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The ∞-Laplacian.

Let ∆pu = div
(

|Du|p−2Du
)

be the usual p−laplacian. The limit

operator limp→∞∆p = ∆∞ is the ∞-Laplacian given by

∆∞u =
N
∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi
= Du(D2u)Du.

Indeed, formally,

div
(

|Du|p−2Du
)

= |Du|p−2∆u + (p − 2)|Du|p−4Du(D2u)Du.

Hence

0 =
|Du|2∆u

p − 2
+∆∞u

↓
0 = 0 +∆∞u.
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The ∆∞ appears naturally when one considers absolutely mini-

mizing Lipschitz extensions of a boundary function f , see

G. Aronsson, M.G. Crandall, P. Juutinen. (2004).

Notice that ∆∞ is degenerate and is not in divergence form.

We want to study natural Neumann boundary conditions for the

∞-Laplacian. To this end consider the natural Neumann problem

for the p−laplacian
{

−∆pu = 0 in Ω,

|Du|p−2∂u
∂ν = g on ∂Ω.

The boundary datum g is continuous and verifies
∫

∂Ω
g = 0.
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If we impose the normalization
∫

Ω
up = 0

then there exists a unique solution, up, that can be obtained by

a variational principle,

max

{
∫

∂Ω
wg : w ∈ W1,p(Ω),

∫

Ω
w = 0 ,

∫

Ω
|Dw|p ≤ 1

}

.

Our first result states that there exist limit points of up as p → ∞

and that they are maximizers of a variational problem analogous

to the one above.
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For q > N the set {up}p>q is bounded in Cα(Ω). Hence, by

compactness, we have subsequences that converge uniformly.

Let v∞ be a uniform limit of a subsequence {upi}, pi → ∞.

Theorem A limit function v∞ belongs to W1,∞(Ω) and is a

solution to the maximization problem

max

{
∫

∂Ω
wg : w ∈ W1,∞(Ω),

∫

Ω
w = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

In particular

‖Dv∞‖L∞(Ω) ≤ 1.
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Monge-Kantorovich mass transport problem

Recall Buttazzo’s lecture.

Given two probability densities in RN , f1, f2, there exists a map

T : RN → RN such that
∫

A
f1(x) dx =

∫

T (A)
f2(y) dy,

and minimizes

inf
T

∫

|y − T (y)|f2(y) dy.

(

inf
T

∫

c(y, T (y))f2(y) dy

)

This is a widely studied problem. Caffarelli, Ambrosio, Brenier,

Buttazzo, Bouchitte, Ekeland, McCann, Kantorovich, Villani,

Evans, Gangbo, Pratelli, De Pasquale, Trudinger, etc.
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In our case, the maximization limit problem is obtained also by

looking to a dual formulation of the mass transfer problem for

the measures µ+ = g+HN−1|∂Ω and µ− = g−HN−1|∂Ω that are

supported on ∂Ω.

L. Ambrosio, 2003.

The mass transfer compatibility condition µ+(∂Ω) = µ−(∂Ω)

holds since g verifies
∫

∂Ω g = 0.

That mass transfer problems are related to the limits of the

p−laplacian was first noticed in

L.C. Evans and W. Gangbo, (1999).
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Concerning the equation satisfied by the limit we have

Theorem A limit v∞ is a viscosity solution of
{

∆∞u = 0 in Ω,
B(x, u, Du) = 0, on ∂Ω,

Here

B(x, u, Du) ≡















min
{

|Du| − 1 , ∂u
∂ν

}

if g > 0,

max{1 − |Du| , ∂u
∂ν} if g < 0,

H(|Du|)∂u
∂ν if g = 0,

and H(a) is given by

H(a) =

{

1 if a ≥ 1,
0 if 0 ≤ a < 1.
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Viscosity solutions with Neumann boundary conditions.

G. Barles, (1993). M.G. Crandall, H. Ishii and P.L. Lions, (1992).

Definition. Let
{

F (x, Du, D2u) = 0 in Ω,
B(x, u, Du) = 0 on ∂Ω.

