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The Problem

Dirichlet Laplacian in a tube 2 C R® - of cross-section w

—A%

- about an infinite curve I'

Straight geometry (ie. Q = Rxw)

—

Ey = info(—AY%)

0(=Ap) = 0ac(—A}) = [E1,0)

1. Which geometry preserves the essential spectrum [E7, 00) ?

2. Which geometry produces a spectrum below E; ?




Motivations
Spectral Geometry

- relationship between geometry and spectral properties
- our infinite tubes are quasi-cylindrical domains !

Quantum Mechanics (nanostructures) GaAs/AlGaAs crescent shaped quantum wire
- quantum waveguides

[Duclos, Exner, RMP (1995)]
[Londergan, Carini, Murdock, LNP (1999)]

Classical Physics

- electromagnetic waveguides () AN/APS.134 X-band radar using Tallguide TG-134




Geometry of curved tubes

[:R — R3] unit-speed curve with curvatures k1, K9

- possessing an appropriate C'-smooth Frenet frame {e1, e, €3}

/

€1 0 K1 0 €1
= Serret-Frenet formulae: [es | = | —k1 0 k9 ey
€3 0 — k9 0 €3

w € R*| open connected bounded set, a := sup ||
tew

RY R — SO(2) | family of rotation matrices: R’ = <

cosf —sin 0)
- angle function § € CY(R)

sinf cos@

(.= L(R xw)| tube of cross-section w:

zszw—>R3;{(s,t)H r<s)+tu7z§,,(s)e,,<s)} (1,0 — 2,3)

Assumption. ||ki]lca <1 and € does not overlap itself



The Laplacian

-A3 S QP WHQ) — LAQ) : {ur— || Vul?)

Strategy: L :R x w — () is a diffeomorphism =— | () ~ (]R X W, G)

<h2 + by, ho hg) h(s,t) :=1— [tacosB(s)+ t3sinf(s)| k1(s)
G =

hQ 1 O hQ(S, t) = —t3 [HQ(S) — (9(8)]
hs 0 1 ha(s, t) = to [Ka(s) — 0(s)]

1. —A} ~  H:=—|G|726;|G|'Y*G79; on L*(R x w,dvol)

|G| :=det(G) = h?, (GY):=G™1, dvol:=h(s,t)dsdt

2. H

2

H:=-0;G70;+V on L*Rxw)| ifr differentiable

V= 0;(GY O;F) + (0,F)GI(9;F), F :=logh!/’



Stability of essential spectrum

Theorem. | lim (|r1(s)| + |ka(s) — 0(s)]) =0 = 0Oess(—AY) = [E1, 0)

|s|—00

Proof. Weyl's criterion for quadratic forms due to Iftimie. q.e.d.

Classical Weyl's criterion requires to impose additional conditions on derivatives !

History:
Goldstone, Jaffe 1992] ... k; of compact support & w =disc
Duclos, Exner 1995] ... additional vanishing of 41 and k; & w =disc
Dermenjian, Durand, Iftimie 1998] ... 0es of multistratified cylinders
[Chenaud, Duclos, Freitas, D.K. 2005] ... 0 = Ky (w arbitrary)




Geometrically induced spectrum

Theorem. | k1 #0 & 0 = Ky — infa(—A%) < Fjy

Proof. Trial function based on [J; (<> E). q.e.d.

Corollary. | o4 (=A%) # @ | if in addition  lim k(s) =0

|s|—o0

—X A A G e EEEEEE—
Odisc kn Oess

Remark. {61, Rgueu, Rgueu} with 6 = ky is called Tang frame.

History :
Goldstone, Jaffe 1992] ... k; of compact support & w =disc
Duclos, Exner 1995] ... additional conditions on %; and k; & w =disc
(Chenaud, Duclos, Freitas, D.K. 2005] ... w arbitrary




Why do we have the curvature-induced eigenvalues ?

N.B. —A% ~ H=-0,GY 0;+V on LQ(R X w)
In the limit a =0, |H ~ (-AR—12)@1+1@ (- AY)
1,2 C : K1 75 0
Here —; k7 represents an attractive interaction as long as o
k1 — 0O

It turns out that the discrete spectrum exists for any a provided 0 = ky.

In particular, whenever w is circular.

Is the choice 6 = ks just a technical hypothesis for non-circular w ?

NO |




A lower bound to the spectral threshold
[Exner, Freitas, D.K. 2004]

Theorem. | =0 — info(—A$) > min {X(sup k1), A(inf k1) }

where A\(k) denotes the lowest eigenvalue of the Dirichlet Laplacian

in the torus of cross-section w about a circle of radius kL.

Remark 1. The lower bound does not depend on torsion ks.

QMath9 Giens 2004

Conjecture [Weidl 2004]. | 3 Hardy inequality in twisted tubes

Remark 2. It is already known that there exists a Hardy inequality in curved
strips in the presence of local magnetic field due to [Ekholm, KovafFik 2004].



A Hardy inequality in twisted tubes
[Ekholm, Kovafik, D.K. 2005]

(1) 3 € (0,27), {(taR%tuRE) | (tots) Ew} #w
(2) Ko — 0 #0

angular-derivative operator: 0, := t305 — t3 03

twisted tube <— {

Theorem. Assume (1). Let 0 € Cy(R) with 6 € L>®(R) satisfy (2') o # 0.

C
1—|-(8—80)2

Here so € R is such that o(sg) # 0 and ¢ = c¢(sg,0,w) > 0.

Lyi=| —(01—00.)2—82—82 > B+

on L*(R x w).

Remark. o =60 ~» Dirichlet Laplacian in twisted straight tubes

Proof. Writing (s, t) = J1(t) ¢(s,t), ¥ € C°(R x w),

(¢, [Lo — E1]Y) = ||J1019]]” + | 1020 |* + || J1050||?

+ o (J10-¢ + ¢ 0-T1)||*+ mixed terms ]
g.e.d.



Twisted bent tubes
[Ekholm, Kovatik, D.K. 2005]

)
k1, ko € CY(R),
We restrict to curves characterised by: < k1 > 0 on I (bounded),
\Iil,lfzzo on R\I

and rotations determined by : {6’ c ClR), 6¢e L*R).

Theorem 1. Assume (1). If k3 — 6 # 0 then there exists ¢ > 0 such that

|kalloo + lA1lloe <& = o(—=Ap) = [E1, 00)

Here ¢ = e(ky,0,w).

Theorem 2. Assume (1). If 6 # 0 then there exists ¢ > 0 such that

|k1lloo + 1Flloo + [K2llc & = o(=AD) = [E1, 00)

Here € =¢(1,0,w).

Remark. Theorem 1 contains a better lower bound than [Exner, Freitas, D.K. 2004].



Conclusions

Summary : Spectral analysis of the Dirichlet Laplacian in infinite curved tubes

— stability of g if the bending and twisting vanish at infinity
— instability of o4sc due to bending (no twisting)

— stability of ogisc due to twisting (small bending)

— Hardy inequality in twisted tubes

Possible extensions: (concerning the Hardy inequality)

o compact support of curvatures — (O(s?) decay at infinity
o bending > other perturbations (enlargement, potential-type, etc)

Open problems:
Hardy inequality :
;. slowly decaying bending 7
i higher-dimensional generalisations 7 (OK for rotations just in one hyperplane)
j effect of twisting on the essential spectrum 7 (embedded eigenvalues, resonances)
j other boundary conditions 7 (acoustic waveguides)

in general :
; detailed analysis of essential spectrum 7 [D.K., Tiedra 2004]



