
Topological Sensitivity Analysis for Three-dimensional Linear

Elasticity Problem

A.A. Novotny, R.A. Feijóo, E. Taroco
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Abstract

In this work we use the Topological-Shape Sensitivity Method to obtain the topo-
logical derivative for three-dimensional linear elasticity problems, adopting the total po-
tential energy as the cost function and the equilibrium equation as the constraint. This
method, based on classical shape sensitivity analysis, leads to a systematic procedure
to compute the topological derivative. In particular, firstly we present the mechan-
ical model, later we perform the shape derivative of the corresponding cost function
and, finally, we compute the final expression for the topological derivative using the
Topological-Shape Sensitivity Method and results from classical asymptotic analysis
around spherical cavities.

1 Introduction

The topological derivative has been recognized as a promising tool to solve topology optimization
problems (see [3], where 425 references concerning topology optimization of continuum structures are
included). See also [4, 8, 24] and references therein. Nevertheless, this concept is wider. In fact,
the topological derivative may also be applied to solve inverse problems and to simulate physical
phenomena with changes on the configuration of the domain of the problem. In addition, extension of
the topological derivative in order to include arbitrary shaped holes and its applications to Laplace,
Poisson, Helmoltz, Navier, Stokes and Navier-Stokes equations were developed by Masmoudi and
his co-workers and by Sokolowsky and his co-workers (see, for instance, [18] for applications of the
topological derivative in the context of topology design and inverse problems.

On the other hand, although the topological derivative is extremely general, this concept may
become restrictive due to mathematical difficulties involved in its calculation. However, several ap-
proaches to compute the topological derivative may be found in the literature. In particular, we pro-
posed an alternative method based on classical shape sensitivity analysis (see [1, 13, 14, 22, 25, 26, 27]
and references therein). This approach, called Topological-Shape Sensitivity Method, was already
applied in the following two-dimensional problems:

• Poisson: steady-state heat conduction problem taking into account both homogeneous and non-
homogeneous Neumann and Dirichlet and also Robin boundary conditions on the hole [6, 20];

• Navier: plane stress and plane strain linear elasticity [7];

• Kirchhoff: thin plate bending problem [21];
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More specifically, we have respectively considered scalar second-order, vector second-order and
scalar forth-order PDE two-dimensional problems. As a natural sequence of our work, therefore, in
the present paper we apply the Topological-Shape Sensitivity Method to compute the topological
derivative in a vector second-order PDE three-dimensional problem. In particular, we consider the
three-dimensional linear elasticity problem taking the total potential energy as the cost function and
the state equation as the constraint. Therefore, for the sake of completeness, in Section 2 we present
a short description of the Topological-Shape Sensitivity Method. In Section 3 we use this approach
to compute the topological derivative for the problem under consideration: in Section 3.1 we present
the mechanical model associated to three-dimensional linear elasticity; in Section 3.2 we compute the
shape derivative for this problem adopting the total potential energy as the cost function and the
weak form of the state equation as the constraint and in Section 3.3, we compute the final expression
for the topological derivative using classical asymptotic analysis around spherical cavities. Finally, it
is important to mention that the obtained result can be applied in several engineering problems such
as topology optimization of three-dimensional linear elastic structures.

2 Topological-Shape Sensitivity Method

Let us consider an open bounded domain Ω ⊂ R
3 with a smooth boundary ∂Ω. If the domain Ω is

perturbed by introducing a small hole at an arbitrary point x̂ ∈ Ω, we have a new domain Ωε = Ω−Bε,
whose boundary is denoted by ∂Ωε = ∂Ω ∪ ∂Bε, where Bε = Bε ∪ ∂Bε is a ball of radius ε centered
at point x̂ ∈ Ω. Therefore, we have the original domain without hole Ω and the new one Ωε with a
small hole Bε as shown in fig. (1). Thus, considering a cost function ψ defined in both domains, its
topological derivative is given in [8] as

DT (x̂) = lim
ε→0

ψ (Ωε) − ψ (Ω)

f (ε)
, (1)

where f (ε) is a negative function that decreases monotonically so that f (ε) → 0 with ε→ 0+.
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Figure 1: topological derivative concept

Recently an alternative procedure to compute the topological derivative, called Topological-Shape
Sensitivity Method, have been introduced by the authors [20]. This approach makes use of the whole
mathematical framework (and results) developed for shape sensitivity analysis (see, for instance, the
pioneer work of Murat & Simon [17]). The main result obtained in [20] may be briefly summarized in
the following Theorem (see also [6, 19]):

Theorem 1 Let f (ε) be a function chosen in order to 0 < |DT (x̂)| <∞, then the topological deriv-
ative given by eq. (1) can be written as

