)dxdy,

(2.9)
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it follows that (2.6) holds for any (w0, w1) ∈ H1
0 (Ω) × L2(Ω) if and only if it is verified on a

basis of the space H1
0 (Ω)× L2(Ω). But (Ψn,m)(n,m)∈Z∗×N∗ is exactly such a basis.

Thus, by considering (w0, w1) = Ψnm, we obtain that the control (v, z) drives to zero the
initial data

(u0, u1) =
∑

(n,m)∈Z∗×N∗
α0

nmΦnm,

of (1.2) if and only if
∫ T

0
eiλnmt

(
(−1)nn

∫ 1

0
v(t, y) sin(mπy)dy + (−1)mm

∫ 1

0
z(t, x) sin(nπx)dx

)
dt =

α0
nm√
2π

, (2.10)

for all (n,m) ∈ Z∗ × N∗.

3 The semi-discrete problem

In this section we introduce a suitable semi-discretization of the adjoint homogeneous equation
(2.2), which characterizes the HUM control in the continuous case. Then, by minimizing the
HUM functional corresponding to this semi-discrete system, a convergent sequence of discrete
approximations (vh, zh)h>0 of the HUM control (v, z) of (1.2) is obtained.

We introduce N ∈ N∗, h = 1/(N + 1) and we consider the following partition of the square
(x, y) ∈ Ω

(xi, yj) = (ih, jh), 0 ≤ i, j ≤ N + 1, (3.1)

and we denote wij = w(xi, yj).
Let us also introduce the new variable ζ(t, x, y) = w′(t, x, y). Equation (2.2) may be written

in the following variational form:




Find (w, ζ) = (w, ζ)(t, x, y) with (w(t), ζ(t)) ∈ (H1
0 (Ω)× L2(Ω)),∀t ∈ (0, T ), such that

d

dt

∫ 1

0

∫ 1

0
w(t, x, y)ψ(x, y)dxdy =

∫ 1

0

∫ 1

0
ζ(t, x, y)ψ(x, y)dxdy, ∀ψ ∈ L2(Ω),

d

dt
< ζ(t, · ), ϕ >−1,1=

∫ 1

0

∫ 1

0
∇w(t, x, y)∇ϕ(x, y)dxdy, ∀ϕ ∈ H1

0 (Ω),

w(T, x, y) = w0(x, y), ζ(T, x, y) = w1(x, y), ∀(x, y) ∈ Ω.
(3.2)

We now discretize (3.2) by using a mixed finite elements method (see, for instance, [3] or [19]).
We approximate the position w in the space Q1 of piecewise-polynomials of degree one and the
velocity ζ in the space Q0 of discontinuous piecewise constant functions. More precisely, for
each 1 ≤ i, j ≤ N , let Qh

ij = (xi, xi+1)× (yj , yj+1) be such that ∪0≤i,j≤NQh
i,j = Ω = (0, 1)2 and

define the functions



ψij =
{

1
2 if (x, y) ∈ Qh

ij ∪Qh
i−1j ∪Qh

ij−1 ∪Qh
i−1j−1,

0 otherwise,

ϕij |
Qh

kl

∈ Q1, ϕij(xk, yl) = δkl
ij .

(3.3)

The variational formulation (3.2) is then reduced to find

wh(t, x, y) =
N∑

i,j=1

wij(t)ϕij(x, y), and ζh(t, x, y) =
N∑

i,j=1

ζij(t)ψij(x, y), (3.4)
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that satisfy of the semi-discrete system




d

dt

∫ 1

0

∫ 1

0
wh(t, x, y)ψij(x, y)dxdy =

∫ 1

0

∫ 1

0
ζh(t, x)ψij(x, y)dxdy, ∀ 1 ≤ i, j ≤ N,

d

dt
< ζh(t, · ), ϕij >−1,1=

∫ 1

0

∫ 1

0
∇wh(t, x, y)∇ϕij(x, y)dxdy, ∀ 1 ≤ i, j ≤ N,

wh(T, x, y) = w0
h(x, y), ζh(T, x, y) = w1

h(x, y), ∀(x, y) ∈ Ω.

(3.5)

A straightforward computation shows that the variables ζij may be eliminated in (3.4)-(3.5)
leading to the following semi-discrete system for wij(t), in t ∈ (0, T ):




h2

16

(
4w′′ij + 2w′′i+1j + 2w′′i−1j + 2w′′ij+1 + 2w′′ij−1 + w′′i+1j+1 + w′′i+1j−1 + w′′i−1j+1 + w′′i−1j−1

)

+1
3 (8wij − wi+1j − wi−1j − wij+1 − wij−1 − wi+1j+1 − wi+1j−1 − wi−1j+1 − wi−1j−1) = 0,

for 1 ≤ i, j ≤ N,
wi0 = wiN+1 = 0, for 0 ≤ i ≤ N + 1,

w0j = wN+1j = 0, for 0 ≤ j ≤ N + 1,
wij(T ) = w0

ij , w′ij(T ) = w1
ij , for 0 ≤ i, j ≤ N + 1.

(3.6)
It is easy to see that the semi-discrete system (3.6) is consistent of order two in space with

the continuous wave equation (2.2). We shall consider that the initial data are zero on the
boundary of Ω, which in the discrete equation corresponds to

{
w0

0,j = w1
0,j = 0, w0

N+1,j = w1
N+1,j = 0, for 0 ≤ j ≤ N + 1,

w0
i,0 = w1

i,0 = 0, w0
i,N+1 = w1

i,N+1 = 0, for 0 ≤ i ≤ N + 1.
(3.7)

The same property will be also satisfied by the corresponding solutions of (3.6).
Now we write (3.6) in an equivalent vectorial form. In order to do this we first define the

following tri-diagonal matrices from MN×N (R)

Ah =
1
3




8 −1
−1 8 −1 (0)

−1
. . . . . .
. . . . . . −1

(0) −1 8




N×N

, Bh =
1
3




−1 −1
−1 −1 −1 (0)

−1
. . . . . .
. . . . . . −1

(0) −1 −1




N×N

, (3.8)

Ch =
h2

16




2 1
1 2 1 (0)

1
. . . . . .
. . . . . . 1

(0) 1 2




N×N

. (3.9)
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Moreover, we define the matrices Kh and Mh from MN2×N2(R),

Kh =




Ah Bh

Bh Ah Bh (0)

Bh
. . . . . .
. . . . . . Bh

(0) Bh Ah




N2×N2

, Mh =




2Ch Ch

Ch 2Ch Ch (0)

Ch
. . . . . .
. . . . . . Ch

(0) Ch 2Ch




N2×N2

,

(3.10)
If we denote the unknown

Wh(t) = (w11(t), w21(t), ..., wN1, ...., w1N (t), w2N (t), ..., wNN (t))T ,

then equation (3.6) may be written in vectorial form as follows
{

MhW ′′
h (t) + KhWh(t) = 0, for t > 0,

Wh(T ) = W 0
h , W ′

h(T ) = W 1
h ,

(3.11)

where (W 0
h ,W 1

h ) = (w0
ij , w

1
ij)1≤i,j≤N ∈ R2N2

are the initial data and the corresponding solution
of (3.6) is given by (Wh, W ′

h) = (wij , w
′
ij)1≤i,j≤N .

4 Properties of the semi-discrete system

In this section we study some of the properties of the semi-discrete adjoint system (3.6), related
to the controllability problem. In general, the controllability property of a system may be
reduced to study a suitable inverse inequality for the uncontrolled adjoint system. The aim of
this section consists precisely in giving a uniform (in h) observability inequality for (3.6). But
before that, let us briefly explain why the semi-discretization introduced in this paper is likely
to provide a uniform observability property rather than others, like the usual finite difference
semi-discretization implemented in [8].

It is well known that in order to have a uniform observability property for the wave equation
(2.2) of the type (2.4) it is necessary to consider T sufficiently large. This is due to the fact
that the velocity of waves is one and then any perturbation of the initial data will last some
time to arrive to the observation zone. For the semi-discrete scheme (3.6) we can also define
semi-discrete waves as solutions of the form

wij = ei(ξ·(xi,yj)−ωt), ξ = (ξ1, ξ2), (xi, yj) = (ih, jh), i =
√−1.

When substituting in (3.6) the following relation between modes ξ and frequencies ω holds

ωs(ξ) =
2
h

√
tan2

(
ξ1h

2

)
+ tan2

(
ξ2h

2

)
+

2
3

tan2

(
ξ1h

2

)
tan2

(
ξ2h

2

)
,

and ξ ∈ (−π/h, π/h)2.
The group velocity associated to a mode ξ in a direction v = (v1, v2) is given by ∇ξωs · v.

Clearly, a necessary condition in order to have a uniform (in h) observability property in finite
time T > 0 is that the group velocity associated to any mode ξ is strictly bounded from below
with a certain constant µ > 0 (independent of ξ and h) for at least one direction v. Otherwise
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some solutions of the semi-discrete system would propagate so slowly in any direction that the
observability will require larger time T as h → 0.

To guarantee that we have a group velocity uniformly bounded from below for at least
one direction v it is sufficient to have a uniform bound from below (in ξ and h) for |∇ξωs| =√|∂ξ1ωs|2 + ∂ξ2ωs|2. Note that for the continuous wave equation (2.2), ω(ξ) = |ξ| and |∇ξω| = 1.
For the semi-discrete scheme (3.6), a straightforward computation shows that the minimum value
of |∇ξωs| is obtained for ξ = (0, 0) and that |∇ξωs(0, 0)| = 1 (see Figure 1).

