Blow-up in finite time VS.
 globally defined solutions in reaction-diffusion equations with nonlinear boundary conditions

José M. Arrieta
Universidad Complutense Madrid, Spain

Benasque, August 2005

$$
\begin{cases}u_{t}-\Delta u=\lambda(x) u^{p} & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \Gamma_{D} \\ \frac{\partial u}{\partial \vec{n}}=\alpha(x) u^{q} & \text { on } \Gamma_{N} \\ u(0, x)=u_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

i) $\Omega \subset \mathbb{R}^{N}$ bounded C^{2} domain
ii) $p, q \geq 1, \lambda \in C^{0}(\bar{\Omega})$ and $\alpha \in C^{0}(\partial \Omega)$.

- If $p>1$ and $\lambda(x) \geq \lambda_{0}>0$ in $B\left(x_{0}, R\right) \subset \Omega$, then there are solutions that blow up in finite time. For this, notice that the solutions of

$$
\begin{cases}u_{t}-\Delta u=\lambda_{0} u^{p} & \text { in } B\left(x_{0}, R\right) \\ u=0 & \text { on } \partial B\left(x_{0}, R\right) \\ u(0, x) \geq 0 & \text { in } B\left(x_{0}, R\right)\end{cases}
$$

are subsolutions of the original problem and for this problem we have solutions that blow-up in finite time.

- If $\lambda(x) \leq 0$ and $\alpha(x) \leq 0$, that is, both, the interior reaction and the flux at the boundary are dissipative mechanisms, then we have that all solutions are globally defined and bounded. No blow-up is produced.

The most interesting case is when the interior reaction is dissipative $(\lambda(x) \leq$ 0) and the boundary condition, puts energy into the system ($\alpha(x) \geq 0$). It is not clear whether these two competing mechanisms will produce blow-up or boundedness of solutions.

Hence, we denote by $\lambda(x)=-\beta(x) \leq 0$ and will assume that $\alpha(x) \equiv 1$:

$$
\begin{cases}u_{t}-\Delta u=-\beta(x) u^{p} & \text { in } \Omega \tag{2}\\ u=0 & \text { on } \Gamma_{D} \\ \frac{\partial u}{\partial \vec{n}}=u^{q} & \text { on } \Gamma_{N} \\ u(0, x)=u_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

We are interested in determining the relative sizes of p, q and $\beta(x)$ that will garantee that some solutions will blow-up. Moreover we are interested in proving that the conditions are of a local nature in the sense that if the conditions hold in a small neighborhood of certain point of the boundary, then blow up is obtained near that point.

Proper minimal solutions. (Baras \& Cohen '87, Galaktionov \& Vazquez '97, 02)

Consider a sequence of smooth functions $g_{n}(u)$ which are globally Lipschitz and approach $g(u)=u^{q}$ monotonically from below. For instance, $g_{n}(u)=$ mín $\left\{u^{q}, n\right\}$. Denote by $u_{n}\left(t, x, u_{0}\right)$ the solution of

$$
\begin{cases}u_{t}-\Delta u=-\beta(x) u^{p} & \text { in } \Omega \\ u=0 & \text { on } \Gamma_{D} \\ \frac{\partial u}{\partial \vec{n}}=g_{n}(u) & \text { on } \Gamma_{N} \\ u(0, x)=u_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

Then, u_{n} is defined for all $t \in[0, \infty)$ and for each fixed (t, x) it is monotone increasing in n. Hence, there exists a function $u\left(t, x, u_{0}\right)$ that maybe infitnity at some points (t, x) such that

$$
u_{n}\left(t, x, u_{0}\right) \nearrow u\left(t, x, u_{0}\right)
$$

M. Chipot, M. Fila, P. Quittner,"Stationary Solutions, blow up and convergence ..." Acta. Math. Univ. Comenianae Vol LX (1991)

$$
(N=1, \Omega=(0, l)) \begin{cases}u_{t}-u_{x x}=-\beta u^{p} & \Omega \\ \frac{\partial u}{\partial n}=u^{q} & \partial \Omega \\ u(0, x) \geq 0 & \Omega\end{cases}
$$

