Controllability of a 1D Schrödinger equation

Karine BEAUCHARD

CMLA, ENS Cachan, France

J. Math. Pures et Appl., Vol 84, Issue 7, July 2005, p 851-956

ション ふゆ アメリア イロア しょうくしゃ

A quantum particle is represented by a <u>wave function</u> :

$$egin{aligned} \phi &: & [0,T] & imes & \mathbb{R} & o & \mathbb{C} \ & (t & , & z) & \mapsto & \phi(t,z), \end{aligned} \ & & \int \limits_{\mathbb{R}} |\phi(t,z)|^2 dz = 1. \end{aligned}$$

When the particle is in a potential V(z) $(\hbar \leftarrow 1, m \leftarrow 1)$, then

$$i \frac{\partial \phi}{\partial t}(t,z) = -\frac{1}{2} \frac{\partial^2 \phi}{\partial z^2}(t,z) + V(z)\phi(t,z).$$

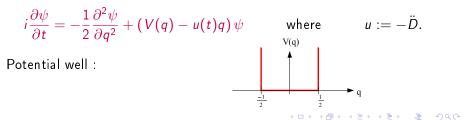
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A fixed potential V(z) is translated,

$$irac{\partial\phi}{\partial t}=-rac{1}{2}rac{\partial^2\phi}{\partial z^2}+V(z-D(t))\phi,$$

where D(t): "position "of the potential.

$$\begin{cases} q := z - D(t) \\ \psi(t,q) := \phi(t,z)e^{i(-z\dot{D} + D\dot{D} - \frac{1}{2}\int_0^t \dot{D}^2)} \end{cases}$$



Question

$$(\Sigma) \begin{cases} i \frac{\partial \psi}{\partial t} = -\frac{1}{2} \frac{\partial^2 \psi}{\partial q^2} - u(t) q \psi, \ q \in I := (-1/2, 1/2), \\ \psi(t, \pm 1/2) = 0. \end{cases}$$

 $\frac{\text{State}}{\text{Control}}: \psi \in S.$ $\frac{\text{Control}}{\text{Controllability}}?$

 ψ_0 , ψ_f fixed. Does there exist T > 0 and a trajectory $(\psi(t), u(t))$ of (Σ) on [0, T] such that $\psi(0) = \psi_0$ and $\psi(T) = \psi_f$?

$$\underbrace{\psi_0}_{u(t)} \underbrace{\psi(t)}_{u(t)} \underbrace{\psi_f}_{t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Result : local controllability

(Σ) $i\dot{\psi} = -(1/2)\psi'' - u(t)q\psi, \qquad \psi(t, \pm 1/2) = 0.$ Ground state for $u \equiv 0$: $\psi_1(t, q) := \varphi_1(q)e^{-i\lambda_1 t}$

<u>Theorem</u>: There exists $\eta > 0$ such that, for every ψ_0 , ψ_f in $S \cap H^7_{(0)}(I, \mathbb{C})$ which satisfy

$$\|\psi_0 - \varphi_1 e^{i\phi_0}\|_{H^7} \leqslant \eta, \quad \|\psi_f - \varphi_1 e^{i\phi_f}\|_{H^7} \leqslant \eta,$$

there exists a trajectory (ψ, u) of (Σ) on an interval [0, T] such that $\psi(0) = \psi_0, \ \psi(T) = \psi_f$, moreover $u \in H^1_0((0, T), \mathbb{R})$.

Let (ψ^*, u^*) be a trajectory of (Σ) .

Linearized system around (ψ^*, u^*) controllable in time T.

 \Downarrow (often)

Nonlinear system (Σ) locally controllable in a neighborhood of ($\psi^*(0), \psi^*(T)$) in time T.

Proof : Inverse Mapping Theorem on

$$\Theta:(\psi_0,u)\mapsto(\psi(0),\psi(T))$$

where ψ solves (Σ) with control u and initial condition ψ_0 .