On the other hand, the usual semi-discrete scheme based on classical finite differences in
space has the following relation

ωfd(ξ) =
2
h

√
sin2

(
ξ1h

2

)
+ sin2

(
ξ2h

2

)
,

for which |∇ξωfd| → 0 as ξ → (π/h, 0), for example. In other words, the group velocity of high
frequencies associated to this finite differences scheme becomes very small (see Figure 1). This
may explain the lack of convergence of the gradient conjugate algorithm implemented in [8],
which is based in this semi-discrete scheme.

0 2 4 6 8 10 12 14 16 18 20
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20
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Wave number
Wave number
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continuous spectrum
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mixed finite elements spectrum

Figure 1: ω(ξ) with ξ ∈ [0, π/h)2 and h = 1/21 for the mixed finite element semi-discretization
(upper surface), continuous wave equation (medium surface) and the usual finite differences
semi-discretization (lower surface). We observe that the norm of the gradient |∇ξω(ξ)| is always
one in the continuous case, it is greater than one for the mixed finite element scheme and it
becomes zero for the usual finite differences scheme as ξ approaches (π/h, 0)

.

We do not know if the above spectral condition on ∇ξωs is sufficient to guarantee a uniform
(in h) observability inequality for the semi-discrete system (3.6). In the rest of this section we
prove, using a different approach, that indeed this property holds for system (3.6).
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We introduce the following discrete version of the continuous energy (2.5)

Eh(t) =
h2

2

N∑

i,j=0

{(
w′ij + w′ij+1 + w′i+1j+1 + w′i+1j

4

)2

+
1
3

[(
wi+1j − wij

h

)2

+
(

wij+1 − wij

h

)2
]

+
2
3

[(
wi+1j+1 − wij√

2h

)2

+
(

wi+1j − wij+1√
2h

)2
]}

. (4.1)

Note that in the expression of Eh two different types of finite differences are considered for
the discretization of the gradient in (2.5).

The matrices Mh and Kh are definite positives. Let us now define the inner product

< (f1, f2), (g1, g2) >0=< Khf1, g1 > + < Mhf2, g2 >, (4.2)

for any (f1, f2), (g1, g2) ∈ R2N2
, where < · , · > denotes the canonical inner product. The

corresponding norm will be denoted || · ||0.
Remark that

Eh(t) =
1
2

∣∣∣∣(Wh,W ′
h)(t)

∣∣∣∣2
0
. (4.3)

The following proposition shows that, as in the corresponding continuous case, the energy
Eh defined by (4.1) is conserved along trajectories.

Proposition 4.1 For any h > 0 and any solution of the discrete system (3.6) the following
holds

Eh(t) = Eh(0), ∀t > 0. (4.4)

Proof: Multiplying (3.11) by W ′
h, we obtain that

0 =< MhW ′′
h ,W ′

h > + < KhWh,W ′
h >=

1
2

[
< MhW ′

h,W ′
h > + < KhWh, Wh >

]′ = d

dt
Eh(t),

and the proof finishes. ¥
The following result shows that a discrete version of the observability inequality (2.4) is valid

for the solutions of system (3.6).

Theorem 4.1 Given T > 2
√

3, there exists a constant C(T ) > 0 independent of the discretiza-
tion step h such that the following inequality holds

Eh(0) ≤ C(T )





h3

8

∫ T

0




N∑

i=1

(
w′iN + w′i+1N

2h

)2

+
N∑

j=1

(
w′Nj + w′Nj+1

2h

)2

 dt +

+
h

2

∫ T

0




N∑

j=1

wNj−1 + wNj + wNj+1

3h

wNj

h
+

N∑

i=1

wi−1N + wiN + wi+1N

3h

wiN

h


 dt



 .

(4.5)

Remark 4.1 We were able to prove the uniform observability inequality (4.5) only for T > 2
√

3.
However, probably the same is true for T > 2

√
2, as in the continuous case.
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The proof of Theorem 4.1 is very technical and it will be given in the Appendix. Remark
that (4.5) may be written in the following equivalent form

Eh(0) ≤ C(T )
h

2

{∫ T

0

[
1
h2

< ChW ′
N.,W

′
N. > +

1
h2

< ChW ′
.N ,W ′

.N >

]
dt−

−
∫ T

0

[
1
h2

< BhWN.,WN. > +
1
h2

< BhW.N ,W.N >

]
dt

}
,

(4.6)

where WN. = (wNj)1≤j≤N ∈ RN and W.N = (wiN )1≤i≤N ∈ RN . Similarly, the following direct
inequality also holds.

Proposition 4.2 Given T > 0, there exists a constant C(T ) > 0 such that the following holds
for any h > 0

h3

8

∫ T

0




N∑

i=1

(
w′iN + w′i+1N

2h

)2

+
N∑

j=1

(
w′Nj + w′Nj+1

2h

)2

 dt+

+
h

2

∫ T

0




N∑

j=1

wNj−1 + wNj + wNj+1

3h

wNj

h
+

N∑

i=1

wi−1N + wiN + wi+1N

3h

wiN

h


 dt ≤ C(T )Eh(0).

(4.7)

The proof of Proposition 4.2 is given at the end of the Appendix, after the proof of Theorem
4.1.

5 Construction of the discrete approximations

In this section we explicitly construct a sequence of approximations (vh, zh)h>0 of the HUM
control (v, z) of (1.2). This will be done by minimizing the HUM functional of the semi-discrete
adjoint system (3.6).

Suppose that (U0
h , U1

h) = (u0
j , u

1
j )1≤j≤N ∈ R2N2

is a discretization of the continuous initial
data of (1.2) to be controlled. We define the functional J : R2N2 → R,

J ((W 0
h ,W 1

h )) =− < (−K−1
h MhU1

h , U0
h), (Wh(0),W ′

h(0)) >0

+
1
2h

∫ T

0

[
< ChW ′

N.,W
′
N. > + < ChW ′

.N ,W ′
.N >

]
dt

+
1
2h

∫ T

0
[< BhWN.,WN. > + < BhW.N ,W.N >] dt,

(5.1)

where (Wh, W ′
h) is the solution of (3.11) with initial data (W 0

h ,W 1
h ) ∈ R2N2

, and we have noted
WN. = (wNj)1≤j≤N ∈ RN and W.N = (wiN )1≤i≤N ∈ RN .

We show now that J has a minimizer (Ŵ 0
h , Ŵ 1

h ). The main tool in the proof of this result
is the observability inequality stated in Theorem 4.1 above.

Lemma 5.1 Assume that T > 2
√

3. The functional J defined by (5.1) has an unique minimizer
(Ŵ 0

h , Ŵ 1
h ).
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Proof: Since J is continuous, convex and defined in a finite dimensional space, the lemma
is proved if we show that J is coercive. This is a consequence of (4.5). More precisely,

J (W 0
h ,W 1

h ) ≥ h

32

∫ T

0




N∑

j=0

|w′Nj+1(t) + w′Nj(t)|2 +
N∑

i=0

|w′i+1N (t) + w′iN (t)|2

 dt

+
1
6h

∫ T

0




N∑

j=0

|wNj+1(t) + wNj(t)|2 +
N∑

i=0

|wi+1N (t) + wiN (t)|2

 dt

− 1
6h

∫ T

0




N∑

j=0

|wNj(t)|2 +
N∑

i=0

|wiN (t)|2

 dt− ||(−K−1

h MhU1
h , U0

h)||0 ||(Wh(0),W ′
h(0))||0

≥ C(T )||(W 0
h , W 1

h )||20 − ||(−K−1
h MhU1

h , U0
h)||0 ||(W 0

h ,W 1
h )||0,

and therefore
lim

||(W 0
h ,W 1

h )||0→∞
J (W 0

h ,W 1
h ) = ∞.

¥

Definition 5.1 Let (Ŵ 0
h , Ŵ 1

h ) be the minimizer of the functional J given by Lemma 5.1. We
define vh = (vh,j)1≤j≤N ∈ L2(0, T ;RN ) and zh = (zh,i)1≤i≤N ∈ L2(0, T ;RN ) by

vh,j(t) = − ŵNj

h
, zh,i(t) = − ŵiN

h
, ∀ 1 ≤ i, j ≤ N, (5.2)

where (Ŵh, Ŵ ′
h) is the solution of (3.11) with initial data (Ŵ 0

h , Ŵ 1
h ).

Remark 5.1 The optimality condition for the minimizer of J provides the following charac-
terization of vh and zh

< (−K−1
h MhU1

h , U0
h), (Wh(0), W ′

h(0)) >0=

h2

16

∫ T

0




N∑

j=1

(2v′h,j + v′h,j+1 + v′h,j−1)w
′
Nj +

N∑

i=1

(2z′h,i + z′h,i+1 + z′h,i−1)w
′
iN


 dt+

+
1
3

∫ T

0




N∑

j=1

(vh,j + vh,j+1 + vh,j−1)wNj +
N∑

i=1

(zh,i + zh,i+1 + zh,i−1)wiN


 dt = 0,

(5.3)

for any (W 0
h ,W 1

h ) ∈ R2N2
, where (Wh,W ′

h) is the corresponding solution of (3.11).
Remark that vh and zh are not controls for the semi-discrete system corresponding to (1.2),

unless v′h(0) = v′h(T ) = 0 and z′h(0) = z′h(T ) = 0. However, we shall show that the sequence
(vh, zh)h>0 converges to a control of the continuous equation. Therefore, in the sequel we refer
to (vh, zh) as discrete controls.

Our aim is to show that the sequence (vh, zh)h>0 converges to a control (v, z) of the continuous
equation (1.2). Since vh and zh belong to L2(0, T ;RN ) whereas v and z are in L2(0, T ; L2(0, 1))
the convergence is stated in terms of the Fourier coefficients. This is done in the next section.

In the rest of this section we introduce the eigenfunctions and the eigenvalues of the semi-
discrete problem (3.11) and some notation.