If $p+1<2 q$ or $p+1=2 q$ and $\beta<q$, then \exists blow up
If $p+1>2 q$ or $p+1=2 q$ and $\beta>q$, then all solutions globally bounded.
Balance: $p+1$ vs. $2 q$ and if $p+1=2 q, \beta$ vs. q.
A. Rodriguez-Bernal and A. Tajdine, "Nonlinear balance of reaction-diffusion ..." Journal of Diff. Eq. (2001) showed that for the problem

$$
(N \geq 1) \begin{cases}u_{t}-\Delta u=-\beta u^{p} & \Omega \\ \frac{\partial u}{\partial n}=u^{q} & \partial \Omega \\ u(0, x) \geq 0 & \Omega\end{cases}
$$

If $p+1<2 q$ or $p+1=2 q$ and $\beta<q$, then \exists blow up
If $p+1>2 q$ or $p+1=2 q$ and β large enough, then all solutions globally bounded.
F. Andreu, J. Mazón, J. Toledo, J. Rossi, "Porous medium equation ...", Nonlinear Analysis (2002)

They obtain for the N-dimensional problem the same balances as Chipot, Fila, Quittner

There are many more names associated to the problem of blow-up with nonlinear boundary conditions:
J. Filo, V. Galaktionov, J. Guo, B. Hu, G. Lieberman, J. López-Gómez, M. Marcus, Ph. Souplet, J. L. Vázquez, L. Véron, ...
and there are also many other interesting questions:

- rates, profiles, blow-up sets, continuation after blow-up, complete vs. incomplete blow-up, etc...

LOCALIZATION OF BLOW UP

We were able to prove the following result on blow-up:
Proposition 1. (A. Rodríguez-Bernal, J.A.(2004))
Let $p \geq 1, q>1$ and $x_{0} \in \Gamma_{N}$. If one of the two following conditions hold
i) $p+1<2 q$ or
ii) $p+1=2 q$ and $\beta\left(x_{0}\right)<q$,
then, there exists an initial condition ϕ_{0} with support in a small neighborhood of x_{0}, whose solution blows up in finite time.

To be more precise, there exists a smooth function $v(t, x)$, defined for $t \in$ $[0, T) \times\left(\Omega \cap B\left(x_{0}, \rho\right)\right)$ monotone increasing in time such that

$$
\begin{aligned}
& v(t, x) \nearrow v(T, x)=\frac{C}{\operatorname{dist}(x, \partial \Omega)^{2 /(p-1)}}, \quad \text { for } x \in \Omega \cap B\left(x_{0}, \rho\right) \\
& v(t, x) \leq u\left(t, x, u_{0}\right), \quad \text { for } \quad(t, x) \in[0, T) \times\left(\Omega \cap B\left(x_{0}, \rho\right)\right)
\end{aligned}
$$

and there exists $\tau>T$, such that

$$
v(T, x) \leq u\left(t, x, u_{0}\right), \quad \text { for any } \quad T \leq t \leq \tau
$$

A. Rodríguez-Bernal, J.A. "Localization on the boundary of blow-up for reactiondiffusion equations with nonlinear boundary conditions", Comm. in PDE's 29 (2004)

Remark 2. i) The time T does not need to be the classical blow-up time T_{∞}, that is, the time for which the solution $u\left(t, x, u_{0}\right)$ satisfies

$$
\begin{gathered}
u\left(t, x, u_{0}\right)<+\infty, \quad 0 \leq t<T_{\infty} \\
\left\|u\left(t, x, u_{0}\right)\right\|_{L^{\infty}(\Omega)} \rightarrow+\infty, \text { as } t \nearrow T_{\infty}
\end{gathered}
$$

We always have $T_{\infty} \leq T$.
ii) Local nature of the result: the blow-up phenomena is localized around x_{0}, independently of the behavior of $\beta(x)$ at other points of the boundary.
iii) If $\beta(x)>0$ in Ω and $p>1$ then there is no blow up in the interior of the domain
iv) If the nonlinear boundary condition is $\frac{\partial u}{\partial n}=\alpha(x) u^{q}$ with $\alpha\left(x_{0}\right)>0$, then, the condition for blow up in case ii) is $\frac{\beta\left(x_{0}\right)}{\alpha^{2}\left(x_{0}\right)}<q$.

