Controllability of a 1D Schrédinger equation
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Schrédinger equation

A quantum particle is represented by a wave function :

¢: [0,T] x R — C
(t . 2) — ¢(t2),

/|¢>(t,z)|2dz =1.
R

When the particle is in a potential V(z) (A« 1, m < 1), then



Particle in a potential well

A fixed potential V/(z) is translated,

where D(t) : “position "of the potential.

q:=z—D(t)
w( ) ¢(t ) i(—zD+DD-1 [5 D?)

i =555+ (V(q) —u(t)g)y where u:=—D.

V(@)

Potential well : I




) { % = 128 — u(t)qy, g €l = (~1/2,1/2),

State : ¢ € S.
Control : u.

Controllability ?

¢0, ¢f fixed.
Does there exist T > 0 and a trajectory (¢(t), u(t)) of (X) on

[0, T] such that (0) = g and Y(T) = ¢ ?

oAU A,
ul(t)



Result : local controllability

(X) i =—(1/2¢" - u(t)qy, o(t,+1/2) = 0.

Ground state for u =0 : 1(t, q) == p1(q)e Mt

Theorem : There exists n > 0 such that, for every 1), 1r in

SN H(70)(I,(C) which satisfy

[0 — 1| r <, || — 0167 || e < m,

there exists a trajectory (¢, u) of (X) on an interval [0, T] such
that 1(0) = 1o, ¥(T) = 1¢, moreover u € H}((0, T),R).



Classical approach

Let (v*, u*) be a trajectory of (X).
Linearized system around (¢*, u*) controllable in time T.

|} (often)

Nonlinear system (X) locally controllable in a neighborhood
of (¢*(0),4*(T)) in time T.

Proof : Inverse Mapping Theorem on

©: (Yo, u) = (¥(0),4(T))

where 1) solves (X) with control v and initial condition .



1°t difficulty : the linearized system around ()1, u = 0) is

not controllable (P. Rouchon)

(xh): W= —%w” — w(t)qyr W(t,+1/2) =0

State : W(t) € Ty, (S Control : w

W(t) = ix (t) where { —29% = M
— pi(E1/2) = 0

i%e(t) = Mxe(t) — w(t) < gy, x> et

when k is odd : Xk = AgXk



Strategy : return method

1) Find a trajectory (1, ) of () such that the linearized system
around (%, u) is controllable.

2) Construct neighborhoods and trajectories.



Return method, 1% step : the linearized system around the

GS for u = v > 0 is controllable.

(X) i =—(1/2)¢" — u(t)q¥, o(t,+1/2) =0.

Ground state for u =~ : U1(t, q) = p1(g)e Mt

(ZL) I\U = _%wﬁ - f}/qw - qula
7V w(t,+1/2) = 0

° 1,1
Ll — yagk = Mo
V(t) = g xi(t where 2Pk~ T9Vk = Ak
N k=1 KD { pr(+1/2) =0

i%e(t) = Mexi(t) — w(t) < g1, o > et



Controllability of the linearized system around (¢, u = )

V(T) = Wy is equivalent to : Yk € N,

T . .
< Vg0 >= << Vo, o > +ibk/ W(t)e’()‘kAl)tdt> e~ iMT
0

where by :=< g1, YK >.

Trigonometric moment problem :

T -
/ w(t)e'“k'dt = dy,Vk € N*.
0

If T>0and d e /?(N*,C), there exists w € L>((0, T), R).
(Ingham inequalities)



Controllability of the linearized system around (¢, u = )

m when «y # 0 small enough,

m VT >0,

m in H3(1,C),

m with control w € L2((0, T),R).



2d difficulty : for the local controllability around

(101(0),1(T)), the IMT cannot be applied.

Classical situation :
1)ecct
2) dO(¢1,7) is surjective

Here, loss of rggularity : N
Vy € F,3x € E such that dO(p1,,7)x =y but E D E.

— Nash-Moser theorem



Main idea of Nash-Moser theorem

f:R" - R"

df («) invertible

b fixed, closed to f(«)

We search a such that 7(a) = b.

In the Inverse Mapping Theorem :

Xpi1 = Xg — df () 7L[f(x,) — b]
if xo € H> x H? then x; € H® x H!, xp € H' x L2 etc
In the Nash-Moser Theorem :

Xpt1 = Xp — Ra{df (xn)71.[f(xn) — b]}

where R, : smoothing operator.