13

Definition 5.2

IN = {(n,m) ∈ Z∗ × N∗ : 1 ≤ |n| ≤ N, 1 ≤ m ≤ N} . (5.4)

Lemma 5.2 The eigenvalues λnm
h , (n,m) ∈ IN , of the semi-discrete problem (3.11) are given

by

λnm
h = sgn(n)

2
h

√
tan2

(
mπh

2

)
+ tan2

(
nπh

2

)
+

2
3

tan2

(
mπh

2

)
tan2

(
nπh

2

)
. (5.5)

The corresponding eigenfunctions are

Ψnm
h =

√
2

cos(nπh
2 ) cos(mπh

2 )

(
(iλnm

h )−1 Φnm
h

−Φnm
h

)
, ∀(n,m) ∈ IN , (5.6)

where Φnm
h = (φn

h sin(pmπh))1≤p≤N ∈ RN2
and φn

h = (sin(jnπh))1≤j≤N ∈ RN .

A straightforward computation shows that (Ψnm
h )(n,m)∈IN

constitutes an orthonormal basis
in R2N2

with respect to the inner product < · , · >0.
For any (f1, f2), (g1, g2) ∈ R2N2

we introduce the notations

< (f1, f2), (g1, g2) >−1=< (−K−1
h Mhf2, f1), (−K−1

h Mhg2, g1) >0,

||(f1, f2)||−1 = ||(−K−1
h Mhf2, f1)||0.

(5.7)

Remark that < · , · >−1 is an inner product and || · ||−1 is a norm on R2N2
.

6 Convergence of the discrete approximations

In this section we prove the weak convergence of the sequence (vh, zh)h>0 to the HUM control
of the continuous equation (1.2). Let us first show the following property of the initial data that
allows us to construct (vh, zh).

Theorem 6.1 Assume that T > 2
√

3. The sequence of minimizers of J given by Lemma 5.1,
(Ŵ 0

h , Ŵ 1
h )h>0, verify

||(Ŵ 0
h , Ŵ 1

h )||0 ≤ 1
C
||(−K−1

h MhU1
h , U0

h)||0, (6.1)

where C is the observability constant of (4.5) which is independent of h.
If the sequence of discretizations (U0

h , U1
h)h>0 is uniformly bounded in the || · ||−1−norm then

the sequence (Ŵ 0
h , Ŵ 1

h )h>0 is bounded in the || · ||0−norm.

Proof: From the observability inequality we have that

C||(Ŵ 0
h , Ŵ 1

h )||20 ≤
h

2

∫ T

0

[
< Chv′h, v′h > + < Chz′h, z′h >

]
dt

− h

2

∫ T

0
[< Bhvh, vh > + < Bhzh, zh >] dt

= J (Ŵ 0
h , Ŵ 1

h )+ < (−K−1
h MhU1

h , U0
h), (Ŵh(0), Ŵ ′

h(0)) >0 .

(6.2)
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Now, since J (Ŵ 0
h , Ŵ 1

h ) ≤ J (0, 0) = 0, it follows that

C||(Ŵ 0
h , Ŵ 1

h )||20 ≤ < (−K−1
h MhU1

h , U0
h), (Ŵh(0), Ŵ ′

h(0)) >0

≤||(−K−1
h MhU1

h , U0
h)||0||(Wh(0), W ′

h(0))||0
= ||(−K−1

h MhU1
h , U0

h)||0||(W 0
h ,W 1

h )||0,
(6.3)

which is equivalent to (6.1). ¥

Remark 6.1 Theorem 6.1 shows that the sequence of initial data (Ŵ 0
h , Ŵ 1

h )h>0 which give
(vh, zh) is uniformly bounded in h in the || ||0−norm if the sequence of discretizations (U0

h , U1
h)h>0

is bounded in the || · ||−1−norm. The sequences (vh, zh)h>0 verifies the following inequality

h

2

∫ T

0

[
< Chv′h, v′h > + < Chz′h, z′h > − < Bhvh, vh > − < Bhzh, zh >

]
dt

≤ 1
C
||(−K−1

h MhU1
h , U0

h)||20 =
1
C
||(U0

h , U1
h)||2−1.

(6.4)

6.1 Weak convergence of the approximations

Assume that the sequence of discretizations of the continuous initial data on (1.2), (U0
h , U1

h)h>0,
converges weakly to (u0, u1) in L2(Ω)×H−1(Ω). This should be understood in the sense of the
convergence of the Fourier coefficients. More precisely, if

(U0
h , U1

h) =
∑

(n,m)∈IN

αh
nmΦnm

h , (u0, u1) =
∑

(n,m)∈Z∗×N∗
αnmΦnm,

then the following weak convergence holds in `2

(
αh

nm

λnm
h

)

(n,m)∈IN

⇀
(αnm

λnm

)
(n,m)∈Z∗×N∗

, when h → 0. (6.5)

Now, assume that the minimizer (Ŵ 0
h , Ŵ 1

h ) has the following expansion

(Ŵ 0
h , Ŵ 1

h ) =
∑

(n,m)∈IN

ah
nmΨnm

h . (6.6)

Inequality (6.1) is equivalent to

∑

(n,m)∈IN

|ah
nm|2 = ||(Ŵ 0

h , Ŵ 1
h )||20 ≤

1
C2
||(−K−1

h MhU1
h , U0

h)||20 =
1

C2

∑

(n,m)∈IN

∣∣∣∣
αh

nm

λnm
h

∣∣∣∣
2

.

Here, the right hand side is bounded due to the weak convergence stated in (6.5). Hence, the
sequence of Fourier coefficients (ah

nm)(n,m)∈IN
is bounded in `2 and there exists a subsequence,

denoted in the same way, and (anm)(n,m)∈Z∗×N∗ ∈ `2 such that

(ah
nm)(n,m)∈IN

⇀ (anm)(n,m)∈Z∗×N∗ in `2 when h → 0. (6.7)

Let us now introduce the continuous initial data

(ŵ0, ŵ1) =
∑

(n,m)∈Z∗×N∗
anmΨnm ∈ H1

0 (Ω)× L2(Ω), (6.8)
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and the corresponding solution (w, w′) ∈ C([0, T ]; H1
0 (Ω)× L2(Ω)). We have that

wx(t, 1, y) =
∑

m∈N∗
(∑

n∈Z∗ i anm(−1)n+1
√

2nπ
λnm eiλnmt

)
sin(mπy),

wy(t, x, 1) =
∑

n∈Z∗
(∑

m∈N∗ i anm(−1)m+1
√

2mπ
λnm eiλnmt

)
sin(nπx).

(6.9)

If (Ŵh, Ŵ ′
h) is the corresponding solution of (3.11) with initial data (Ŵ 0

h , Ŵ 1
h ), it follows that

vh =
∑

1≤m≤N

(∑
1≤|n|≤N i ah

nm(−1)n+1
√

2
λnm

h cos(nπh
2

) cos(mπh
2

)
sin(nπh)eiλnm

h t

)
φm

h ,

zh =
∑

1≤|n|≤N

(∑
1≤m≤N i ah

nm(−1)m+1
√

2
λnm

h cos(nπh
2

) cos(mπh
2

)
sin(mπh)eiλnm

h t

)
φn

h.

(6.10)

We denote

bh
m =





∑
1≤|n|≤N i ah

nm(−1)n+1
√

2
λnm

h cos(nπh
2

) cos(mπh
2

)
sin(nπh)eiλnm

h t, if 1 ≤ m ≤ N,

0, if m > N,

bm =
∑

n∈Z∗
i anm(−1)n+1

√
2nπ

λnm
eiλnmt,

dh
n =





∑
1≤m≤N i ah

nm(−1)m+1
√

2
λnm

h cos(nπh
2

) cos(mπh
2

)
sin(mπh)eiλnm

h t, if 1 ≤ |n| ≤ N,

0, if |n| > N,
,

dn =
∑

m∈N∗
i anm(−1)m+1

√
2mπ

λnm
eiλnmt.

Theorem 6.2 Assume that the sequence of discretizations (U0
h , U1

h)h>0 converges weakly to
(u0, u1) in the sense of (6.5). The following convergencies hold weakly in L2(0, T ; `2) when
h tends to zero

(bh
m)m∈N∗ ⇀ (bm)m∈N∗ , (dh

n)n∈Z∗ ⇀ (dn)n∈Z∗ ,

(h(bh
m)′)m∈N∗ ⇀ 0, (h(dh

n)′)n∈Z∗ ⇀ 0.
(6.11)

Remark 6.2 Theorem 6.2 establishes the convergence of the Fourier coefficients of the controls
(vh, zh)h>0 to those of the control (v, z). This means in particular that (vh, zh)h>0 converges
weakly to (v, z) in [L2((0, T )× (0, 1))]2.

Proof: We show the first convergence, the other ones being similar. If (ϕm)m≥1 ∈ D(0, T ; `2)
we prove that

∫ T

0

∑

m≥1

bh
m(t)ϕm(t)dt −→

∫ T

0

∑

m≥1

bm(t)ϕm(t)dt when h → 0, (6.12)

which is equivalent to
∫ T

0

∑

m≥1

b̃h
m(t)ϕ′′m(t)dt −→

∫ T

0

∑

m≥1

b̃m(t)ϕ′′m(t)dt when h → 0, (6.13)
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where

b̃h
m(t) =

∑

1≤|n|≤N

i ah
nm(−1)n+1

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t,

b̃m(t) =
∑

n∈Z∗
i anm(−1)n+1

√
2nπ

λnm

1
(λnm)2

eiλnmt.