$\frac{1^{st} \text{ difficulty }}{1}$ the linearized system around $(\psi_1, u \equiv 0)$ is not controllable (P. Rouchon)

$$(\Sigma^L): \qquad i \dot{\Psi} = -rac{1}{2} \Psi'' - w(t) q \psi_1 \qquad \Psi(t,\pm 1/2) = 0$$

 $\underline{\text{State}}: \Psi(t) \in T_{\psi_1(t)}S \qquad \underline{\text{Control}}: w$

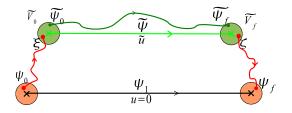
$$\Psi(t) = \sum_{k=1}^{\infty} x_k(t) \varphi_k$$
 where $\begin{cases} -\frac{1}{2} \varphi_k'' = \lambda_k \varphi_k \\ \varphi_k(\pm 1/2) = 0 \end{cases}$

$$i\dot{x}_k(t) = \lambda_k x_k(t) - w(t) < q\varphi_1, \varphi_k > e^{-i\lambda_1 t}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

when k is odd : $i\dot{x}_k = \lambda_k x_k$

Strategy : return method



1) Find a trajectory $(\widetilde{\psi}, \widetilde{u})$ of (Σ) such that the linearized system around $(\widetilde{\psi}, \widetilde{u})$ is controllable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

2) Construct neighborhoods and trajectories.

<u>Return method</u>, 1^{st} step : the linearized system around the GS for $u \equiv \gamma > 0$ is controllable.

(
$$\Sigma$$
) $i\dot{\psi} = -(1/2)\psi'' - u(t)q\psi, \qquad \psi(t,\pm 1/2) = 0.$

Ground state for $u \equiv \gamma$: $\psi_1(t,q) := \varphi_1(q) e^{-i\lambda_1 t}$

$$(\Sigma_{\gamma}^{L}) \begin{cases} i\dot{\Psi} = -\frac{1}{2}\Psi'' - \gamma q\Psi - wq\psi_{1}, \\ \Psi(t, \pm 1/2) = 0 \end{cases}$$

$$\Psi(t) = \sum_{k=1}^{\infty} x_k(t) \varphi_k \quad \text{where} \quad \left\{ \begin{array}{l} -\frac{1}{2} \varphi_k'' - \gamma q \varphi_k = \lambda_k \varphi_k \\ \varphi_k(\pm 1/2) = 0 \end{array} \right.$$

$$i\dot{x}_k(t) = \lambda_k x_k(t) - w(t) < q\varphi_1, \varphi_k > e^{-i\lambda_1 t}$$

Controllability of the linearized system around $(\psi_1, u \equiv \gamma)$

$$\Psi(au)=\Psi_f$$
 is equivalent to $:orall k\in\mathbb{N}^*$,

$$<\Psi_f, \varphi_k>=\left(<\Psi_0, \varphi_k>+ib_k\int_0^T w(t)e^{i(\lambda_k-\lambda_1)t}dt
ight)e^{-i\lambda_kT}$$

where $b_k := \langle q \varphi_1, \varphi_k \rangle$.

Trigonometric moment problem :

$$\int_0^T w(t)e^{i\omega_k t}dt = d_k, \forall k \in \mathbb{N}^*.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

If T > 0 and $d \in l^2(\mathbb{N}^*, \mathbb{C})$, there exists $w \in L^2((0, T), \mathbb{R})$. (Ingham inequalities)

Controllability of the linearized system around $(\psi_1, u \equiv \gamma)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

- when $\gamma \neq 0$ small enough,
- $\forall T > 0$,
- in $H^3(I,\mathbb{C})$,
- with control $w \in L^2((0, T), \mathbb{R})$.

 $\frac{2^{nd}}{(\psi_1(0),\psi_1(T))}$, the IMT cannot be applied.

$$\Theta: \begin{array}{ccc} E & \rightarrow & F \\ (\psi_0, u) & \mapsto & (\psi(0), \psi(T)) \end{array}$$

うつん 川川 スポット エリット ふしゃ

Classical situation : 1) $\Theta \in C^1$ 2) $d\Theta(\varphi_1, \gamma)$ is surjective

Here, loss of regularity : $\forall y \in F, \exists x \in \widetilde{E} \text{ such that } d\Theta(\varphi_{1,\gamma},\gamma)x = y \text{ but } \widetilde{E} \supseteq E.$

 \rightarrow Nash-Moser theorem

Main idea of Nash-Moser theorem

 $f: \mathbb{R}^n \to \mathbb{R}^n$ df(\alpha) invertible b fixed, closed to f(\alpha) We search a such that f(a) = b.