Difficulties in the application of Nash-Moser theorem

Xnt1 = Xp — Ra{df (x,) " 1.[f(xn) — b]}

1) Controllability of an infinite number of linear systems : existence
of df (x,) 7t

2) Tame estimates on the controls — convergence

3) Construction of smoothing operators R,

1),2) “closed "linear maps (in the sense of tame estimates)
3) for u : convolution, troncature
for 1) : decomposition on a basis, troncature of high frequencies



Local controllability of (X) around (1, u = 7)

Theorem : Let T :=4/m and v € (0,70). There exists § > 0 such

that, for every 1,9 € SN H(77)(I, C) with

10 = Y14 (0)l7 <6, llvbr = Y14(T)l[w7 <6,

there exists v € H3((0, T),R) such that the solution of () with
control v := -~ + v and initial condition v satisfies {)(T) = v¢.



Return method, 2@ step : Quasi-static transformations

u(t) = yf(et)



Remarks, conjectures

With the same proof : local controllability in a H®+¢-neighborhood
of any eigenstate ;.

Nash-Moser theorem : unavoidable on Sobolev spaces, but the
inverse mapping theorem could be sufficient on other spaces (7).

Regularity assumption : H%T¢ only technical.
Conjecture : controllable in H3(/,C) with control functions in L2.

Time of control : long here (quasi-static transformations).
Open problem : 3 minimal time T,, for controllability ?
Conjecture : T, > 0.



Steady-state controllability of (X)

(with J.-M. Coron, accepted in J. Funct. Analysis)

i = —3y" — u(t)qy,
(ZO) ¢(t7 :l:l/2) = 07

s=u,
d=s.
State : Y := (¢,5,d) € S x R x R, Control : u

Theorem : There exist T > 0 and u € H}((0, T),R) such that the
solution of (Xg) with Y(0) = (¢1,0,0) and control u satisfies
Y(T) = (¢2,0,0).

Eigenstates of (X¢) : Yk(t) := (vk(t),s(t) = 0,d(t)

0)

1,=(1-0)7 +6Y, )



Additional difficulty : one direction is missed in the control

of the linearized system.

Linearized system around (Yy,u=17):
V(T)=Vr &= fOT w(t)elM—A)tdr = | Wk € N¥,
S(T)=Sr & [ w(t)dt = ...

D(T)=Ds & [ (T — t)w(t)dt = ...

The directions S and W are linearly dependant.

m Nash-Moser = controllability up to codimension one,
m 2" order term d?® = controllability



Prospects

In dimension N > 2 : this strategy could be adapted to N = 2, but
not to N > 3.

Other nonlinearities : this strategy could be adapted to

i) = _%w” + e[y — u(t)qy, t € [0, T], g € 1.

Nash-Moser theorem on other equations :
1) Rod equation
2) Schrodinger with a potential well of variable length /(t) > 0







Non controllability in H2(Turinici; Ball, Marsden, Slemrod)

For every ¢y € SN H? N H}(1,C), the reachable set
{(T); T >0,u€ Lje(Ry,R), r > 1}

loc

has a dense complement in SN H2 N H(/,C).

But this argument fails with H? — H3,



Rod equation

’-ltt"i_uxxxx"f’p(t)uxx:07tE [07 T]7X€ (071)7
either : u=u, =0, at x=0,1,
or:u=uc,=0atx=0and Uy = Uyex =0 at x =1,

Local controllability in a H5* x H3+((0,1), R)-neighborhood of

0 (%) == o(x) sin(v/Akt) + 91 sin(yArrr ).

with control p € H&((O, T),R)and T :=8/x.



Schrédinger in a potential of variable length

{ ip(t,q) = —¢"(t,q), t € Ry, q € (0,/(t)),
P(t,0) = (¢, I(t)) = 0.

Controllability in a H>T-neighborhood of the ground state for / = 1.






Controllability of the linearized system around (¢, u = )

Theorem : There exists g > 0 such that, for every v € (0,7), for
every T > 0, for every Wg € Ts(¢1,,(0)), V¢ € Ts(¢14(T)), with

Vo, Vs € Hy,(1,C)

there exists
w e L2((0, T),R)

such that the solution of

W= _%\U” —vqV — w(t)qi1 4,
\U(O) = WO)
\U(t, Zl:]-/2) =0,

satisfies W(T) = Wy.