Note that (6.13) follows if the following holds

∫ T

0

∑

m≥1

|b̃h
m(t)− b̃m(t)|2dt −→ 0 when h → 0. (6.14)

In order to prove (6.14) we consider an arbitrary ε > 0 and show that there exists N
sufficiently large (or, equivalently, h sufficiently small) such that

∫ T

0

∑

m>N

|b̃m(t)|2dt ≤ ε

2
, (6.15)

and ∫ T

0

∑

1≤m≤N

|b̃h
m(t)− b̃m(t)|2dt ≤ ε

2
. (6.16)

Remark that (6.15) and (6.16) imply (6.14) immediately.
To prove (6.15) note that, since (anm) ∈ `2, there exists N1 > 0 independent of h such that,

for any N > N1, we have

∫ T

0

∑

m>N

|b̃m(t)|2dt ≤
∫ T

0

∑

m>N

( ∑

n∈Z∗

1
|λnm|4

)
 ∑

n∈Z∗

∣∣∣∣∣i anm(−1)n+1

√
2nπ

λnm
eiλnmt

∣∣∣∣∣
2

 dt

≤
√

2

( ∑

m>N

∑

n∈Z∗

1
|λnm|4

)∫ T

0

( ∑

m>N

∑

n∈Z∗
|anm|2 dt

)
≤ C(T )

∑

m>N

∑

n∈Z∗
|anm|2 ≤ ε

2
.

Let us now show that, for h sufficiently small (or, equivalently, for N sufficiently large),
(6.16) also holds. We have that

1
2

∑

1≤m≤N

∣∣∣b̃h
m − b̃m

∣∣∣
2
≤

∑

1≤m≤N

∣∣∣∣∣∣
∑

1≤|n|≤N

(−1)n+1iah
nm

( √
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

)∣∣∣∣∣∣

2

+
∑

1≤m≤N

∣∣∣∣∣∣
∑

1≤|n|≤N

i (−1)n+1(ah
nm − anm)

√
2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣∣

2

.
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According to the weak convergence of the sequence (ah
nm)nm to (anm)nm and the presence

of the weights 1/(λnm)2, for h sufficiently small,

∑

1≤m≤N

∣∣∣∣∣∣
∑

1≤|n|≤N

i (−1)n+1(ah
nm − anm)

√
2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣∣

2

≤
∑

1≤m≤N


 ∑

1≤|n|≤N

|ah
nm − anm| 1

(λnm)2




2

≤ ε

4
.

(6.17)

On the other hand,

∑

1≤m≤N

∣∣∣∣∣∣
∑

1≤|n|≤N

(−1)n+1iah
nm

( √
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

eiλnm
h t

(λnm
h )2

−
√

2nπ

λnm

eiλnmt

(λnm)2

)∣∣∣∣∣∣

2

≤
∑

1≤m≤N


 ∑

1≤|n|≤N

|ah
nm|2

∑

1≤|n|≤N

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

eiλnm
h t

(λnm
h )2

−
√

2nπ

λnm

eiλnmt

(λnm)2

∣∣∣∣∣
2

 .

Since (ah
nm)nm is bounded in `2 there exists c > 0 such that

∑

1≤|n|≤N

|ah
nm|2 ≤

∑

1≤m≤N

∑

1≤|n|≤N

|ah
nm|2 ≤ c,

and (6.16) follows if we prove that

∑

1≤m≤N

∑

1≤|n|≤N

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

≤ ε

4c
. (6.18)

Note that

max

{∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

∣∣∣∣∣ ,

√
2nπ

λnm

}
≤
√

3.

It follows that there exists nε > 0 independent of h such that

∑

1≤m≤N

∑

nε+1≤|n|≤N

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

+
∑

nε+1≤m≤N

∑

1≤|n|≤nε

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

≤ 2
√

3
∑

1≤m≤N

∑

nε+1≤|n|≤N

1
(λnm)2

+ 2
√

3
∑

nε+1≤m≤N

∑

1≤|n|≤nε

1
(λnm)2

≤ ε

8c
.

Let us now analyze the case 1 ≤ m, |n| ≤ nε. Since λnm
h → λnm when h tends to zero, it

follows that, for h sufficiently small,
∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2
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≤
√

2
(λnm)4

∣∣∣∣∣
sin(nπh)

nπ λnm

λnm
h cos(nπh

2 ) cos(mπh
2 )

(λnm)2

(λnm
h )2

ei(λnm
h −λnm)t − 1

∣∣∣∣∣

2

≤ ε

8cn2
ε

.

Consequently

∑

1≤m≤nε

∑

1≤|n|≤nε

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

≤ ε

8c
.

Thus,

∑

1≤m≤N

∑

1≤|n|≤N

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

=
∑

1≤m≤nε

∑

1≤|n|≤nε

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

+
∑

1≤m≤N

∑

nε+1≤|n|≤N

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

+
∑

nε+1≤m≤N

∑

1≤|n|≤nε

∣∣∣∣∣

√
2 sin(nπh)

λnm
h cos(nπh

2 ) cos(mπh
2 )

1
(λnm

h )2
eiλnm

h t −
√

2nπ

λnm

1
(λnm)2

eiλnmt

∣∣∣∣∣
2

≤ ε

8c
+

ε

8c
=

ε

4c
,

and the proof ends. ¥

6.2 Identification of the limit control

In this section we show that the limit of (vh, zh)h>0 is the HUM control for the continuous
equation (1.2).

Theorem 6.3 We have that (v, z) = (ŵx(t, 1, y), ŵy(t, x, 1)) is the HUM control for (1.2), where
(ŵ, ŵ′) is the solution of (2.2) with initial data (ŵ0, ŵ1) given by (6.8).

Proof: By taking into account remarks 2.1 and 2.2, the proof consists of verifying (2.10). In
order to do that we consider (5.3) and evaluate it for (W 0

h ,W 1
h ) = Ψnm

h . We obtain that, for any
(n,m) ∈ IN ,

cos(nπh
2 ) cos(mπh

2 )√
2

< (−K−1
h MhU1

h , U0
h), Ψmn

h eiλmn
h T >0

=
∫ T

0
eiλnm

h (t−T )
[
(−1)n+1 sin(nπh) < Chv′h, φm

h > +(−1)m+1 sin(mπh) < Chz′h, φn
h >

]
dt

+
∫ T

0

eiλnm
h (t−T )

iλnm
h

[
(−1)n+1 sin(nπh) < Bhvh, φm

h > +(−1)m+1 sin(mπh) < Bhzh, φn
h >

]
dt,
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which is equivalent to

i cos(
nπh

2
) cos(

mπh

2
) < (−K−1

h MhU1
h , U0

h), Ψmn
h >0

=
√

2h2i

4

∫ T

0
eiλnm

h t

[
(−1)n+1 sin(nπh) cos2(

mπh

2
)(v′h, φm

h )

+ (−1)m+1 sin(mπh) cos2(
nπh

2
)(z′h, φn

h)
]

dt

−
√

2
3λnm

h

∫ T

0
eiλnm

h t
[
(−1)n+1 sin(nπh)(1 + 2 cos(mπh))(vh, φm

h )

+ (−1)m+1 sin(mπh)(1 + 2 cos(nπh))(zh, φn
h)

]
dt.

(6.19)

We have that
< (−K−1

h MhU1
h , U0

h), Ψmn
h >0=

1
iλnm

h

αh
nm,

and
< vh, φm

h >=
1
2h

bm
h (t), < zh, φn

h >=
1
2h

dn
h(t).

By taking into account that, for every fixed (n,m) ∈ IN , when h tends to zero we have that

αh
nm → αnm, λnm

h → λnm,

bh
m(t) → bm(t), dh

m(t) → dm(t) in L2(0, T ),

h(bh
m)′(t) → 0, h(dh

m)′(t) → 0 in L2(0, T ),

and by passing to the limit in (6.19) we obtain (2.10). ¥

7 Numerical experiments

The aim of this section is to present simple numerical experiments in order to confirm the
theoretical results that indicate the efficiency of the introduced scheme to restore the uniform
controllability. This is done over a fully-discrete approximation.

A rigorous analysis of the results in this paper to the fully discrete case remains to be done.
However, the recent results in [4], [16], [17] and its applications to fully-discrete approximation of
the 1-D wave equation suggest that, very likely, the scheme permits to restore uniform properties
in this case too. We first present and discuss briefly the full discrete scheme used (derived from
the semi-discrete one studied in the previous sections) and then consider three different examples
with different kind of regularity and location of control. In good agreement with the theoretical
results, this scheme will appear numerically robust displaying good results.