A lower semi-continuous function u is a viscosity supersolution

if for every φ ∈ C2(Ω) such that u − φ has a strict minimum at

the point x0 ∈ Ω with u(x0) = φ(x0) we have: If x0 ∈ Ω then we

require

F (x0, Dφ(x0), D
2φ(x0)) ≥ 0,

and if x0 ∈ ∂Ω the inequality

max{B(x0, φ(x0), Dφ(x0)), F (x0, Dφ(x0), D
2φ(x0))} ≥ 0.
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Remark. If up is the solution with boundary data g and ûp is the

solution with boundary data ĝ = λg, λ > 0, then

up(x) = λ−1/(p−1) ûp(x)
↓ ↓ ↓

u∞(x) = 1 û∞(x).

Therefore the limit u∞ is the same if we consider any positive

multiple of g as boundary data and the same subsequence.

As a consequence the limit problem must be invariant by scalar

multiplication of the data g.
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Two examples. An interval. Ω = (−L, L), g(L) = −g(−L) > 0.

From the equation

(|u′
p|

p−2u′
p)

′ = 0,

with
∫ L

−L
up = 0 we obtain up(x) = Cx. From the boundary con-

dition, |u′
p|

p−2u′
p(L) = g(L) we get C = (g(L))1/(p−1). Hence,

v∞(x) = lim
p→∞

up(x) = lim
p→∞

(g(L))1/(p−1)x = x.

If we reverse the sign of g then v∞(x) = −x.

In this example the limit depends only on the sign of g. However

the conjecture that the limit v∞ depends only on the sign of g is

not true.
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An Annulus. Ω = {r1 < |x| < r2}. Consider

g0(r) =







g1 r = r1
g2 r = r2,

g1 > 0, g2 < 0 two constants such that
∫

|x|=r1
g1 +

∫

|x|=r2
g2 = 0.

Notice that the solutions up are radial hence the limit v∞ must

be a radial function. Direct integration shows that it must be a

cone with gradient one,

v∞(x) = C0(x) = C − |x|.
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In general this v∞ is not a maximizer for a different g with

sign(g) = sign(g0) and verifying the constraint
∫

∂Ω
g = 0.

To see that, consider a displaced cone

Cx0(x) = C − |x − x0|.

g could be modified, preserving the constraint and the sign, in

order to have
∫

∂Ω
g(x)C0(x) dx <

∫

∂Ω
g(x)Cx0(x) dx.

Hence, C0(x) is not a maximizer.

Therefore, there is no uniqueness for the limit PDE.
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Uniqueness of the limit. Next, we deal with the uniqueness of

the limit points of the family {up} as p → ∞.

We use that a limit is infinite harmonic in Ω, a maximizer, and

a geometric assumption involving g and Ω.

We need some geometric tools from Evans-Gangbo.

Let ∂Ω+ = supp(g+) and ∂Ω− = supp(g−).

Let v∞ a maximizer and define a transport ray as

Rx = {z ; |v∞(x) − v∞(z)| = |x − z|}.
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Two transport rays cannot intersect in Ω unless they are identi-

cal. For every transport ray Rx = [a b], a ∈ ∂Ω+ and b ∈ ∂Ω−.

We define the transport set as

T (v∞) =

{

z ∈ Ω : ∃x ∈ ∂Ω+, y ∈ ∂Ω−, v∞(z) = v∞(x) − |x − z|

and v∞(z) = v∞(y) + |y − z|

}

.

Observe that this set T is closed. The union of the transport

rays is the transport set T (Evans-Gangbo).

Proposition Suppose that Ω is a convex domain. Let v∞ be a

maximizer with ∆∞v∞ = 0, then

|Dv∞(x)| = 1, for a.e. x ∈ T (v∞).
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Our geometric hypothesis for uniqueness is then

T (v∞) = Ω.

Theorem There exists a unique infinite harmonic solution, u∞,

that is a maximizer. Hence, the limit

lim
p→∞

up = u∞, uniformly in Ω

exists.

A uniqueness example. Ω = D = {|(x, y)| < 1} a disk in R2.

g(x, y) > 0 for x > 0 and g(x, y) < 0 for x < 0 with
∫

∂D
g = 0.

It is easy to see that T (v∞) = Ω and hence we obtain uniqueness

of the limit.
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