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Let Ω be a bounded domain of Rd. We compare the dynamics of the damped wave equation

{
utt(x, t) + γn(x)ut(x, t) = ∆u(x, t) + f(x, u(x, t)) on Ω,
∂u
∂ν

= 0 on ∂Ω,
(1)

with the dynamics of the wave equation damped on the boundary
{

utt(x, t) = ∆u(x, t) + f(x, u(x, t)) on Ω,
∂u
∂ν

+ γ(x)ut = 0 on ∂Ω,
(2)

when γn converges to γ(x)⊗ δx∈∂Ω in the sense of distributions.
We assume that the nonlinearity f is dissipative. Under natural or generic hypotheses,
we are able to prove that, when n goes to +∞, the family of compact global attractors
(An)n∈N∪{+∞} corresponding to Equations (1) and (2) is lower-semicontinuous in H1(Ω)×
L2(Ω) and upper-semicontinuous in H1−ε(Ω) × H−ε(Ω), for any ε > 0. To obtain upper-
semicontinuity in X = H1(Ω) × L2(Ω), we have to show the existence of two positive
constants M and λ such that

∀n ∈ N, ∀t ≥ 0, ‖eAnt‖L(X) ≤ Me−λt , (3)

where An =

(
0 Id
∆ −γn

)
is the linear operator associated to Equation (1).

In dimension d = 1, using a multiplier method inspired by [2] and [3] or applying a result
of [1], we show concrete necessary and sufficient conditions such that (3) holds. In higher
dimensions, the question is completely open since we have neither an example satisfying
(3), nor a non-trivial counter-example.
For more details about this problem, we refer to [4].
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Fluid-structure interaction models

by M. Boulakia, boulakia@math.uvsq.fr

General presentation:

Many physical phenomena involve moving or deformable structures interacting with fluids
and are of great interest. A special study is necessary when fluid and structure dynamics
influence each other: the structure deforms under the action of the fluid stresses and, con-
versely, the fluid follows the structure displacement.

The structure can be immersed in a fluid (for instance for a plane surrounded by air, a
submarine in the sea, wind induced oscillations of a bridge) or the fluid can be contained
in the structure (blood in arteries).

Usually the structure is rigid (the structure motion is then composed of a translation
part and a rotation part) or deformable (modeled by elasticity equations). If it moves
freely, the motion of an elastic structure combines a rigid motion and an elastic motion.

To have an idea of further challenges, we give some open problems.

Open problems

• Global existence of weak solutions.

Global existence of weak solutions is not proved for the interaction problem between an
elastic structure and a fluid. For the time being, studies consider regularized elastic motions
to avoid problems of instantaneous collisions or interpenetration of the structure.

• Uniqueness and regularity.

Uniqueness has been proved for a rigid structure evolving in a fluid in 2D. A regularity
result is proved for this problem in L2.
Open problems: 3D ? elastic structure ? Lr ?

• The problem of collision.

In 2D, for a rigid structure in a fluid modeled by Navier-Stokes equations, a result obtained
in [14] proves that no collision can occur and thus global existence of solution is proved.
In the other cases, existence or uniqueness is usually local and is obtained as long as no
collisions occur.
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• Asymptotic behavior.

The asymptotic behavior of a fluid alone modeled by Navier-Stokes equations is very dif-
ficult. A study of [13] deals with the heat equation and a rigid structure in an unbounded
domain.

• Controllability of fluid-structure interaction problems.

A one-dimensional result of null controllability is proved by [8] for a fluid modeled by
Burgers equation.
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