7.1 Description of a fully discrete finite-difference scheme

We first introduce a fully discrete - in space and time - scheme associated to system (2.2). The
scheme is precisely the time discretization of the semi-discrete scheme (3.6). Let us denote by
wk

ij the approximation of the solution w of (2.2) at the point of coordinates (xi, yj) and at time
tk = k∆t: wk

ij ≈ w(k∆t, xi, yj). ∆t designates the time-step and k a nonnegative integer in
the set {0,M}. M and ∆t are defined such that T = M∆t. The scheme is then obtained by
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replacing the time derivative w′′ij(t
k) by the finite difference (wk+1

ij − 2wk
ij + wk−1

ij )/(∆t2). Then,
noting W k = (wk

ij)1≤i,j≤N ∈ RN2
, for 0 ≤ k ≤ M , the vectorial form (3.6) becomes

{
Mh

W k+1−2W k+W k−1

∆t2
+ KhW k = 0, ∀0 ≤ k ≤ M,

WM = w0, W M+1−W M−1

2∆t = w1.
(7.1)

The scheme (7.1) is consistent of order 2 in time and space with the continuous system (2.2).
Furthermore, we recall that this latter scheme is stable under the so-called Courant-Friedrichs-
Lewy (CFL) condition (see [5])

∆t2

4
sup

W∈RN2
,W 6=0

(KhW,W )
(MhW,W )

< 1, ∀h,∆t > 0. (7.2)

The discrete spectrum (λmn
h,∆t)1≤m,n≤N associated to the scheme (7.1) is

λmn
h,∆t =

2
∆t

arcsin
(

∆t

2
λmn

h

)
, 1 ≤ m,n ≤ N (7.3)

with λmn
h defined by (5.5). Therefore (7.2) implies the following condition:

∆t ≤ Ch3, ∀C > 0. (7.4)

This condition is too much restrictive from a numerical point of view because it implies a very
small time step ∆t and therefore a costly scheme. In order to relaxe the stability condition
we use a Newmark method ([4], [5], [16]) replacing the term KhW k in (7.1) by 1/4Kh(W k+1 +
2W k + W k−1). This leads to the following scheme

{
(Mh + ∆t2

4 Kh)W k+1−2W k+W k−1

∆t2
+ KhW k = 0, ∀0 ≤ k ≤ M,

WM = w0, W M+1−W M−1

2∆t = w1.
(7.5)

This new scheme remains consistent with the continuous system (2.2). In addition, it is uncon-
ditionally stable whatever the value of ∆t, thanks to the inequality:

∆t2

4
sup

W∈RN2
,W 6=0

(KhW,W )
((Mh + ∆t2/4Kh)W,W )

< 1, ∀h,∆t > 0. (7.6)

Consequently, ∆t = C1h, for all C1 > 0 is an admissible value.
Let us now analyze if this fully-discrete system conserves the observability properties of the

semi-discrete scheme. Following the analysis in Section 4 above we study the group velocity of
discrete plane waves of the form

wk
ij = ei(ξ·(xi,xj)−ωtk), ξ = (ξ1, ξ2).

For the discrete system (7.5) the following relation between modes ξ and frequencies ω holds

ω(ξ) =
2

∆t
arcsin

(
∆t

2

√
ωs(ξ)2

1 + ∆t2

4 ωs(ξ)2

)
,

where

ωs(ξ) =
2
h

√
tan2 (ξ1h/2) + tan2 (ξ2h/2) +

2
3

tan2 (ξ1h/2) tan2 (ξ2h/2),
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and ξ ∈ [−π/h, π/h]2.
The group velocity associated to a mode ξ in a direction v = (v1, v2) is given by ∇ξω ·v and a

necessary condition in order to have a uniform (in h and ∆t) observability property in finite time
T > 0 is to have a uniform bound from below (in ξ, h and ∆t) for |∇ξω| =

√|∂ξ1ω|2 + ∂ξ2ω|2.
A straightforward computation shows that the minimum value of |∇ξω| is obtained for ξ =
(π/h, π/h) and that

|∇ξω(π/h, π/h)| ∼ h3/2∆t−1

Therefore, this is uniformly bounded from below if

∆t = Ch3/2, ∀C > 0. (7.7)

Thus, we have seen that, even if the scheme (7.5) is stable for any discretization step ∆t, this
is not sufficient to guarantee a uniform (in h and ∆t) controllable scheme. In fact, a necessary
condition is given by (7.7). In other words, if we do not have condition (7.7) then the time
discretization lose the uniform controllability property of the semi-discrete scheme.

If we compare with the initial scheme (7.1) for which the stability is ensured provided that
(7.4) holds, the Newmark strategy permits to gain a factor h3/2 in the ratio ∆t/h.

Remark 7.1 The situation is thus different from the 1-D case where a Newmark scheme leads
to a uniform controllable system with ∆t of the order of h (see [16]). By optimizing the New-
mark parameters, one might design uniform controllable schemes associated to less restrictive
conditions on the ratio ∆t/h (we refer to [16] for the 1-D case).

7.2 Numerical examples

In this section, we present some numerical experiments for three different initial conditions.
The first one concerns the simplest regular initial condition involving only one frequency mode
(see eq. (7.8) below). The second example is the well-known pathological test proposed by
Glowinski-Li-Lions in [8](see eq. (7.9) below). Finally, the third one is a very singular one
involving a discontinuous initial solution u0 at time t = 0 (see eq. (7.14) below) . Each one of
these examples are defined on the unit square. For these three examples, we compare the results
obtain from the usual finite difference scheme (FDS), the mixed finite element scheme we have
introduced (MFES) and the bi-grid method (BI-GRID) (see [1],[8]).
To compute the control, we have used the HUM method which reduces the control problem to
the determination of suitable initial conditions (ŵ0, ŵ1) of a forward wave equation. Following
[8], the iterative gradient conjugate algorithm is used with the initialization (ŵ0, ŵ1) = (0, 0).
We assume that the convergence is obtained when the relative residual is lower than a given
eps > 0. Finally, the computation are performed using the Matlab Toolbox and the double
precision.

7.2.1 Example 1: Regular initial conditions

We consider the following initial condition

u0(x, y) = 10 sin(πx) sin(πy) ; u1(x, y) = 0; (x, y) ∈ (0, 1)2. (7.8)

We assume that the control is active on Γ1 defined by (1.1). The time at which we want the
solution to be controlled is taken equal to T = 3 > 2

√
3. Finally, we take eps = 1.e− 06.
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According to the previous remarks on stability and uniform observability, we used the MFES
scheme with ∆t = h3/2. Furthermore, we remind that the FDS and BI-GRID schemes are stable
under the condition ∆t ≤ h/

√
2. Table 1 compares the results obtained with the three methods

for a mesh size h = 1/31. At a first glance, the results are quite similar, particularly the L2-
norm of the control ||vh||L2(0,1) + ||zh||L2(0,1) also depicted on Figure 2. The BI-GRID and
MFES methods provide good results with few iterations. Table 2 gives the results obtained
with the MFES method for different values of h and illustrates in particular the convergence of
||vh||L2(0,1) + ||zh||L2(0,1).

On the other hand, note that the number of iterations necessary to obtain convergence with
the FDS is larger. The situation get worse when the ratio ∆t/h =

√
h decreases (see Table 1)

or h is smaller. Actually, for this example, if we consider h lower than 1/31 or eps lower than
1.e − 06 then the FDS does not converge. In addition, the initial conditions (ŵ0, ŵ1) of the
forward wave equation are very badly approximated (see Figure 3).

FDS FDS MFES BI-GRID BI-GRID
h 1/31 1/31 1/31 1/31 1/101
∆t 1/

√
2h h3/2 h3/2 1/

√
2h 1/

√
2h

Number of iterations 45 199 17 4 4

||ŵ0
h||L2(Ω) 0.02277 0.03062 0.02092 0.01976 0.02044

||ŵ0
h||H1(Ω) 0.26788 0.55847 0.18261 0.16079 0.18501

||ŵ1
h||L2(Ω) 1.85936 2.2638 1.7944 1.79034 1.7874

||u0−u0
h||L2(Ω)

||u0||L2(Ω)
0.01267 0.00834 0.00843 0.01240 0.00772

||u1
h||H−1(Ω) 0.00239 0.00204 0.00118 0.07132 0.03011

||uh(T )||L2(Ω)

||uh(0)||L2(Ω)
0.01147 0.00159 0.00450 0.02527 0.01147

||vh||L2(0,1) + ||zh||L2(0,1) 2.98066 2.9869 2.98164 2.97492 2.98106

Table 1: Comparative results between FDS, MFES and BI-GRID methods (Example 1).

7.2.2 Example 2: Irregular initial conditions - Discontinuity of the initial velocity

Let us now consider the following initial conditions:

u0(x, y) = φ0(0, x, y) + φ1(0, x, y) ; u1(x, y) =
∂φ0

∂t
(0, x, y) +

∂φ1

∂t
(0, x, y) (7.9)

with

φ0(t, x, y) = −π
√

2 cos(π
√

2)
(

t− 1
4
√

2

)(
sin(πx) cos(2πy) + cos(2πx) sin(πy)

)
(7.10)
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Figure 2: ||vh||L2(0,1) + ||zh||L2(0,1) vs. t ∈ [0, T ] obtained with the FDS (∆t = 1/
√

2h), MFES
(∆t = h3/2) and BI-GRID (∆t = 1/

√
2h); h = 1/31 (Example 1).
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Figure 3: ŵ0
h(x, y = 1/2) (left) and ŵ1

h(x, y = 1/2) (right) vs. x ∈ [0, 1] obtained with the FDS
(∆t = 1/

√
2h),MFES (∆t = h3/2) and BI-GRID (∆t = 1/

√
2h); h = 1/31 (Example 1).
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h=1/15 h=1/21 h=1/25 h=1/31 h=1/35
Nb. of iterations 9 12 12 17 19

||ŵ0
h||L2(Ω) 0.023014 0.021306 0.021007 0.020920 0.020761

||ŵ0
h||H1(Ω) 0.175284 0.176373 0.174714 0.182618 0.182817

||ŵ1
h||L2(Ω) 1.81206 1.80115 1.79666 1.7944 1.79184

||u0−u0
h||L2(Ω)

||u0||L2(Ω)
0.0082343 0.0125101 0.0078352 0.0084316 0.0092339

||u1
h||H−1(Ω) 0.0013481 0.0015728 0.0011591 0.0011838 0.0010488

||uh(T )||L2(Ω)

||uh(0)||L2(Ω)
0.006617 0.005767 0.0051284 0.0045045 0.004359

||vh||L2(0,1) + ||zh||L2(0,1) 2.98449 2.98265 2.98138 2.98164 2.98127

Table 2: Results obtained with the MFES for different values of h, ∆t = h3/2 (Example 1).

and

φ1(t, x, y) = 4π(T − t)sin(π
√

2)
(

t− 1
4
√

2

)
− 28

3
√

2
sin(π

√
2(t− T ))sin(πx)sin(πy)

+ 4sin(πx)
∑

p≥3,p odd

p

p2 − 1

[
2√

1 + p2
sin(π

√
1 + p2(t− T ))

+
3
√

2
p2 − 4

cos
(

π
√

2
(

t− 1
4
√

2

))]
sin(pπy)

+ 4sin(πy)
∑

p≥3,p odd

p

p2 − 1

[
2√

1 + p2
sin(π

√
1 + p2(t− T ))

+
3
√

2
p2 − 4

cos
(

π
√

2
(

t− 1
4
√

2

))]
sin(pπx)

(7.11)

with T = 15/4
√

2. These irregular initial conditions introduced by Glowinski, Li and Lions [8]
are well-known to produce spurious oscillations and pathological numerical effects. We remind
that u0 is a Lipschitz continuous function not belonging to C1(Ω) whereas u1 belongs to L∞(Ω)
but not to C0(Ω). The functions u0 and u1 are depicted on Figures 4.