DT (x̂) = lim
ε→0

1

f ′ (ε)

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

, (2)
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where τ ∈ R
+ is used to parameterize the domain. That is, for τ small enough, we have

Ωτ :=
{

xτ ∈ R
3 : xτ = x + τv, x ∈ Ωε

}

. (3)

Therefore, xτ |τ=0 = x and Ωτ |τ=0 = Ωε. In addition, considering that n is the outward normal unit
vector (see fig. 1), then we can define the shape change velocity v, which is a smooth vector field in
Ωε assuming the following values on the boundary ∂Ωε

{

v = −n on ∂Bε

v = 0 on ∂Ω
(4)

and the shape sensitivity of the cost function in relation to the domain perturbation characterized by
v is given by

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

= lim
τ→0

ψ (Ωτ ) − ψ(Ωε)

τ
. (5)

Proof. Re-writing eq. (1) like a Taylor series expansion we have

ψ (Ωε) = ψ (Ω) + f (ε)DT (x̂) +R(f(ε)) , (6)

where R(f(ε)) contains all higher order terms than f(ε), that is, it satisfies

R(f(ε)) : lim
ε→0

R(f(ε))

f(ε)
= 0 . (7)

Let us take the derivative in relation to ε in both sides of eq. (6) to obtain

d

dε
ψ (Ωε) = f ′ (ε)DT (x̂) +R′ (f(ε)) f ′ (ε) , (8)

where, from eq. (5), we observe, for τ ∈ R
+ small enough, that

d

dε
ψ (Ωε) = lim

τ→0

ψ (Ωτ ) − ψ(Ωε)

τ
=

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

. (9)

Considering the shape derivative of the cost function given by above expression (eq. 9) and rearranging
eq. (8) we obtain

1

f ′ (ε)

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

= DT (x̂) +R′ (f(ε)) . (10)

Finally, taking the limit ε→ 0 in eq. (10) and considering the definition of R(f(ε)) given by eq. (7),
we observe that

lim
ε→0

R′ (f(ε)) = 0 ⇒ DT (x̂) = lim
ε→0

1

f ′ (ε)

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

(11)

and we get the proof of the Theorem
Observe that the topological derivative given by eq. (1) can be seen as an extension of classical

shape derivative, but with the mathematical difficulty concerning the lack of homeomorphism between
Ω and Ωε. On the other hand, the above Theorem highlights that the topological derivative may be
obtained by means of shape sensitivity analysis. Consequently, Topological-Shape Sensitivity Method
leads to a systematic approach to compute the topological derivative of the cost function ψ considering
eq. (2). In fact, the domains Ωε and Ωτ have the same topology, that allow us to build an homeo-
morphic map between them. In addition, Ωε and Ωτ can be respectively seen as the material and the
spatial configurations. Therefore, in order to compute the shape derivative of the cost function (see
eq. 5) we can use classical results from Continuum Mechanics like the Reynolds’ transport theorem
and the concept of material derivatives of spatial fields [11]. Finally, in this work we will show these
features in the context of three-dimensional elasticity.
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3 The topological derivative in three-dimensional linear elasticity

Now, to highlight the potentialities of the Topological-Shape Sensitivity Method, it will be applied to
three-dimensional linear elasticity problems considering the total potential energy as the cost func-
tion and the equilibrium equation in its weak form as the constraint. Therefore, considering the
above problem, firstly we introduce the mechanical model, later we perform the shape sensitivity of
the adopted cost function with respect to the shape change of the hole and finally we compute the
associated topological derivative.

3.1 Mechanical model

In this work, we consider a mechanical model restricted to small deformation and displacement and for
the constitutive relation we adopt an isotropic linear elastic material. These assumptions lead to the
classical three-dimensional linear elasticity theory [10]. In order to compute the topological derivative
associated to this problem, we need to state the equilibrium equations in the original domain Ω
(without hole) and in the new one Ωε (with hole).

3.1.1 Problem formulation in the original domain without hole

The mechanical model associated to the three-dimensional linear elasticity problem can be stated in
its variational formulation as following: find the displacement vector field u ∈ U , such that

∫

Ω

T(u) · E(η) =

∫

ΓN

q̄ · η ∀η ∈ V , (12)

where Ω represents a deformable body with boundary ∂Ω = ΓN ∪ ΓD, such that ΓN ∩ ΓD = ∅,
submitted to a set of surface forces q̄ on the Neumann boundary ΓN and displacement constraints ū

on the Dirichlet boundary ΓD. Therefore, assuming that q̄ ∈ L2 (ΓN ), the admissible functions set U
and the admissible variations space V are given, respectively, by