Proof. We will consider the case $p+1=2 q, \beta\left(x_{0}\right)<q$.
Let us consider the one dimensional case $\Omega=(-1,0), x_{0}=0$ and assume $\beta(x) \leq \beta_{0}<q$ in $(-b, 0)$ for some b small.

If $v(t, x)$ is a smooth positive function in $(x, t) \in(-b, 0) \times(0, \tau)$ such that

$$
\begin{cases}v_{t}-v_{x x} \leq-\beta_{0} v^{p} & \text { in }(-b, 0) \\ v(-b) \leq u(t,-b) & \\ \frac{\partial v}{\partial \vec{n}} \leq v^{q} & \text { on } x=0 \\ v(0, x) \leq u_{0}(x) & \text { in }(-b, 0)\end{cases}
$$

then, $v(t, x) \leq u\left(t, x, u_{0}\right), x \in(-b, 0), 0<t<\tau$.
We will construct a function v such that $v(t, 0) \rightarrow+\infty$ as $t \rightarrow \tau^{-}$.

Consider the solution of the ODE

$$
\left\{\begin{array}{l}
\psi^{\prime}(t)=\psi^{q}(t) \\
\psi(0)=a \geq 1
\end{array}\right.
$$

which is given explicitely by

$$
\psi_{a}(t)=\frac{E}{\left(T_{a}-t\right)^{\frac{1}{q-1}}}, \quad-\infty<t<T_{a}
$$

with

$$
E=\frac{1}{((q-1))^{\frac{1}{q-1}}}, \quad \text { and } \quad T_{a}=\frac{1}{(q-1) a^{q-1}}
$$

Let us define the function v as

$$
v(t, x)=\psi(t+x), \quad 0<t<T_{a},-b<x<0
$$

If $v(t, x)=\psi(t+x)$ and $\psi^{\prime}=\psi^{q}$, we have

$$
\begin{gathered}
v_{t}=v_{x}=\psi^{\prime}=v^{q} \\
v_{x x}=q v^{q-1} v_{x}=q v^{2 q-1}=q v^{p}
\end{gathered}
$$

Hence,

$$
v_{t}-v_{x x}=v^{q}-q v^{2 q-1}=\left(v^{q-p}-q\right) v^{p} \leq-\beta_{0} v^{p}
$$

as long as a, b are small enough (so that v is large enough) and $\beta_{0}<q$.

$$
\begin{gathered}
\frac{\partial v}{\partial n}(t, 0)=v_{x}(t, 0)=\psi^{\prime}(t)=v^{q}(t, 0) \\
v(0, x)=\psi(x) \leq \psi(0)=a \\
v(t,-b)=\psi(t-b) \leq \psi\left(T_{a}-b\right)=\frac{E}{b^{1 /(q-1)}}
\end{gathered}
$$

Hence, we just need to choose an initial condition u_{0} large enough so that $u_{0}(x) \geq a, x \in(-b, 0)$ and $u\left(t,-b, u_{0}\right) \geq \frac{E}{b^{1 /(q-1)}}$ for $t \in\left(0, T_{a}\right)$.