In the Inverse Mapping Theorem :

$$x_{n+1} = x_n - df(\alpha)^{-1} \cdot [f(x_n) - b]$$

if $x_0 \in H^5 imes H^2$ then $x_1 \in H^3 imes H^1$, $x_2 \in H^1 imes L^2$ etc

In the Nash-Moser Theorem :

$$x_{n+1} = x_n - R_n \{ df(x_n)^{-1} \cdot [f(x_n) - b] \}$$

ション ふゆ アメリア イロア しょうくしゃ

where R_n : smoothing operator.

Difficulties in the application of Nash-Moser theorem

$$x_{n+1} = x_n - R_n \{ df(x_n)^{-1} \cdot [f(x_n) - b] \}$$

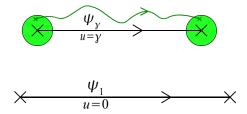
1) Controllability of an infinite number of linear systems : existence of $df(x_n)^{-1}$

2) Tame estimates on the controls \rightarrow convergence

3) Construction of smoothing operators R_n

1),2) "closed "linear maps (in the sense of tame estimates) 3) for u : convolution, troncature for ψ : decomposition on a basis, troncature of high frequencies

Local controllability of (Σ) around $(\psi_{1\gamma}, u \equiv \gamma)$

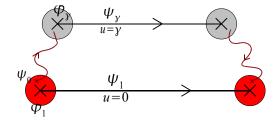


<u>Theorem</u>: Let $T := 4/\pi$ and $\gamma \in (0, \gamma_0)$. There exists $\delta > 0$ such that, for every $\psi_0, \psi_f \in S \cap H^7_{(\gamma)}(I, \mathbb{C})$ with

$$\|\psi_0 - \psi_{1,\gamma}(0)\|_{H^7} < \delta, \quad \|\psi_f - \psi_{1,\gamma}(T)\|_{H^7} < \delta$$

there exists $v \in H_0^1((0, T), \mathbb{R})$ such that the solution of (Σ) with control $u := \gamma + v$ and initial condition ψ_0 satisfies $\psi(T) = \psi_f$.

Return method, 2nd step : Quasi-static transformations



 $u(t) = \gamma f(\epsilon t)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

With the same proof : local controllability in a $H^{6+\epsilon}$ -neighborhood of any eigenstate ψ_k .

<u>Nash-Moser theorem</u> : unavoidable on Sobolev spaces, but the inverse mapping theorem could be sufficient on other spaces (?).

 $\frac{\text{Regularity assumption}}{\text{Conjecture : controllable in } H^{6+\epsilon} \text{ only technical.}}$

<u>Time of control</u> : long here (quasi-static transformations). Open problem : \exists minimal time T_m for controllability? Conjecture : $T_m > 0$.

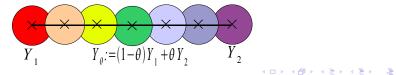
Steady-state controllability of (Σ) (with J.-M. Coron, accepted in J. Funct. Analysis)

$$(\Sigma_0) \begin{cases} i\dot{\psi} = -\frac{1}{2}\psi'' - u(t)q\psi, \\ \psi(t, \pm 1/2) = 0, \\ \dot{s} = u, \\ \dot{d} = s. \end{cases}$$

 $\underline{\mathsf{State}}: Y := (\psi, s, d) \in \mathcal{S} \times \mathbb{R} \times \mathbb{R}, \qquad \underline{\mathsf{Control}}: u$

Theorem : There exist T > 0 and $u \in H_0^1((0, T), \mathbb{R})$ such that the solution of (Σ_0) with $Y(0) = (\varphi_1, 0, 0)$ and control u satisfies $Y(T) = (\varphi_2, 0, 0)$.

