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Schrödinger equation

A quantum particle is represented by a wave function :

φ : [0,T ] × R → C
(t , z) 7→ φ(t, z),∫

R

|φ(t, z)|2dz = 1.

When the particle is in a potential V (z) (~← 1,m← 1), then

i
∂φ

∂t
(t, z) = −1

2

∂2φ

∂z2
(t, z) + V (z)φ(t, z).



Particle in a potential well

A �xed potential V (z) is translated,

i
∂φ

∂t
= −1

2

∂2φ

∂z2
+ V (z − D(t))φ,

where D(t) : �position �of the potential.{
q := z − D(t)

ψ(t, q) := φ(t, z)e i(−zḊ+DḊ− 1

2

R
t

0
Ḋ2)

i
∂ψ

∂t
= −1

2

∂2ψ

∂q2
+ (V (q)− u(t)q)ψ where u := −D̈.

Potential well :



Question

(Σ)

{
i ∂ψ∂t = −1

2

∂2ψ
∂q2
− u(t)qψ, q ∈ I := (−1/2, 1/2),

ψ(t,±1/2) = 0.

State : ψ ∈ S.

Control : u.

Controllability ?

ψ0, ψf �xed.

Does there exist T > 0 and a trajectory (ψ(t), u(t)) of (Σ) on
[0,T ] such that ψ(0) = ψ0 and ψ(T ) = ψf ?

t 
u t 

0  f



Result : local controllability

(Σ) i ψ̇ = −(1/2)ψ′′ − u(t)qψ, ψ(t,±1/2) = 0.

Ground state for u ≡ 0 : ψ1(t, q) := ϕ1(q)e−iλ1t

1
0

 f

Theorem : There exists η > 0 such that, for every ψ0, ψf in

S ∩ H7
(0)(I ,C) which satisfy

‖ψ0 − ϕ1e iφ0‖H7 6 η, ‖ψf − ϕ1e iφf ‖H7 6 η,

there exists a trajectory (ψ, u) of (Σ) on an interval [0,T ] such
that ψ(0) = ψ0, ψ(T ) = ψf , moreover u ∈ H1

0 ((0,T ),R).



Classical approach

Let (ψ∗, u∗) be a trajectory of (Σ).

Linearized system around (ψ∗, u∗) controllable in time T.

⇓ (often)

Nonlinear system (Σ) locally controllable in a neighborhood

of (ψ∗(0), ψ∗(T )) in time T .

Proof : Inverse Mapping Theorem on

Θ : (ψ0, u) 7→ (ψ(0), ψ(T ))

where ψ solves (Σ) with control u and initial condition ψ0.



1st di�culty : the linearized system around (ψ1, u ≡ 0) is
not controllable (P. Rouchon)

(ΣL) : iΨ̇ = −1
2
Ψ′′ − w(t)qψ1 Ψ(t,±1/2) = 0

State : Ψ(t) ∈ Tψ1(t)S Control : w

Ψ(t) =
∞∑
k=1

xk(t)ϕk where

{
−1

2
ϕ′′k = λkϕk

ϕk(±1/2) = 0

i ẋk(t) = λkxk(t)− w(t) < qϕ1, ϕk > e−iλ1t

when k is odd : i ẋk = λkxk



Strategy : return method

1) Find a trajectory (ψ̃, ũ) of (Σ) such that the linearized system

around (ψ̃, ũ) is controllable.

2) Construct neighborhoods and trajectories.



Return method, 1st step : the linearized system around the
GS for u ≡ γ > 0 is controllable.

(Σ) i ψ̇ = −(1/2)ψ′′ − u(t)qψ, ψ(t,±1/2) = 0.

Ground state for u ≡ γ : ψ1(t, q) := ϕ1(q)e−iλ1t

(ΣL
γ)

{
iΨ̇ = −1

2
Ψ′′ − γqΨ− wqψ1,

Ψ(t,±1/2) = 0

Ψ(t) =
∞∑
k=1

xk(t)ϕk where

{
−1

2
ϕ′′k − γqϕk = λkϕk

ϕk(±1/2) = 0

i ẋk(t) = λkxk(t)− w(t) < qϕ1, ϕk > e−iλ1t



Controllability of the linearized system around (ψ1, u ≡ γ)

Ψ(T ) = Ψf is equivalent to : ∀k ∈ N∗,

< Ψf , ϕk >=

(
< Ψ0, ϕk > +ibk

∫ T

0

w(t)e i(λk−λ1)tdt

)
e−iλkT

where bk :=< qϕ1, ϕk >.

Trigonometric moment problem :∫ T

0

w(t)e iωk tdt = dk ,∀k ∈ N∗.

If T > 0 and d ∈ l2(N∗,C), there exists w ∈ L2((0,T ),R).
(Ingham inequalities)



Controllability of the linearized system around (ψ1, u ≡ γ)

when γ 6= 0 small enough,

∀T > 0,

in H3(I ,C),

with control w ∈ L2((0,T ),R).



2nd di�culty : for the local controllability around
(ψ1(0), ψ1(T )), the IMT cannot be applied.

Θ : E → F

(ψ0, u) 7→ (ψ(0), ψ(T ))

Classical situation :

1) Θ ∈ C 1

2) dΘ(ϕ1, γ) is surjective

Here, loss of regularity :

∀y ∈ F ,∃x ∈ Ẽ such that dΘ(ϕ1,γ , γ)x = y but Ẽ ! E .

→ Nash-Moser theorem



Main idea of Nash-Moser theorem

f : Rn → Rn

df (α) invertible
b �xed, closed to f (α)
We search a such that f (a) = b.