The main advantage is that the analytical solution is known. More precisely, the initial conditions
(ŵ0, ŵ1) of the forward wave system are given by:

ŵ0(x, y) = sin(πx) sin(πy), ŵ1(x, y) = π
√

2 sin(πx) sin(πy) (7.12)

leading to the solution

φ(t, x, y) =
√

2 cos
(

π
√

2
(

t− 1
4
√

2

))
sin(πx) sin(πy) (7.13)

and then to the analytical expression of the control V = ∂φ
∂t |∂Ω

acting on the whole boundary
∂Ω. The L2-norm of the control with respect to time is represented in Figure 7.
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Figure 4: Initial condition u0 (left) and u1 (right) (Example 2).

Let us consider eps = 1.e−07. Figures 5 and 6 depicts the numerical approximation (ŵ0
h, ŵ1

h)
obtained for (ŵ0, ŵ1). The MFES reduces significantly the oscillations observed with the FDS.
As already noticed in [8], we point out that these oscillations remains when considering, for the
FDS, a smaller ratio ∆t/h. For instance, for the ratio ∆t/h =

√
h used for MFES, the FDS

algorithm diverges.
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Figure 5: ŵ0
h(x, y = 1/2) and ŵ1

h(x, y = 1/2) vs. x ∈ [0, 1] obtained with the FDS: exact (—)
and numerical (-.-) solution ; h = 1/25, ∆t = 1/

√
2h (Example 2).

Figure 7 depicts the evolution of the numerical control in L2(∂Ω)-norm with respect to time in
[0, T ] obtained for the FDS and the MFES. The deterioration of the numerical results is less
significant on this quantity. Figure 8 gives the evolution of the residual with respect to the
iterations for h = 1/25 and h = 1/61. The BI-GRID produced an error lower than 1.e−07 after
5 iterations. For h = 1/25, the MFES algorithm needs 16 iterations whereas the FDS algorithm
needs 29 iterations to reach the same order of error. For smaller value of h - in particular
h = 1/61 - the FDS algorithm does not converge.
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h(x, y = 1/2) and ŵ1

h(x, y = 1/2) vs. x ∈ [0, 1] obtained with the MFES: exact (—)
and numerical (-.-) solution ; h = 1/25, ∆t = h3/2 (Example 2)
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Figure 7: ||Vh(t)||L2(∂Ω) vs. t ∈ [0, T ] obtained with the FDS (left) and the MFES (right): exact
(—) and numerical (-.-) solution ; h = 1/25 (Example 2).
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Figure 8: Log10 (Relative error on the residual) vs. iteration of the gradient conjugate algorithm
obtained for the FDS, MFES and BI-GRID ; Left: h = 1/25 - Right: h = 1/61 (Example 2).
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FDS MFES BI-GRID
Nb. of iterations 29 16 5

∆t 1/
√

2h h3/2 1/
√

2h

||ŵ0−ŵ0h||L2(Ω)

||ŵ0||L2(Ω)
0.0480827 0.00779022 0.0481913

||ŵ0−ŵ0h||H1(Ω)

||ŵ0||H1(Ω)
0.0610629 0.0252612 0.0106558

||ŵ1−ŵ1h||L2(Ω)

||ŵ1||L2(Ω)
0.3227 0.0336811 0.0172094

||u0−u0
h||L2(Ω)

||u0||L2(Ω)
0.00251389 0.00147872 0.00738625

||u1−u1
h||H−1(Ω)

||u1||H−1(Ω)
0.000338676 0.000163876 0.0282561

||Vh||L2(∂Ω) 7.47136 7.37811 7.36179

Table 3: Comparative results for h = 1/25 (Example 2).

h=1/15 h=1/21 h=1/25 h=1/31 h=1/35 h=1/41
Nb. of iterations 8 15 16 22 18 19
||ŵ0−ŵ0

h||L2(Ω)

||ŵ0||L2(Ω)
0.0176528 0.0087720 0.0077902 0.0045873 0.0044670 0.0034090

||ŵ0−ŵ0
h||H1(Ω)

||ŵ0||H1(Ω)
0.0365394 0.0240179 0.0252612 0.0155487 0.0166127 0.0146926

||ŵ1−ŵ0
h||L2(Ω)

||ŵ1||L2(Ω)
0.0477631 0.0314514 0.0336811 0.0287866 0.0188667 0.0153937

||u0−u0
h||L2(Ω)

||u0||L2(Ω)
0.0035010 0.0017632 0.0014787 0.0011760 0.0006623 0.0005863

||u1−u1
h||H−1(Ω)

||u1||H−1(Ω)
0.0002294 0.0001223 0.0001638 0.0001006 9.5612e-05 0.0001241

||Vh||L2(∂Ω) 7.39264 7.36749 7.37811 7.37243 7.38466 7.38576

Table 4: Results obtained with the MFES for several values of h(Example 2).

7.2.3 Example 3: Irregular initial conditions - Discontinuity of the initial position

In this third example, we consider the most singular situation with a discontinuous initial con-
dition u0. More precisely, we consider, still on the unit square (0, 1)2, the following functions

u0(x, y) =
{

40 (x, y) ∈ (1
3 , 2

3)2

0 elsewhere
; u1(x, y) = 0. (7.14)

We assume that the control is active on Γ1 and we take T = 3 and eps = 1.e − 06. With this
discontinuous initial position, the usual finite difference scheme (FDS) completely fails, even for
relative large values of h - for instance h = 1/21. On the contrary, the relative error associated
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to the MFES decreases (see Figure 9). The L2-norm of the control converges as indicated by
the results of Table 5, as h goes to zero, and the solution of the discrete wave system is driven
at rest at time T (see figure 10).

h=1/15 h=1/21 h=1/25 h=1/31 h=1/35
Nb. of iterations 25 33 38 43 46

||ŵ0
h||L2(Ω) 0.165546 0.116949 0.097492 0.0878891 0.0817421

||ŵ0
h||H1(Ω) 1.4625 1.34044 1.13954 1.1905 1.26147

||ŵ1
h||L2(Ω) 13.612 12.9784 11.3383 10.8551 10.4097

||u0−u0
h||L2(Ω)

||u0||L2(Ω)
0.0173194 0.00915911 0.0113164 0.00723832 0.00613776

||u1
h||H−1(Ω) 0.0038072 0.00544011 0.004714 0.00458297 0.0033676

||uh(T )||L2(Ω)

||uh(0)||L2(Ω)
0.0118741 0.0091952 0.0147911 0.0110379 0.00855918

||vh||L2(0,1) + ||zh||L2(0,1) 10.6906 10.2347 9.65102 9.477 9.3831

Table 5: Results obtained with the MFES for several values of h (Example 3).
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Figure 9: Log10(Relative error on the residual) vs. iteration of the gradient conjugate algorithm
obtained for the FDS, MFES and BI-GRID, h = 1/31 (Example 3).

Let us finally discuss the results obtained with the BI-GRID method. Similarly with the
previous examples, the residual becomes lower than eps after less than 10 iterations (see Fig-
ure 9). However, the results summarized in Table 6 indicates that the control obtained do not
drive the solution at rest at time T . In particular, the quantities ||u0 − u0

h||L2(Ω)/||u0||L2(Ω),
||u1

h||H−1(Ω), and ||uh(T )||L2(Ω)/||uh(0)||L2(Ω) do not converge toward zero with h, like it should
be. This result is not a contradiction. Firstly, the theoretical proof of the efficiency of the bi-grid
algorithm remains to be done in 2-D. It was recently proved, as a semi-discrete level and in 1-D,
that the control obtained by this method controls only the projection of the discrete wave system
on the coarse mesh (see [18]). In our case, the bi-grid procedure has no regularization effect
on the initial irregular position u0 (the projection of u0 on a coarser mesh is still discontinuous
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Figure 10: Solution at time T = 3 obtained with the MFES, h = 1/31 (Example 3).

with a jump independent of h ), and therefore the control obtained is not comparable to the
one obtained with the MFES. In the previous example, the situation was different, the initial
condition u0 being continuous. This example shows that the test on the relative residual com-
monly used in the literature should be replaced or at least confirmed by a test on the quantity
||uh(T )||L2(Ω)/||uh(0)||L2(Ω) or Eh(T )/Eh(0) (if we designate by Eh the energy associated to
the discrete system.). Figure 11 depicts the L2-norm of the control obtained with MFES and
BI-GRID. As expected, the curve corresponding to the BI-GRID is smoother. However, this
control do not drive the solution at rest at time T while the control obtained with the MFES
does.

h=1/21 h=1/41 h=1/61 h=1/81 h=1/101
Nb. of iterations 6 6 7 7 8
||ŵ0

h||L2(Ω) 0.0738504 0.0692983 0.0630167 0.0593113 0.059985

||ŵ0
h||H1(Ω) 0.676801 0.854368 0.824286 0.819461 0.846549

||ŵ1
h||L2(Ω) 6.73463 6.93969 6.30109 6.04344 6.19305

||u0−u0
h||L2(Ω)

||u0||L2(Ω)
0.332749 0.265029 0.219566 0.189398 0.174985

||u1
h||H−1(Ω) 0.661024 0.544694 0.394718 0.384597 0.357067

||uh(T )||L2(Ω)

||uh(0)||L2(Ω)
0.211348 0.160687 0.152281 0.127367 0.127306

||vh||L2(0,1) + ||zh||L2(0,1) 9.27014 9.86701 9.16334 8.85218 9.15013

Table 6: Results obtained with BI-GRID for different values of h (Example 3).

