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ut − ∆u = λ(x)up in Ω
u = 0 on ΓD
∂u
∂~n = α(x)uq on ΓN

u(0, x) = u0(x) ≥ 0 in Ω

(1)

i) Ω ⊂ R
N bounded C2 domain

ii) p, q ≥ 1, λ ∈ C0(Ω̄) and α ∈ C0(∂Ω).
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If p > 1 and λ(x) ≥ λ0 > 0 in B(x0, R) ⊂ Ω, then there are solutions that
blow up in finite time. For this, notice that the solutions of







ut − ∆u = λ0u
p in B(x0, R)

u = 0 on ∂B(x0, R)
u(0, x) ≥ 0 in B(x0, R)

are subsolutions of the original problem and for this problem we have solu-
tions that blow-up in finite time.

If λ(x) ≤ 0 and α(x) ≤ 0, that is, both, the interior reaction and the flux
at the boundary are dissipative mechanisms, then we have that all solutions
are globally defined and bounded. No blow-up is produced.
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The most interesting case is when the interior reaction is dissipative (λ(x) ≤
0) and the boundary condition, puts energy into the system (α(x) ≥ 0). It is
not clear whether these two competing mechanisms will produce blow-up or
boundedness of solutions.

Hence, we denote by λ(x) = −β(x) ≤ 0 and will assume that α(x) ≡ 1:















ut − ∆u = −β(x)up in Ω
u = 0 on ΓD
∂u
∂~n = uq on ΓN

u(0, x) = u0(x) ≥ 0 in Ω

(2)

We are interested in determining the relative sizes of p, q and β(x) that will
garantee that some solutions will blow-up. Moreover we are interested in proving
that the conditions are of a local nature in the sense that if the conditions hold in
a small neighborhood of certain point of the boundary, then blow up is obtained
near that point.
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Proper minimal solutions. (Baras & Cohen ’87, Galaktionov & Vazquez ’97,
02)

Consider a sequence of smooth functions gn(u) which are globally Lipschitz
and approach g(u) = uq monotonically from below. For instance, gn(u) =
mı́n{uq, n}. Denote by un(t, x, u0) the solution of















ut − ∆u = −β(x)up in Ω
u = 0 on ΓD
∂u
∂~n = gn(u) on ΓN

u(0, x) = u0(x) ≥ 0 in Ω

Then, un is defined for all t ∈ [0,∞) and for each fixed (t, x) it is monotone
increasing in n. Hence, there exists a function u(t, x, u0) that maybe infitnity at
some points (t, x) such that

un(t, x, u0) ↗ u(t, x, u0)
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M. Chipot, M. Fila, P. Quittner,“Stationary Solutions, blow up and convergence
...” Acta. Math. Univ. Comenianae Vol LX (1991)

(N = 1, Ω = (0, l))







ut − uxx = −βup Ω
∂u
∂n = uq ∂Ω
u(0, x) ≥ 0 Ω

If p+ 1 < 2q or p+ 1 = 2q and β < q, then ∃ blow up

If p+ 1 > 2q or p+ 1 = 2q and β > q, then all solutions globally bounded.

Balance: p+ 1 vs. 2q and if p+ 1 = 2q, β vs. q.
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A. Rodriguez-Bernal and A. Tajdine, “Nonlinear balance of reaction-diffusion ...”
Journal of Diff. Eq. (2001) showed that for the problem

(N ≥ 1)







ut − ∆u = −βup Ω
∂u
∂n = uq ∂Ω
u(0, x) ≥ 0 Ω

If p+ 1 < 2q or p+ 1 = 2q and β < q, then ∃ blow up

If p + 1 > 2q or p + 1 = 2q and β large enough, then all solutions globally
bounded.

F. Andreu, J. Mazón, J. Toledo, J. Rossi, “Porous medium equation ...”, Nonlinear
Analysis (2002)

They obtain for the N -dimensional problem the same balances as Chipot,
Fila, Quittner
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There are many more names associated to the problem of blow-up with
nonlinear boundary conditions:

J. Filo, V. Galaktionov, J. Guo, B. Hu, G. Lieberman, J. López-Gómez, M.
Marcus, Ph. Souplet, J. L. Vázquez, L. Véron, ...

and there are also many other interesting questions:

- rates, profiles, blow-up sets, continuation after blow-up, complete vs. in-
complete blow-up, etc...
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LOCALIZATION OF BLOW UP

We were able to prove the following result on blow-up:

Proposition 1. (A. Rodrı́guez-Bernal, J.A.(2004))

Let p ≥ 1, q > 1 and x0 ∈ ΓN . If one of the two following conditions hold

i) p+ 1 < 2q or

ii) p+ 1 = 2q and β(x0) < q,

then, there exists an initial condition φ0 with support in a small neighborhood of
x0, whose solution blows up in finite time.