U =
{

u ∈ H1 (Ω) : u = u on ΓD

}

, V =
{

η ∈ H1 (Ω) : η = 0 on ΓD

}

. (13)

In addition, the linearized Green deformation tensor E(u) and the Cauchy stress tensor T(u) are
defined as

E(u) =
1

2

(

∇u + ∇uT
)

:= ∇su and T(u) = CE(u) = C∇su , (14)

where C = CT is the elasticity tensor, that is, since I and II respectively are the second and forth
order identity tensors, E is the Young’s modulus and ν is the Poisson’s ratio, we have

C =
E

(1 + ν) (1 − 2ν)
[(1 − 2ν) II + ν (I⊗ I)] ⇒ C−1 =

1

E
[(1 + ν) II− ν (I⊗ I)] . (15)

The Euler-Lagrange equation associated to the above variational problem, eq. (12), is given by the
following boundary value problem: find u such that







div T(u) = 0 in Ω
u = ū on ΓD

T(u)n = q̄ on ΓN

. (16)
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3.1.2 Problem formulation in the new domain with hole

The problem stated in the original domain Ω can also be written in the domain Ωε with a hole
Bε. Therefore, assuming null forces on the hole, we have the following variational problem: find the
displacement vector field uε ∈ Uε, such that

∫

Ωε

Tε(uε) ·Eε(ηε) =

∫

ΓN

q̄ · ηε ∀ηε ∈ Vε . (17)

where the set Uε and the space Vε are respectively defined as

Uε =
{

uε ∈ H1 (Ωε) : uε = u on ΓD

}

, Vε =
{

ηε ∈ H1 (Ωε) : ηε = 0 on ΓD

}

. (18)

As seen before, the tensors Eε(uε) and Tε(uε) are respectively given as

Eε(uε) = ∇suε and Tε(uε) = C∇suε , (19)

where the elasticity tensor C is defined in eq. (15). In accordance with the variational problem
given by eq. (17), the natural boundary condition on ∂Bε is Tε(uε)n = 0 (homogeneous Neumann
condition). Therefore, the Euler-Lagrange equation associated to this new variational problem is given
by the following boundary value problem: find uε such that















div Tε(uε) = 0 in Ωε

uε = ū on ΓD

Tε(uε)n = q̄ on ΓN

Tε(uε)n = 0 on ∂Bε

. (20)

3.2 Shape sensitivity analysis

Let us choose the total potential energy stored in the elastic solid under analysis as the cost function.
For simplicity, we assume that the external load remains fixed during the shape change. As it is well-
known, different approaches can be used to obtain the shape derivative of the cost function. However,
in our particular case, as the cost function is associated with the potential of the state equation, the
direct differentiation method will be adopted to compute its shape derivative. Therefore, considering
the total potential energy already written in the configuration Ωτ , defined through eq. (3), then
ψ(Ωτ ) := Jτ (uτ ) can be expressed by

Jτ (uτ ) =
1

2

∫

Ωτ

Tτ (uτ ) ·Eτ (uτ ) −

∫

ΓN

q̄ · uτ , (21)

where the tensors Eτ (uτ ) and Tτ (uτ ) are respectively given by

Eτ (uτ ) = ∇s
τuτ and Tτ (uτ ) = C∇s

τuτ , (22)

with ∇τ (·) used to denote

∇τ (·) :=
∂

∂xτ
(·) . (23)

In addition, uτ is the solution of the variational problem defined in the configuration Ωτ , that is: find
the displacement vector field uτ ∈ Uτ such that

∫

Ωτ

Tτ (uτ ) · Eτ (ητ ) =

∫

ΓN

q̄ · ητ ∀ ητ ∈ Vτ , (24)

where the set Uτ and the space Vτ are defined as

Uτ =
{

uτ ∈ H1 (Ωτ ) : uτ = u on ΓD

}

, Vτ =
{

ητ ∈ H1 (Ωτ ) : ητ = 0 on ΓD

}

. (25)
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Observe that from the well-known terminology of Continuum Mechanics, the domains Ωτ |τ=0 = Ωε

and Ωτ can be interpreted as the material and the spatial configurations, respectively. Therefore, in
order to compute the shape derivative of the cost function Jτ (uτ ), at τ = 0, we may use the Reynolds’
transport theorem and the concept of material derivatives of spatial fields, that is [11]

d

dτ

∫

Ωτ

ϕτ

∣

∣

∣

∣

τ=0

=

∫

Ωε

( ϕ̇τ |τ=0
+ ϕτ |τ=0

divv) , (26)

where ϕτ is a spatial scalar field and ˙(·) is used to denote

˙(·) :=
d (·)

dτ
. (27)