Regarding to those results, we may say that the scheme MFES “pass” this very singular test.
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Figure 11: ||vh||L2(0,1) + ||zh||L2(0,1) vs. t ∈ [0, T ], h = 1/31 (Example 3).

A Appendix

The aim of this appendix is to prove Theorem 4.1 and Proposition 4.2. To simplify the notation
we write

akl
ij = wik + wil + wjk + wjl, bkl

ij = w′ik + w′il + w′jk + w′jl,

ckl
ij = w′′ik + w′′il + w′′jk + w′′jl,

∆(1,0)wij = 2wij − wi+1j − wi−1j , ∆(0,1)wij = 2wij − wij+1 − wij−1,

∆(1,1)wij = 2wij − wi+1j+1 − wi−1j−1, ∆(1,−1)wij = 2wij − wi+1j−1 − wi−1j+1.

A.1 Proof of Theorem 4.1

Multiplying the discrete system by the discrete version of the usual continuous multiplier (x, y) ·
∇u, i.e.

(ih, jh).(
wi+1j − wi−1j

2h
,
wij+1 − wi−1j

2h
) = i

wi+1j − wi−1j

2
+ j

wij+1 − wij−1

2
≡ mij

2
, (A.1)

and summing in i and j we obtain

0 =
h2

32

∫ T

0

N∑

i,j=1

(
cjj+1
ii+1 + cj−1j

ii+1 + cjj+1
i−1i + cj−1j

i−1i

)
mijdt

︸ ︷︷ ︸
≡C

+
1
6

∫ T

0

N∑

i,j=1

(
∆(1,0)wij + ∆(0,1)wij + ∆(1,1)wij + ∆(1,−1)wij

)
mij

︸ ︷︷ ︸
≡D

dt (A.2)
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We study separately C and D. Integrating by parts in C we easily obtain,

C =
∫ T

0
C1dt + [C2]

T
0 , (A.3)

where

C1 = −
N∑

i,j=1

(
bjj+1
ii+1 + bj−1j

ii+1 + bjj+1
i−1i + bj−1j

i−1i

)
m′

i,j , (A.4)

C2 =
N∑

i,j=1

(
bjj+1
ii+1 + bj−1j

ii+1 + bjj+1
i−1i + bj−1j

i−1i

)
mij . (A.5)

We first consider the term C1 above. Changing the indexes in the last three terms of C1

above (in order to have the common factor bjj+1
ii+1 ) and taking into account that wi,0 = wi,N+1 =

w0,j = wj,N+1 = 0, we obtain

C1 = 2
N∑

i,j=0

(
bjj+1
ii+1

)2
− (N + 1)




N∑

i=1

(
w′iN + w′i+1N

)2 +
N∑

j=1

(
w′Nj + w′Nj+1

)2


 . (A.6)

We now analyze the term D in (A.2). We only make the details for the first term in D since
the others can be simplified similarly. The first term in D reads

N∑

i,j=1

∆(1,0)wijmij =
N∑

i,j=1

∆(1,0)wij [i (wi+1j − wi−1j) + j (wij+1 − wij−1)] . (A.7)

We consider separately these two terms. For the second one we have

N∑

i,j=1

(2wij − wi+1j − wi−1j) j (wij+1 − wij−1)

=
N∑

i,j=1

j (wij − wi−1j) wij+1 −
N∑

i,j=1

j (wi+1j − wij)wij+1

−



N∑

i,j=1

j (wij − wi−1j) wij−1 −
N∑

i,j=1

j (wi+1j − wij) wij−1


 .

Changing the indexes to obtain the common factor (wi+1j − wij) in all the terms and taking
into account that wi,0 = wi,N+1 = w0,j = wj,N+1 = 0, we obtain

N∑

i,j=0

[j (wi+1j − wij) (wi+1j+1 − wij+1)− j (wi+1j − wij) (wi+1j−1 − wij−1)]

=
N∑

i,j=0

j (wi+1j − wij) (wi+1j+1 − wij+1)−
N,N−1∑

i,j=0

(j + 1) (wi+1j+1 − wij+1) (wi+1j − wij)

= −
N∑

i,j=0

(wi+1j+1 − wij+1) (wi+1j − wij) .
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An analogous argument allows to simplify the first term in (A.7),

N∑

i,j=1

∆(1,0)wijmij =
N∑

i,j=0

[
(wi+1j − wij)

2 − (N + 1)(wNj)2 − (wi+1j+1 − wij+1) (wi+1j − wij)
]
.

Simplifying the other three terms in D we finally have

D = −
N∑

i,j=0

[(wi+1j+1 − wi+1j) (wij+1 − wij) + (wi+1j+1 − wij+1) (wi+1j − wij)]

+
N∑

i,j=0

[
(wi+1j − wij)

2 + (wij+1 − wij)
2
]
− (N + 1)

N∑

j=0

[
(wNj)2 + 2wNjwNj+1

]

−(N + 1)
N∑

i=0

[
(wiN )2 + 2wiNwi+1N

]
. (A.8)

By Young’s inequality we can estimate the first term in this formula,

N∑

i,j=0

[(wi+1j+1 − wi+1j) (wij+1 − wij) + (wi+1j+1 − wij+1) (wi+1j − wij)]

≤ 1
2

N∑

i,j=0

[
(wi+1j+1 − wi+1j)

2 + (wij+1 − wij)
2 + (wi+1j+1 − wij+1)

2 + (wi+1j − wij)
2
]

=
N∑

i,j=0

[
(wij+1 − wij)

2 + (wi+1j − wij)
2
]
.

Therefore,

D ≥ −(N + 1)




N∑

j=0

w2
Nj + 2

N∑

j=0

wNjwNj+1 +
N∑

i=0

w2
iN + 2

N∑

i=0

wiNwi+1N




= −(N + 1)




N∑

j=1

w2
Nj +

N+1∑

j=1

wNj−1wNj +
N∑

j=0

wNjwNj+1

+
N+1∑

i=1

w2
iN +

N+1∑

i=1

wi−1NwiN +
N∑

i=0

wiNwi+1N

]

= −(N + 1)




N∑

j=1

(wNj−1 + wNj + wNj+1)wNj +
N∑

i=1

(wi−1N + wiN + wi+1N ) wiN


 . (A.9)
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Substituting (A.3), (A.6) and (A.9) into (A.2) we obtain

h2

∫ T

0

N∑

i,j=0

(
bjj+1
ii+1

4

)2

dt ≤ h

8

∫ T

0




N∑

i=1

(
w′iN + w′i+1N

2

)2

+
N∑

j=1

(
w′Nj + w′Nj+1

2

)2

 dt

+
1
2

∫ T

0




N∑

j=1

wNj−1 + wNj + wNj+1

3
wNj

h
+

N∑

i=1

wi−1N + wiN + wi+1N

3
wiN

h


 dt

−h2

32
[C2]T0 . (A.10)

We observe that the term in the left hand side contains only one part of the energy. In
order to obtain the full energy we make an equipartition of the energy. The following lemma is
a discrete version of the well-known equipartition of energy for the continuous wave equation,
which reads

0 = −
∫ T

0

∫

Ω
(|wt|2 + |∇u|2)dxdt +

∫

Ω
|wtu|2dx

]T

0

. (A.11)

Lemma A.1 The following holds:

0 = −h2

∫ T

0




N∑

i,j=0

(
bjj+1
ii+1

4

)2

 dt + h2




N∑

i,j=0

(
ajj+1

ii+1

4

)(
bjj+1
ii+1

4

)


T

0

+h2
N∑

i,j=0

∫ T

0

[
1
3

(
wi+1j − wij

h

)2

+
1
3

(
wij+1 − wij

h

)2

+
2
3

(
wi+1j+1 − wij

h
√

2

)2

+
2
3

(
wi+1j − wij+1

h
√

2

)2
]

dt.

The proof of this lemma is straightforward following the idea of the continuous system where
(A.11) is obtained multiplying system (2.2) by u and integrating by parts.

When applying Lemma A.1 to the identity (A.10) we obtain

∫ T

0
Eh(t)dt +

h2

32




N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2




T

0

≤ h

8

∫ T

0




N∑

i=1

(
w′iN + w′i+1N

2

)2

+
N∑

j=1

(
w′Nj + w′Nj+1

2

)2

 dt

+
1
2

∫ T

0




N∑

j=1

wNj−1 + wNj + wNj+1

3
wNj

h
+

N∑

i=1

wi−1N + wiN + wi+1N

3
wiN

h


 dt. (A.12)

The following lemma allows us to estimate the the second term in the left hand side of this
formula.