To be more precise, there exists a smooth function v(t, x), defined for t ∈
[0, T ) ×

(

Ω ∩B(x0, ρ)
)

monotone increasing in time such that
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v(t, x) ↗ v(T, x) =
C

dist(x, ∂Ω)2/(p−1)
, for x ∈ Ω ∩B(x0, ρ).

v(t, x) ≤ u(t, x, u0), for (t, x) ∈ [0, T ) ×
(

Ω ∩B(x0, ρ)
)

and there exists τ > T , such that

v(T, x) ≤ u(t, x, u0), for any T ≤ t ≤ τ

A. Rodrı́guez-Bernal, J.A. “Localization on the boundary of blow-up for reaction-
diffusion equations with nonlinear boundary conditions”, Comm. in PDE’s 29
(2004)
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Remark 2. i) The time T does not need to be the classical blow-up time T∞,
that is, the time for which the solution u(t, x, u0) satisfies

u(t, x, u0) < +∞, 0 ≤ t < T∞

‖u(t, x, u0)‖L∞(Ω) → +∞, as t↗ T∞

We always have T∞ ≤ T .

ii) Local nature of the result: the blow-up phenomena is localized around x0,
independently of the behavior of β(x) at other points of the boundary.

iii) If β(x) > 0 in Ω and p > 1 then there is no blow up in the interior of the
domain

iv) If the nonlinear boundary condition is ∂u
∂n = α(x)uq with α(x0) > 0, then,

the condition for blow up in case ii) is β(x0)
α2(x0)

< q.
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Proof. We will consider the case p+ 1 = 2q, β(x0) < q.

Let us consider the one dimensional case Ω = (−1, 0), x0 = 0 and assume
β(x) ≤ β0 < q in (−b, 0) for some b small.

If v(t, x) is a smooth positive function in (x, t) ∈ (−b, 0) × (0, τ) such that















vt − vxx ≤ −β0v
p in (−b, 0)

v(−b) ≤ u(t,−b)
∂v
∂~n ≤ vq on x = 0
v(0, x) ≤ u0(x) in (−b, 0)

then, v(t, x) ≤ u(t, x, u0), x ∈ (−b, 0), 0 < t < τ .

We will construct a function v such that v(t, 0) → +∞ as t→ τ−.
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Consider the solution of the ODE

{

ψ′(t) = ψq(t)
ψ(0) = a ≥ 1

which is given explicitely by

ψa(t) =
E

(Ta − t)
1

q−1

, −∞ < t < Ta

with

E =
1

((q − 1))
1

q−1

, and Ta =
1

(q − 1)aq−1
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Ta

ψ

t0

a
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Let us define the function v as

v(t, x) = ψ(t+ x), 0 < t < Ta, −b < x < 0
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0−b

ψ (t+x)

x

z(t,x)=

t=0
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0−b

ψ (t+x)

x

z(t,x)=
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0−b

ψ (t+x)

x

z(t,x)=

18



0−b

ψ (t+x)

x

z(t,x)=

19



0−b

ψ (t+x)

x

z(t,x)=
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0−b

ψ (t+x)

x

z(t,x)=

at=T
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If v(t, x) = ψ(t+ x) and ψ′ = ψq, we have

vt = vx = ψ′ = vq

vxx = qvq−1vx = qv2q−1 = qvp

Hence,
vt − vxx = vq − qv2q−1 = (vq−p − q)vp ≤ −β0v

p

as long as a, b are small enough (so that v is large enough) and β0 < q.

