Blow-up in finite time vs. globally defined solutions in reaction-diffusion equations with nonlinear boundary conditions

José M. Arrieta Universidad Complutense Madrid, Spain

Benasque, August 2005

$$\begin{cases} u_t - \Delta u = \lambda(x)u^p & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ \frac{\partial u}{\partial \vec{n}} = \alpha(x)u^q & \text{on } \Gamma_N \\ u(0, x) = u_0(x) \ge 0 & \text{in } \Omega \end{cases}$$
(1)

i) $\Omega \subset \mathbb{R}^N$ bounded C^2 domain

ii)
$$p,q\geq 1$$
, $\lambda\in C^0(\bar\Omega)$ and $\alpha\in C^0(\partial\Omega)$.

If p > 1 and $\lambda(x) \ge \lambda_0 > 0$ in $B(x_0, R) \subset \Omega$, then there are solutions that blow up in finite time. For this, notice that the solutions of

$$\begin{cases} u_t - \Delta u = \lambda_0 u^p & \text{ in } B(x_0, R) \\ u = 0 & \text{ on } \partial B(x_0, R) \\ u(0, x) \ge 0 & \text{ in } B(x_0, R) \end{cases}$$

are subsolutions of the original problem and for this problem we have solutions that blow-up in finite time.

• If $\lambda(x) \leq 0$ and $\alpha(x) \leq 0$, that is, both, the interior reaction and the flux at the boundary are dissipative mechanisms, then we have that all solutions are globally defined and bounded. No blow-up is produced.

The most interesting case is when the interior reaction is dissipative ($\lambda(x) \leq 0$) and the boundary condition, puts energy into the system ($\alpha(x) \geq 0$). It is not clear whether these two competing mechanisms will produce blow-up or boundedness of solutions.

Hence, we denote by $\lambda(x) = -\beta(x) \le 0$ and will assume that $\alpha(x) \equiv 1$:

$$\begin{cases} u_t - \Delta u = -\beta(x)u^p & \text{in } \Omega \\ u = 0 & \text{on } \Gamma_D \\ \frac{\partial u}{\partial \vec{n}} = u^q & \text{on } \Gamma_N \\ u(0, x) = u_0(x) \ge 0 & \text{in } \Omega \end{cases}$$
(2)

We are interested in determining the relative sizes of p, q and $\beta(x)$ that will garantee that some solutions will blow-up. Moreover we are interested in proving that the conditions are of a local nature in the sense that if the conditions hold in a small neighborhood of certain point of the boundary, then blow up is obtained near that point.

Proper minimal solutions. (Baras & Cohen '87, Galaktionov & Vazquez '97, 02)

Consider a sequence of smooth functions $g_n(u)$ which are globally Lipschitz and approach $g(u) = u^q$ monotonically from below. For instance, $g_n(u) = \min\{u^q, n\}$. Denote by $u_n(t, x, u_0)$ the solution of

$$\left\{ \begin{array}{ll} u_t - \Delta u = -\beta(x)u^p & \text{ in } \Omega \\ u = 0 & \text{ on } \Gamma_D \\ \frac{\partial u}{\partial \vec{n}} = g_n(u) & \text{ on } \Gamma_N \\ u(0, x) = u_0(x) \ge 0 & \text{ in } \Omega \end{array} \right.$$

Then, u_n is defined for all $t \in [0, \infty)$ and for each fixed (t, x) it is monotone increasing in n. Hence, there exists a function $u(t, x, u_0)$ that maybe infitnity at some points (t, x) such that

$$u_n(t,x,u_0) \nearrow u(t,x,u_0)$$

M. Chipot, M. Fila, P. Quittner, "Stationary Solutions, blow up and convergence ..." Acta. Math. Univ. Comenianae Vol LX (1991)

$$(N = 1, \ \Omega = (0, l)) \begin{cases} u_t - u_{xx} = -\beta u^p & \Omega\\ \frac{\partial u}{\partial n} = u^q & \partial\Omega\\ u(0, x) \ge 0 & \Omega \end{cases}$$

If $p+1 < 2q \text{ or } p+1 = 2q \text{ and } \beta < q,$ then \exists blow up

If p + 1 > 2q or p + 1 = 2q and $\beta > q$, then all solutions globally bounded.

Balance: p + 1 vs. 2q and if p + 1 = 2q, β vs. q.

A. Rodriguez-Bernal and A. Tajdine, "Nonlinear balance of reaction-diffusion ..." Journal of Diff. Eq. (2001) showed that for the problem

$$(N \ge 1) \begin{cases} u_t - \Delta u = -\beta u^p & \Omega\\ \frac{\partial u}{\partial n} = u^q & \partial \Omega\\ u(0, x) \ge 0 & \Omega \end{cases}$$

If $p+1 < 2q \text{ or } p+1 = 2q \text{ and } \beta < q,$ then \exists blow up

If p + 1 > 2q or p + 1 = 2q and β large enough, then all solutions globally bounded.