Eigenstates of (Σ_0) : $Y_k(t) := (\psi_k(t), s(t) \equiv 0, d(t) \equiv 0)$



Additional difficulty : one direction is missed in the control of the linearized system.

Linearized system around
$$(Y_{\gamma}, u \equiv \gamma)$$
:
 $\Psi(T) = \Psi_f \Leftrightarrow \int_0^T w(t)e^{i(\lambda_k - \lambda_1)t}dt = ..., \forall k \in \mathbb{N}^*,$
 $S(T) = S_f \Leftrightarrow \int_0^T w(t)dt = ...$
 $D(T) = D_f \Leftrightarrow \int_0^T (T - t)w(t)dt = ...$

The directions S and Ψ are linearly dependant.

■ Nash-Moser \Rightarrow controllability up to codimension one, ■ 2^{nd} order term $d^2\Phi \Rightarrow$ controllability

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

In dimension $N \ge 2$: this strategy could be adapted to N = 2, but not to $N \ge 3$.

<u>Other nonlinearities</u> : this strategy could be adapted to

$$i\dot{\psi}=-rac{1}{2}\psi^{\prime\prime}+\epsilon|\psi|^{2}\psi-u(t)q\psi,t\in[0,T],q\in I.$$

Nash-Moser theorem on other equations :

- 1) Rod equation
- 2) Schrödinger with a potential well of variable length l(t) > 0

ション ふゆ アメリア イロア しょうくの

For every $\psi_0 \in S \cap H^2 \cap H^1_0(I, \mathbb{C})$, the reachable set

 $\{\psi(T); T > 0, u \in L^{r}_{loc}(\mathbb{R}_{+}, \mathbb{R}), r > 1\}$

has a dense complement in $\mathcal{S} \cap H^2 \cap H^1_0(I, \mathbb{C})$.

But this argument fails with $H^2 \rightarrow H^3$.

$$\begin{cases} u_{tt} + u_{xxxx} + p(t)u_{xx} = 0, t \in [0, T], x \in (0, 1), \\ \underline{\text{either}} : u = u_x = 0, \text{ at } x = 0, 1, \\ \underline{\text{or}} : u = u_x = 0 \text{ at } x = 0 \text{ and } u_{xx} = u_{xxx} = 0 \text{ at } x = 1, \end{cases}$$

Local controllability in a $H^{5+} imes H^{3+}((0,1),\mathbb{R})$ -neighborhood of

$$u^{ref}(t,x) := \varphi_k(x) \sin(\sqrt{\lambda_k}t) + \varphi_{k+1} \sin(\sqrt{\lambda_{k+1}}t).$$

with control $p \in H^1_0((0, T), \mathbb{R})$ and $T := 8/\pi$.

Schrödinger in a potential of variable length

$$\left\{ egin{array}{l} \dot{\psi}(t,q)=-\psi^{\prime\prime}(t,q),t\in\mathbb{R}_+,q\in(0,l(t)),\ \psi(t,0)=\psi(t,l(t))=0. \end{array}
ight.$$

Controllability in a H^{5+} -neighborhood of the ground state for $l \equiv 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

シンク 手 ・ 手 ・ (日)・ (日)・ (日)・

<u>Theorem</u>: There exists $\gamma_0 > 0$ such that, for every $\gamma \in (0, \gamma_0)$, for every T > 0, for every $\Psi_0 \in T_{\mathcal{S}}(\psi_{1,\gamma}(0))$, $\Psi_f \in T_{\mathcal{S}}(\psi_{1,\gamma}(T))$, with $\Psi_0, \Psi_f \in H^3_{(0)}(I, \mathbb{C})$

there exists

$$w \in L^2((0, T), \mathbb{R})$$

such that the solution of

$$\begin{cases} i\dot{\Psi} = -\frac{1}{2}\Psi'' - \gamma q\Psi - w(t)q\psi_{1,\gamma}, \\ \Psi(0) = \Psi_0, \\ \Psi(t, \pm 1/2) = 0, \end{cases}$$

ション ふゆ アメリア イロア しょうくの

satisfies $\Psi(T) = \Psi_f$.