Lemma A.2 The following holds

h2




N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2




T

0

≤ 64
√

3Eh(0). (A.13)
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Before proving this lemma we finish the proof of Theorem 4.1.
Taking into account the conservation of the energy stated in Proposition 4.1 we have

∫ T

0
Eh(t)dt +

h2

32




N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2




T

0

≥ TEh(0)− 2
√

3Eh(0) = (T − 2
√

3)Eh(0),

which combined with (A.12) provides the following

(T − 2
√

3)Eh(0) ≤ h

8

∫ T

0




N∑

i=1

(
w′iN + w′i+1N

2

)2

+
N∑

j=1

(
w′Nj + w′Nj+1

2

)2

 dt

+
1
2

∫ T

0




N∑

j=1

wNj−1 + wNj + wNj+1

3
wNj

h
+

N∑

i=1

wi−1N + wiN + wi+1N

3
wiN

h


 dt.

This concludes the proof of Theorem 4.1. ¥

Proof of Lemma A.2. From (A.5) we have

N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2 =
N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 +
N∑

i,j=1

[
bjj+1
ii+1 + bj−1j

ii+1 + bjj+1
i−1i + bj−1j

i−1i

]
mij (A.14)

To simplify the notation we assume that

wN+2j = wNj , wiN+2 = wiN , w−1j = wi,−1 = 0, ∀i, j = 0, ..., N + 1. (A.15)

We change the indexes in each one of the terms of the right hand side of (A.14) in order to
have the common factor bjj+1

ii+1 . Then we obtain

N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2 =
N∑

i,j=0

(
ajj+1

ii+1 + Rij

)
bjj+1
ii+1 , (A.16)

where

Rij = i [(wi+1j − wi−1j) + (wi+1j+1 − wi−1j+1)] + (i + 1) [(wi+2j − wij) + (wi+2j+1 − wij+1)]
+j [(wij+1 − wij−1) + (wi+1j+1 − wi+1j−1)] + (j + 1) [(wij+2 − wij) + (wi+1j+2 − wi+1j)] .

We estimate the right hand side in (A.16) using the Schwartz inequality. Thus,

N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2 ≤



N∑

i,j=0

(
ajj+1

ii+1 + Rij

)2




1/2 


N∑

i,j=0

(bjj+1
ii+1 )2




1/2

. (A.17)

Now we prove that

N∑

i,j=0

(
ajj+1

ii+1 + Rij

)2
≤

N∑

i,j=0

R2
ij + 8

N∑

i=1

(N + 1)(wiN )2 + 8
N∑

j=1

(N + 1) (wNj)
2 . (A.18)
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Indeed, we have

N∑

i,j=0

[(
ajj+1

ii+1 + Rij

)2
−R2

ij

]
=

N∑

i,j=0

[
(ajj+1

ii+1 )2 + 2ajj+1
ii+1 Rij

]
, (A.19)

and it is not difficult to see that

N∑

i,j=0

ajj+1
ii+1 Rij = −2

N∑

i,j=0

(ajj+1
ii+1 )2 +

N∑

i=1

(N + 1) (wiN + wi+1N )2 +
N∑

j=1

(N + 1) (wNj + wNj+1)
2 .

Therefore, using Young’s inequality, the right hand side in (A.19) reads

N∑

i,j=0

[
(ajj+1

ii+1 )2 + 2ajj+1
ii+1 Rij

]
= −3

N∑

i,j=0

(ajj+1
ii+1 )2 + 2

N∑

i=1

(N + 1) (wiN + wi+1N )2

+2
N∑

j=1

(N + 1) (wNj + wNj+1)
2 ≤ 8

N∑

i=1

(N + 1)(wiN )2 + 8
N∑

j=1

(N + 1) (wNj)
2 . (A.20)

From (A.19)-(A.20) we easily deduce (A.18). Now we estimate the right hand side in (A.18).
Concerning the first term we have

N∑

i,j=0

R2
ij =

N∑

i,j=0

[i(wi+1j − wi−1j) + i(wi+1j+1 − wi−1j+1)

+(i + 1)(wi+2j − wij) + (i + 1)(wi+2j+1 − wij+1) + j(wij+1 − wij−1)
+j(wi+1j+1 − wi+1j−1) + (j + 1)(wij+2 − wij) + (j + 1)(wi+1j+2 − wi+1j)]

2

≤ 32
h2

N∑

i,j=0

[
(wi+1j − wi−1j)2 + (wij+1 − wij−1)2

]
, (A.21)

where we have used Young’s inequality and the fact that i, j ≤ h−1. In (A.21), the first term is
estimated as follows

N∑

i,j=0

(wi+1j − wi−1j)2

=
1
2

N∑

i,j=0

[
(wi+1j − wij + wij − wi−1j)2 + (wi+1j − wij+1 + wij+1 − wi−1j)2

]

≤
N∑

i,j=0

[
(wi+1j − wij)2 + (wij − wi−1j)2

]
+

N∑

i,j=1

[
(wi+1j − wij+1)2 + (wij+1 − wi−1j)2

]

=
N∑

i,j=0

[
2(wi+1j − wij)2 + (wi+1j − wij+1)2 + (wi+1j+1 − wij)2

]− 2
N∑

j=0

(wNj)2, (A.22)
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and an analogous formula holds for the second term in (A.21). Therefore, we have

N∑

i,j=0

[
(wi+1j − wi−1j)2 + (wij+1 − wij−1)2

]

≤ 2
N∑

i,j=0

[
(wi+1j − wij)2 + (wij+1 − wij)2 + (wi+1j − wij+1)2 + (wi+1j+1 − wij)2

]

−2
N∑

j=0

(wNj)2 − 2
N∑

i=0

(wiN )2. (A.23)

Substituting (A.21) into (A.18) and taking into account (A.23) we easily obtain

N∑

i,j=0

(
ajj+1

ii+1 + Rij

)2

≤ 64
h2

N∑

i,j=0

[
(wi+1j − wij)2 + (wij+1 − wij)2 + (wi+1j − wij+1)2 + (wi+1j+1 − wij)2

]
, (A.24)

which allows us estimate (A.17). In fact, using Young’s inequality we obtain

N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2 ≤ 8
h




N∑

i,j=0

(bjj+1
ii+1 )2




1/2

×



N∑

i,j=0

[
(wi+1j − wij)2 + (wij+1 − wij)2 + (wi+1j − wij+1)2 + (wi+1j+1 − wij)2

]



1/2

≤ 16
√

3




N∑

i,j=0

(
bjj+1
ii+1

4

)2

+
1
3

N∑

i,j=0

[
(wi+1j − wij)2 + (wij+1 − wij)2

+(wi+1j − wij+1)2 + (wi+1j+1 − wij)2
]]

= 32
√

3Eh(t).

Therefore, 


N∑

i,j=0

ajj+1
ii+1 bjj+1

ii+1 + C2




T

0

≤ 32
√

3 (Eh(T ) + Eh(0)) ≤ 64
√

3Eh(0). (A.25)

This concludes the proof of Lemma A.2. ¥

A.2 Proof of Proposition 4.2

Coming back to the proof of Theorem 4.1 we consider D defined in (A.2). By (A.8) and Young’s
inequality we have

D ≤ 2
N∑

i,j=0

(wi+1j − wij)
2 + 2

N∑

i,j=0

(wij+1 − wij)
2 −

N∑

j=1

(N + 1)(wNj−1 + wNj + wNj+1)wNj

−
N∑

i=1

(N + 1) (wi−1N + wiN + wi+1N ) wiN . (A.26)
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Thus, we can estimate (A.2) as follows

0 =
h2

32
C +

1
6

∫ T

0
Ddt ≤ h2

32

∫ T

0


2

N∑

i,j=0

(
bjj+1
ii+1

)2

−
N∑

i=1

(N + 1)
(
w′iN + w′i+1N

)2 −
N∑

j=1

(N + 1)
(
w′Nj + w′Nj+1

)2


 dt

+
1
3

∫ T

0




N∑

i,j=0

(wi+1j − wij)
2 +

N∑

i,j=0

(wij+1 − wij)
2


 dt

−1
6

∫ T

0




N∑

j=1

(N + 1)(wNj−1 + wNj + wNj+1)wNj

+
N∑

i=1

(N + 1) (wi−1N + wiN + wi+1N ) wiN

]
dt +

h2

32
[C2]T0 ,

i.e.

Eh(t) ≥ h

8

∫ T

0




N∑

i=1

(
w′iN + w′i+1N

2

)2

+
N∑

j=1

(
w′Nj + w′Nj+1

2

)2

 dt (A.27)

+
1
2

∫ T

0




N∑

j=1

wNj−1 + wNj + wNj+1

3
wNj

h
+

N∑

i=1

wi−1N + wiN + wi+1N

3
wiN

h


 dt− h2

32
[C2]T0 .

Therefore, it is enough to find an estimate of C2 in terms of the energy. Note that

C2 =
N∑

i,j=1

mij

[
bjj+1
ii+1 + bj−1j

ii+1 + bjj+1
i−1i + bj−1j

i−1i

]

≤ 1
2

N∑

i,j=1

[
i2(wi+1j − wi−1j)2 +

(
bjj+1
ii+1 + bj−1j

ii+1 + bjj+1
i−1i + bj−1j

i−1i

)2
]

+
1
2

N∑

i,j=1

[
j2(wij+1 − wij−1)2 +

(
bjj+1
ii+1 + bj−1j

ii+1 + bjj+1
i−1i + bj−1j

i−1i

)2
]

≤ 1
2h2

N∑

i,j=1

[
(wi+1j − wij + wij − wi−1j)2 + (wij+1 − wij + wij − wij−1)2

]
+ 4

N∑

i,j=1

(
bjj+1
ii+1

)2

≤ 2
h2

N∑

i,j=1

[
(wi+1j − wij)2 + (wij+1 − wij)2

]
+ 4

N∑

i,j=1

(
bjj+1
ii+1

)2
≤ 16

h2
Eh(t).

Therefore,
h2

32
[C2]T0 ≤ Eh(0).

This estimate combined with (A.27) provide inequality (4.7). ¥
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