F. Andreu, J. Mazón, J. Toledo, J. Rossi, "Porous medium equation ...", Nonlinear Analysis (2002)

They obtain for the N-dimensional problem the same balances as Chipot, Fila, Quittner

There are many more names associated to the problem of blow-up with nonlinear boundary conditions:

J. Filo, V. Galaktionov, J. Guo, B. Hu, G. Lieberman, J. López-Gómez, M. Marcus, Ph. Souplet, J. L. Vázquez, L. Véron, ...

and there are also many other interesting questions:

- rates, profiles, blow-up sets, continuation after blow-up, complete vs. incomplete blow-up, etc...

LOCALIZATION OF BLOW UP

We were able to prove the following result on blow-up:

Proposition 1. (A. Rodríguez-Bernal, J.A.(2004))

Let $p \ge 1$, q > 1 and $x_0 \in \Gamma_N$. If one of the two following conditions hold

i) p + 1 < 2q or

 $\textit{ii)} p + 1 = 2q \textit{ and } \beta(x_0) < q \textit{,}$

then, there exists an initial condition ϕ_0 with support in a small neighborhood of x_0 , whose solution blows up in finite time.

To be more precise, there exists a smooth function v(t, x), defined for $t \in [0, T) \times (\Omega \cap B(x_0, \rho))$ monotone increasing in time such that

$$v(t,x) \nearrow v(T,x) = \frac{C}{\operatorname{dist}(x,\partial\Omega)^{2/(p-1)}}, \quad \text{for } x \in \Omega \cap B(x_0,\rho).$$
$$v(t,x) \le u(t,x,u_0), \quad \text{for} \quad (t,x) \in [0,T) \times \left(\Omega \cap B(x_0,\rho)\right)$$

and there exists $\tau > T$, such that

$$v(T,x) \le u(t,x,u_0), \quad \text{for any} \quad T \le t \le \tau$$

A. Rodríguez-Bernal, J.A. "Localization on the boundary of blow-up for reactiondiffusion equations with nonlinear boundary conditions", Comm. in PDE's 29 (2004) **Remark 2.** *i)* The time T does not need to be the classical blow-up time T_{∞} , that is, the time for which the solution $u(t, x, u_0)$ satisfies

$$u(t, x, u_0) < +\infty, \quad 0 \le t < T_\infty$$

$$\|u(t,x,u_0)\|_{L^{\infty}(\Omega)} \to +\infty, \text{ as } t \nearrow T_{\infty}$$

We always have $T_{\infty} \leq T$.

ii) Local nature of the result: the blow-up phenomena is localized around x_0 , independently of the behavior of $\beta(x)$ at other points of the boundary.

iii) If $\beta(x) > 0$ in Ω and p > 1 then there is no blow up in the interior of the domain

iv) If the nonlinear boundary condition is $\frac{\partial u}{\partial n} = \alpha(x)u^q$ with $\alpha(x_0) > 0$, then, the condition for blow up in case ii) is $\frac{\beta(x_0)}{\alpha^2(x_0)} < q$.

Proof. We will consider the case p + 1 = 2q, $\beta(x_0) < q$.

Let us consider the one dimensional case $\Omega = (-1, 0)$, $x_0 = 0$ and assume $\beta(x) \leq \beta_0 < q$ in (-b, 0) for some *b* small.

If v(t, x) is a smooth positive function in $(x, t) \in (-b, 0) \times (0, \tau)$ such that

$$\begin{cases} v_t - v_{xx} \le -\beta_0 v^p & \text{ in } (-b,0) \\ v(-b) \le u(t,-b) & \\ \frac{\partial v}{\partial \vec{n}} \le v^q & \text{ on } x = 0 \\ v(0,x) \le u_0(x) & \text{ in } (-b,0) \end{cases}$$

then, $v(t, x) \le u(t, x, u_0)$, $x \in (-b, 0)$, $0 < t < \tau$.

We will construct a function v such that $v(t,0) \rightarrow +\infty$ as $t \rightarrow \tau^-$.

Consider the solution of the ODE

$$\begin{cases} \psi'(t) = \psi^q(t) \\ \psi(0) = a \ge 1 \end{cases}$$

which is given explicitely by

$$\psi_a(t) = \frac{E}{(T_a - t)^{\frac{1}{q-1}}}, \qquad -\infty < t < T_a$$

with

$$E = \frac{1}{((q-1))^{\frac{1}{q-1}}}, \quad \text{and} \quad T_a = \frac{1}{(q-1)a^{q-1}}$$

Let us define the function v as

$$v(t, x) = \psi(t + x), \quad 0 < t < T_a, -b < x < 0$$

If
$$v(t,x) = \psi(t+x)$$
 and $\psi' = \psi^q$, we have
 $v_t = v_x = \psi' = v^q$
 $v_{xx} = qv^{q-1}v_x = qv^{2q-1} = qv^p$