For the higher dimensional case we proceed similarly:

LOCALIZATION OF GLOBAL BOUNDEDNESS

Proposition 3. (J.A.(2005))
Let $p>1, q \geq 1$ and $x_{0} \in \Gamma_{N}$. If one of the two following conditions hold
i) $p+1>2 q$ and $\beta\left(x_{0}\right)>0$ or
ii) $p+1=2 q$ and $\beta\left(x_{0}\right)>q$,
then, for any initial condition $0 \leq u_{0} \in L^{\infty}(\Omega)$ the proper minimal solution starting at u_{0} is bounded in a neighborhood of x_{0} in $\bar{\Omega}$, for all $t>0$. That is, there exist $\delta, M>0$ such that

$$
\sup _{0 \leq t<\infty, x \in B\left(x_{0}, \delta\right) \cap \bar{\Omega}} u\left(t, x, u_{0}\right) \leq M
$$

Remark 4. i) Local nature of the result: the boundedness of the solution is localized around x_{0}, independently of the behavior of $\beta(x)$ at other points.
ii) If the nonlinear boundary condition is $\frac{\partial u}{\partial n}=\alpha(x) u^{q}$ with $\alpha\left(x_{0}\right)>0$, then, the condition for boundedness is in case ii) is $\frac{\beta\left(x_{0}\right)}{\alpha^{2}\left(x_{0}\right)}>q$.

If R is small enough then $u\left(t, x, u_{0}\right) \leq w$ for all $t \geq 0$.

If $r=\left|x-y_{R}\right|$, then the function w is asymptotically for $r \sim R$,

$$
\begin{aligned}
& w(r) \sim C^{*} \frac{1}{\beta_{0}^{\frac{1}{p-1}}}(R-r)^{\frac{-2}{p-1}} \\
& C^{*}=\left(2(p+1) /(p-1)^{2}\right)^{1 /(p-1)}
\end{aligned}
$$

Hence, if $q<\beta_{1}<\beta_{0}$, then

$$
w(r) \leq C^{*} \frac{1}{\beta_{1}^{\frac{1}{p-1}}}(R-r)^{\frac{-2}{p-1}}, \quad \rho<r<R
$$

Now, for $q<\beta_{2}<\beta_{1}<\beta_{0}$, define the function

$$
H(r)=C^{*} \frac{1}{\beta_{2}^{\frac{1}{p-1}}}(R+\epsilon-r)^{\frac{-2}{p-1}}, \quad \rho<r<R+\epsilon
$$

$\exists \epsilon_{0}>0$ small enough such that for all $0<\epsilon<\epsilon_{0}$, we have

$$
\begin{gathered}
-\Delta H(r) \geq-\beta_{0} H(r)^{p}, \quad \rho<r<R+\epsilon \\
H(\rho) \geq w\left(\left|x-y_{R}\right|\right) \geq u\left(t, x, u_{0}\right) \\
H(R+\epsilon)=+\infty \geq u\left(t, x, u_{0}\right), x \in \bar{\Omega} \cap \partial B\left(y_{R}, R+\epsilon\right)
\end{gathered}
$$

If $x \in \partial \Omega \cap B\left(y_{R}, R+\epsilon\right)$, then

$$
\frac{\partial H(x)}{\partial n}=\nabla H \cdot \vec{n}(x)=H^{\prime}(r) \frac{x-y_{R}}{\left|x-y_{R}\right|} \vec{n}(x)
$$

But $\frac{x-y_{R}}{\left|x-y_{R}\right|} \vec{n}(x) \geq 1-\delta$ and $\delta \rightarrow 0$ as $\epsilon \rightarrow 0$.

Moreover, direct computations, show that (if for instance $p+1=2 q$) that

$$
H^{\prime}(r)=\sqrt{\frac{\beta_{2}}{q}}(H(r))^{q}
$$

Hence,

$$
\frac{\partial H}{\partial n} \geq \sqrt{\frac{\beta_{2}}{q}}(1-\delta)(H(r))^{q} \geq H(r)^{q}
$$

by choosing ϵ small enough.
Therefore, H is a local supersolution which is bounded in a neighborhood of x_{0}.

Hence if the equation is

$$
\begin{cases}u_{t}-\Delta u=-\beta(x) u^{p} & \text { in } \Omega \\ \frac{\partial u}{\partial \vec{r}}=\alpha(x) u^{q} & \text { on } \Gamma_{N} \\ u(0, x)=u_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