∂v

∂n
(t, 0) = vx(t, 0) = ψ′(t) = vq(t, 0)

v(0, x) = ψ(x) ≤ ψ(0) = a

v(t,−b) = ψ(t− b) ≤ ψ(Ta − b) =
E

b1/(q−1)

Hence, we just need to choose an initial condition u0 large enough so that
u0(x) ≥ a, x ∈ (−b, 0) and u(t,−b, u0) ≥

E
b1/(q−1) for t ∈ (0, Ta).
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For the higher dimensional case we proceed similarly:

Ω

β(x)< β <q
0

Γ0

x
0 Γ

1
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Ω
DΓ

0 Γ1

y
RR
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Ω
DΓ

0 Γ1

y
RR

25



Ω
DΓ

0 Γ1

y
RR
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LOCALIZATION OF GLOBAL BOUNDEDNESS

Proposition 3. ( J.A.(2005))

Let p > 1, q ≥ 1 and x0 ∈ ΓN . If one of the two following conditions hold

i) p+ 1 > 2q and β(x0) > 0 or

ii) p+ 1 = 2q and β(x0) > q,

then, for any initial condition 0 ≤ u0 ∈ L∞(Ω) the proper minimal solution
starting at u0 is bounded in a neighborhood of x0 in Ω̄, for all t > 0. That is,
there exist δ,M > 0 such that

sup
0≤t<∞, x∈B(x0,δ)∩Ω̄

u(t, x, u0) ≤M
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Remark 4. i) Local nature of the result: the boundedness of the solution is
localized around x0, independently of the behavior of β(x) at other points.

ii) If the nonlinear boundary condition is ∂u
∂n = α(x)uq with α(x0) > 0, then,

the condition for boundedness is in case ii) is β(x0)
α2(x0)

> q.
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Ω
β(   )

α(   )2
>q

x

x

β(   )

α(   )
2

<q
x

x

Blow up in this 
part of the boundary 

boundary 

global boundedness

in this part of the
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Ω

β β
0

Γ0

x
0 Γ

1

(x)> >q
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x’

x
N

Ω
D

y
R

R

0
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x’

x
N

Ω
D

y
R

R

0

{

−∆w = −β0w
p, B(yR, R)

w = +∞, ∂B(yR, R)

If R is small enough then u(t, x, u0) ≤ w for all t ≥ 0.
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x’

x
N

Ω
D

y
R

R

0
If r = |x− yR|, then the function w is asymptotically for r ∼ R,

w(r) ∼ C∗ 1

β
1

p−1
0

(R− r)
−2
p−1

C∗ = (2(p+ 1)/(p− 1)2)1/(p−1)
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x’

x
N

Ω
D

y
R

R

ρ

0

Hence, if q < β1 < β0, then

w(r) ≤ C∗ 1

β
1

p−1
1

(R− r)
−2
p−1, ρ < r < R
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x’

x
N

Ω
D

y
R

R

ρ

0

R+ ε
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x’

x
N

Ω
D

y
R

R

ρ

0

R+ ε

Now, for q < β2 < β1 < β0, define the function

H(r) = C∗ 1

β
1

p−1
2

(R+ ε− r)
−2
p−1, ρ < r < R+ ε
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x’

x
N

Ω
D

y
Rρ

0

R+ ε

∃ε0 > 0 small enough such that for all 0 < ε < ε0, we have

−∆H(r) ≥ −β0H(r)p, ρ < r < R+ ε

H(ρ) ≥ w(|x− yR|) ≥ u(t, x, u0)

H(R+ ε) = +∞ ≥ u(t, x, u0), x ∈ Ω̄ ∩ ∂B(yR, R+ ε)
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x’

x
N

Ω
D

y
Rρ

0

R+ ε

x

n(x)

If x ∈ ∂Ω ∩B(yR, R+ ε), then

∂H(x)
∂n = ∇H · ~n(x) = H ′(r) x−yR

|x−yR|~n(x)

But x−yR
|x−yR|~n(x) ≥ 1 − δ and δ → 0 as ε→ 0.
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Moreover, direct computations, show that (if for instance p+ 1 = 2q) that

H ′(r) =

√

β2

q
(H(r))q

Hence,

∂H

∂n
≥

√

β2

q
(1 − δ)(H(r))q ≥ H(r)q

by choosing ε small enough.

Therefore, H is a local supersolution which is bounded in a neighborhood
of x0.
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Hence if the equation is







ut − ∆u = −β(x)up in Ω
∂u
∂~n = α(x)uq on ΓN

u(0, x) = u0(x) ≥ 0 in Ω

Ω
β(   )

α(   )2
>q

x

x

β(   )

α(   )
2

<q
x

x

Blow up in this 
part of the boundary 

boundary 

global boundedness

in this part of the
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