In the Inverse Mapping Theorem :

xn+1 = xn − df (α)−1.[f (xn)− b]

if x0 ∈ H5 × H2 then x1 ∈ H3 × H1, x2 ∈ H1 × L2 etc

In the Nash-Moser Theorem :

xn+1 = xn − Rn{df (xn)−1.[f (xn)− b]}

where Rn : smoothing operator.



Di�culties in the application of Nash-Moser theorem

xn+1 = xn − Rn{df (xn)−1.[f (xn)− b]}

1) Controllability of an in�nite number of linear systems : existence

of df (xn)
−1

2) Tame estimates on the controls → convergence

3) Construction of smoothing operators Rn

1),2) �closed �linear maps (in the sense of tame estimates)

3) for u : convolution, troncature

for ψ : decomposition on a basis, troncature of high frequencies



Local controllability of (Σ) around (ψ1γ, u ≡ γ)


u=

1
u=0

Theorem : Let T := 4/π and γ ∈ (0, γ0). There exists δ > 0 such

that, for every ψ0, ψf ∈ S ∩ H7
(γ)(I ,C) with

‖ψ0 − ψ1,γ(0)‖H7 < δ, ‖ψf − ψ1,γ(T )‖H7 < δ,

there exists v ∈ H1
0 ((0,T ),R) such that the solution of (Σ) with

control u := γ + v and initial condition ψ0 satis�es ψ(T ) = ψf .



Return method, 2nd step : Quasi-static transformations


u=

1
u=0

0

1



u(t) = γf (εt)



Remarks, conjectures

With the same proof : local controllability in a H6+ε-neighborhood

of any eigenstate ψk .

Nash-Moser theorem : unavoidable on Sobolev spaces, but the

inverse mapping theorem could be su�cient on other spaces ( ?).

Regularity assumption : H6+ε only technical.

Conjecture : controllable in H3(I ,C) with control functions in L2.

Time of control : long here (quasi-static transformations).

Open problem : ∃ minimal time Tm for controllability ?

Conjecture : Tm > 0.



Steady-state controllability of (Σ)
(with J.-M. Coron, accepted in J. Funct. Analysis)

(Σ0)


i ψ̇ = −1

2
ψ′′ − u(t)qψ,

ψ(t,±1/2) = 0,
ṡ = u,

ḋ = s.

State : Y := (ψ, s, d) ∈ S × R× R, Control : u

Theorem : There exist T > 0 and u ∈ H1
0 ((0,T ),R) such that the

solution of (Σ0) with Y (0) = (ϕ1, 0, 0) and control u satis�es

Y (T ) = (ϕ2, 0, 0).

Eigenstates of (Σ0) : Yk(t) := (ψk(t), s(t) ≡ 0, d(t) ≡ 0)

Y 1
Y 2Y :=1−Y 1 Y 2



Additional di�culty : one direction is missed in the control
of the linearized system.

Linearized system around (Yγ , u ≡ γ) :
Ψ(T ) = Ψf ⇔

∫ T

0
w(t)e i(λk−λ1)tdt = ..., ∀k ∈ N∗,

S(T ) = Sf ⇔
∫ T

0
w(t)dt = ...

D(T ) = Df ⇔
∫ T

0
(T − t)w(t)dt = ...

The directions S and Ψ are linearly dependant.

Nash-Moser ⇒ controllability up to codimension one,

2nd order term d2Φ⇒ controllability



Prospects

In dimension N > 2 : this strategy could be adapted to N = 2, but

not to N > 3.

Other nonlinearities : this strategy could be adapted to

i ψ̇ = −1
2
ψ′′ + ε|ψ|2ψ − u(t)qψ, t ∈ [0,T ], q ∈ I .

Nash-Moser theorem on other equations :

1) Rod equation

2) Schrödinger with a potential well of variable length l(t) > 0





Non controllability in H2(Turinici ; Ball, Marsden, Slemrod)

For every ψ0 ∈ S ∩ H2 ∩ H1
0 (I ,C), the reachable set

{ψ(T );T > 0, u ∈ Lrloc(R+,R), r > 1}

has a dense complement in S ∩ H2 ∩ H1
0 (I ,C).

But this argument fails with H2 → H3.



Rod equation


utt + uxxxx + p(t)uxx = 0, t ∈ [0,T ], x ∈ (0, 1),
either : u = ux = 0, at x = 0, 1,
or : u = ux = 0 at x = 0 and uxx = uxxx = 0 at x = 1,

Local controllability in a H5+ × H3+((0, 1),R)-neighborhood of

uref (t, x) := ϕk(x) sin(
√
λkt) + ϕk+1 sin(

√
λk+1t).

with control p ∈ H1
0 ((0,T ),R) and T := 8/π.



Schrödinger in a potential of variable length

{
i ψ̇(t, q) = −ψ′′(t, q), t ∈ R+, q ∈ (0, l(t)),
ψ(t, 0) = ψ(t, l(t)) = 0.

Controllability in a H5+-neighborhood of the ground state for l ≡ 1.





Controllability of the linearized system around (ψ1, u ≡ γ)

Theorem : There exists γ0 > 0 such that, for every γ ∈ (0, γ0), for
every T > 0, for every Ψ0 ∈ TS(ψ1,γ(0)), Ψf ∈ TS(ψ1,γ(T )), with

Ψ0,Ψf ∈ H3
(0)(I ,C)

there exists

w ∈ L2((0,T ),R)

such that the solution of iΨ̇ = −1
2
Ψ′′ − γqΨ− w(t)qψ1,γ ,

Ψ(0) = Ψ0,
Ψ(t,±1/2) = 0,

satis�es Ψ(T ) = Ψf .