Hence,

$$v_t - v_{xx} = v^q - qv^{2q-1} = (v^{q-p} - q)v^p \le -\beta_0 v^p$$

as long as a, b are small enough (so that v is large enough) and $\beta_0 < q$.

$$\frac{\partial v}{\partial n}(t,0) = v_x(t,0) = \psi'(t) = v^q(t,0)$$
$$v(0,x) = \psi(x) \le \psi(0) = a$$
$$v(t,-b) = \psi(t-b) \le \psi(T_a-b) = \frac{E}{b^{1/(q-1)}}$$

Hence, we just need to choose an initial condition u_0 large enough so that $u_0(x) \ge a, x \in (-b, 0)$ and $u(t, -b, u_0) \ge \frac{E}{b^{1/(q-1)}}$ for $t \in (0, T_a)$.

For the higher dimensional case we proceed similarly:

LOCALIZATION OF GLOBAL BOUNDEDNESS

Proposition 3. (*J.A.*(2005))

Let p > 1, $q \ge 1$ and $x_0 \in \Gamma_N$. If one of the two following conditions hold i) p + 1 > 2q and $\beta(x_0) > 0$ or

ii) p + 1 = 2q and $\beta(x_0) > q$,

then, for any initial condition $0 \le u_0 \in L^{\infty}(\Omega)$ the proper minimal solution starting at u_0 is bounded in a neighborhood of x_0 in $\overline{\Omega}$, for all t > 0. That is, there exist $\delta, M > 0$ such that

$$\sup_{0 \le t < \infty, x \in B(x_0, \delta) \cap \bar{\Omega}} u(t, x, u_0) \le M$$

Remark 4. *i*) Local nature of the result: the boundedness of the solution is localized around x_0 , independently of the behavior of $\beta(x)$ at other points.

ii) If the nonlinear boundary condition is $\frac{\partial u}{\partial n} = \alpha(x)u^q$ with $\alpha(x_0) > 0$, then, the condition for boundedness is in case ii) is $\frac{\beta(x_0)}{\alpha^2(x_0)} > q$.

$\int -\Delta w = -\beta_0 w^p,$	$B(y_R,R)$
$v = +\infty,$	$\partial B(y_R, R)$

If R is small enough then $u(t, x, u_0) \leq w$ for all $t \geq 0$.

If $r = |x - y_R|$, then the function w is asymptotically for $r \sim R$,

$$w(r) \sim C^* \frac{1}{\beta_0^{\frac{1}{p-1}}} (R-r)^{\frac{-2}{p-1}}$$

 $C^* = (2(p+1)/(p-1)^2)^{1/(p-1)}$

Hence, if $q < \beta_1 < \beta_0$, then

$$w(r) \le C^* \frac{1}{\beta_1^{\frac{1}{p-1}}} (R-r)^{\frac{-2}{p-1}}, \quad \rho < r < R$$

Now, for $q < \beta_2 < \beta_1 < \beta_0$, define the function

$$H(r) = C^* \frac{1}{\beta_2^{\frac{1}{p-1}}} (R + \epsilon - r)^{\frac{-2}{p-1}}, \quad \rho < r < R + \epsilon$$

 $\exists \epsilon_0 > 0 \text{ small enough such that for all } 0 < \epsilon < \epsilon_0 \text{, we have}$

$$-\Delta H(r) \ge -\beta_0 H(r)^p, \quad \rho < r < R + \epsilon$$
$$H(\rho) \ge w(|x - y_R|) \ge u(t, x, u_0)$$
$$H(R + \epsilon) = +\infty \ge u(t, x, u_0), x \in \overline{\Omega} \cap \partial B(y_R, R + \epsilon)$$

If $x \in \partial \Omega \cap B(y_R, R + \epsilon)$, then

$$\frac{\partial H(x)}{\partial n} = \nabla H \cdot \vec{n}(x) = H'(r) \frac{x - y_R}{|x - y_R|} \vec{n}(x)$$

But $\frac{x - y_R}{|x - y_R|} \vec{n}(x) \ge 1 - \delta$ and $\delta \to 0$ as $\epsilon \to 0$.

Moreover, direct computations, show that (if for instance p + 1 = 2q) that

$$H'(r) = \sqrt{\frac{\beta_2}{q}} (H(r))^q$$

Hence,

$$\frac{\partial H}{\partial n} \ge \sqrt{\frac{\beta_2}{q}} (1-\delta) (H(r))^q \ge H(r)^q$$

by choosing ϵ small enough.

Therefore, H is a local supersolution which is bounded in a neighborhood of x_0 .

Hence if the equation is

$$\begin{cases} u_t - \Delta u = -\beta(x)u^p & \text{ in } \Omega\\ \frac{\partial u}{\partial \vec{n}} = \alpha(x)u^q & \text{ on } \Gamma_N\\ u(0, x) = u_0(x) \ge 0 & \text{ in } \Omega \end{cases}$$

