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The oo-Laplacian.

Let Apu = div (|Du|p_2Du) be the usual p—laplacian. The limit
operator limp—oc Ap = A is the oco-Laplacian given by
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= Du(D?u)Du.

Indeed, formally,

div (|DulP~?Du) = |DulP 2 Au + (p — 2)| DulP~* Du(D?u) Du.
Hence
|Dul? Au

p— 2
!
0= 0 + A ou.
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The As appears naturally when one considers absolutely mini-
mizing Lipschitz extensions of a boundary function f, see

G. Aronsson, M.G. Crandall, P. Juutinen. (2004).
Notice that A« is degenerate and is not in divergence form.

We want to study natural Neumann boundary conditions for the
oo-Laplacian. To this end consider the natural Neumann problem
for the p—laplacian

—Apu =0 in €2,

|Du|p_22—r‘y” =g on 0f2.
The boundary datum g is continuous and verifies

= 0.
Ja?



If we impose the normalization

=0
/Qup

then there exists a unique solution, uy,, that can be obtained by
a variational principle,

max{ wg L w e WHP(Q), / w:O,/ |Dw|p§1}.
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Our first result states that there exist limit points of up as p — oo
and that they are maximizers of a variational problem analogous
to the one above.



For ¢ > N the set {up}p>¢ is bounded in C*(2). Hence, by
compactness, we have subsequences that converge uniformly.
Let voo be a uniform limit of a subsequence {up,}, p; — oc.

Theorem A limit function vse belongs to Wh°(Q) and is a
solution to the maximization problem

max ; EWl’OOQ,/ =0, ||D 0 <1}.
{[ wg :w (), [ w=0,[|Dw](q) <

In particular

| Dvool| oo () < 1



Monge-Kantorovich mass transport problem
Recall Buttazzo’s lecture.

Given two probability densities in RY, f1, f», there exists a map
T : RN — RN such that

[ i@de= [ @)y

and minimizes

inf [ly= T dy. (inf [ el T)f2(s) dy )

This is a widely studied problem. Caffarelli, Ambrosio, Brenier,
Buttazzo, Bouchitte, Ekeland, McCann, Kantorovich, Villani,
Evans, Gangbo, Pratelli, De Pasquale, Trudinger, etc.



In our case, the maximization limit problem is obtained also by
looking to a dual formulation of the mass transfer problem for
the measures pt = ¢gTHN110Q and = = ¢g-HN1|0Q that are
supported on 0f2.

L. Ambrosio, 2003.

The mass transfer compatibility condition p1(82) = = (89)
holds since g verifies 55 g = 0.

That mass transfer problems are related to the limits of the
p—laplacian was first noticed in

L.C. Evans and W. Gangbo, (1999).



Concerning the equation satisfied by the limit we have

Theorem A |limit v IS a viscosity solution of

{Awpﬂ) in Q,
B(xz,u, Du) = 0, on 0X2,
Here
(min{\Du|—1, %} if g > 0,
B(x,u, Du) = | max{1 — |Du] , %} if g <O,
| H(|Du|)%% if g =0,

and H(a) is given by

1 if a>1,
Hm*‘{o if0<a<l.



Viscosity solutions with Neumann boundary conditions.

G. Barles, (1993). M.G. Crandall, H. Ishii and P.L. Lions, (1992).

Definition. Let

F(x, Du,D?%u) =0 in Q,
B(xz,u,Du) =0 on 0X2.

A lower semi-continuous function w IS a viscosity supersolution
if for every ¢ € C2(2) such that u — ¢ has a strict minimum at

the point zg € Q with u(zg) = ¢(xg) we have: If zg € Q then we
require

F(z0, Dé(z0), D?¢(z0)) > 0,
and if xg € 0L2 the inequality
max{B(zog, $(z0), D¢(z0)), F(zg, Dd(xg), D?p(x0))} > 0.
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Remark. If uy, is the solution with boundary data g and uy is the
solution with boundary data g = Ag, A > 0, then

up(z) = A~V g,(x)
| ! !
Uoo () = 1 Uoo(T).
Therefore the limit us is the same if we consider any positive
multiple of g as boundary data and the same subsequence.

AS a consequence the limit problem must be invariant by scalar
multiplication of the data g.



Two examples. An interval. Q = (-L,L), g(L) = —g(—L) > 0.

From the equation

(JuplP~2up)" = 0,

L
with /Lup = 0 we obtain up(z) = Cx. From the boundary con-

dition, |u},[P~2u (L) = g(L) we get C' = (g(L))*/P=1). Hence,

voo() = lim_up(x) = lim_(g(L)Y ¥ Ha = .
If we reverse the sign of g then voo(z) = —ux.

In this example the limit depends only on the sign of g. However
the conjecture that the limit voo depends only on the sign of g is

not true.
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An Annulus. 2 ={r; < |z| < ro}. Consider

90(r) = {gl L

g2 r =T,
g1 > 0, go < 0 two constants such that

/ g1 + g> = 0.
|z|=r1 |z|=7>

Notice that the solutions up are radial hence the limit v Mmust
be a radial function. Direct integration shows that it must be a
cone with gradient one,

voo(x) = Co(x) = C — |x|.
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In general this v is Nnot a maximizer for a different g with
sign(g) = sign(gg) and verifying the constraint

= 0.
an

To see that, consider a displaced cone
Coo(z) = C — |z — z0].

g could be modified, preserving the constraint and the sign, in
order to have

/699(33)00(36) dr < /899(33‘)051:0(&7) dr.

Hence, Cp(x) is not a maximizer.

Therefore, there is no uniqueness for the limit PDE.
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Uniqueness of the limit. Next, we deal with the uniqueness of
the limit points of the family {up} as p — oo.

We use that a limit is infinite harmonic in €2, a maximizer, and
a geometric assumption involving g and 2.

We need some geometric tools from Evans-Gangbo.
Let 024 = supp(g™) and 9Q2_ = supp(g™).

Let voo @ Maximizer and define a transport ray as

Ry = {z; |voo() — veo(2)| = |z — 2[}.
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Two transport rays cannot intersect in €2 unless they are identi-
cal. For every transport ray Ry = [a b], a € 024 and b € 0%2_.

We define the transport set as

z2€Q:3r €Iy, y €00, vo(2) = voo(x) — |z — 2]
T(Uoo) — .
and vo(2) = vo(y) + |y — 2|
Observe that this set 7 is closed. The union of the transport
rays is the transport set 7 (Evans-Gangbo).

Proposition Suppose that 2 is a convex domain. Let v be a
maximizer with Accvec = 0, then

| Dvso(x)| = 1, for a.e. x € 7 (v0).
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Our geometric hypothesis for uniqueness is then

Theorem There exists a unique infinite harmonic solution, uso,
that is a maximizer. Hence, the limit

im up = ueo, uniformly in €2
p—00

exists.

A uniqueness example. Q = D = {|(z,y)| < 1} a disk in RZ.

g(x,y) >0 for > 0 and g(z,y) < 0 for z < 0 with 8Dg=0.

It is easy to see that 7 (veo) = 2 and hence we obtain unigqueness

of the limit.
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