Taking into account the cost function defined through eq. (21) and assuming that the parameters
E, ν, ū, and q̄ are constants in relation to the perturbation represented by τ , we have, from eq. (26)
and following Theorem 1, eqs. (3,4), that

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=
1

2

∫

Ωε

[

d

dτ
(Tτ (uτ ) · Eτ (uτ ))

∣

∣

∣

∣

τ=0

+ Tε(uε) ·Eε(uε) div v

]

−

∫

ΓN

q̄ · u̇ε , (28)

where, according to the material derivatives of spatial fields [11], we have

d

dτ
(Tτ (uτ ) · Eτ (uτ ))

∣

∣

∣

∣

τ=0

= 2 (Tε(uε) ·Eε(u̇ε) −Tε(uε) · (∇uε∇v)s) . (29)

Substituting eq. (29) in eq. (28) we obtain

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=

∫

Ωε

[

1

2
Tε(uε) · Eε(uε) divv −Tε(uε) · (∇uε∇v)s

]

+

∫

Ωε

Tε(uε) ·Eε(u̇ε) −

∫

ΓN

q̄ · u̇ε . (30)

Since uε is the solution of the variational problem given by eq. (17) and considering that u̇ε ∈ Vε, the
eq. (30) becomes

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=

∫

Ωε

Σε · ∇v , (31)

where Σε is the Eshelby energy-momentum tensor (see, for instance, [5, 26]) given in this particular
case by

Σε =
1

2
(Tε(uε) ·Eε(uε)) I− (∇uε)

T
Tε(uε) . (32)

Remark 2 It is interesting to observe that the Eshelby tensor Σε appears as a duality pair with respect
to ∇v, as can be seen in eq. (31). This fact allow us to interpret Σε as the set of configurational
forces [12] associated to the change in the configuration of Ωε characterized by ∇v.

Let us compute again the shape derivative of the cost function Jτ (uτ ) defined through eq. (21),
at τ = 0, using another version for the Reynolds’ transport theorem [11], that is,

d

dτ

∫

Ωτ

ϕτ

∣

∣

∣

∣

τ=0

=

∫

Ωε

ϕ′

τ

∣

∣

τ=0
+

∫

∂Ωε

ϕτ |τ=0
(v · n) , (33)

where ϕτ is a spatial scalar field and (·)′ is used to denote

(·)′ :=
∂ (·)

∂τ
=
d (·)

dτ

∣

∣

∣

∣

xτ fixed

. (34)
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Which results in

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=
1

2

∫

∂Ωε

(Tε(uε) ·Eε(uε)) (v · n)+
1

2

∫

Ωε

∂

∂τ
(Tτ (uτ ) ·Eτ (uτ ))

∣

∣

∣

∣

τ=0

−

∫

ΓN

q̄ · u̇ε , (35)

where u̇ε can be written as [11]

u̇ε = u′

ε + (∇uε)v ⇒ u′

ε = u̇ε − (∇uε)v . (36)

Taking into account the notation introduced through eq. (34) and from eq. (36), we have

∂

∂τ
(Tτ (uτ ) · Eτ (uτ ))

∣

∣

∣

∣

τ=0

= 2Tε(uε) · Eε(u
′

ε)

= 2 (Tε(uε) ·Eε(u̇ε) −Tε(uε) ·Eε (ϕε)) , (37)

where
ϕε = (∇uε)v ⇒ Eε (ϕε) = ∇s

ϕε . (38)

Substituting eq. (37) in eq. (35) we obtain

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=
1

2

∫

∂Ωε

(Tε(uε) · Eε(uε)) (v · n) −

∫

Ωε

Tε(uε) ·Eε (ϕε)

+

∫

Ωε

Tε(uε) · Eε(u̇ε) −

∫

ΓN

q̄ · u̇ε

=
1

2

∫

∂Ωε

(Tε(uε) · Eε(uε)) (n · v) −

∫

Ωε

Tε(uε) ·Eε (ϕε) , (39)

since u̇ε ∈ Vε and uε is the solution of eq. (17). In addition, we observe that
∫

Ωε

Tε(uε) ·Eε (ϕε) =

∫

∂Ωε

Tε(uε)ϕε · n−

∫

Ωε

div(Tε(uε)) · ϕε . (40)

Considering this last result (eq. 40) in eq. (39) and taking into account again that uε is the solution
of eq. (20), we have

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=
1

2

∫

∂Ωε

(Tε(uε) ·Eε(uε)) (v · n) −

∫

∂Ωε

Tε(uε)ϕε · n

=

∫

∂Ωε

[

1

2
(Tε(uε) ·Eε(uε)) I− (∇uε)

T
Tε(uε)

]

n · v

=

∫

∂Ωε

Σεn · v , (41)

remembering that Σε and ϕε are respectively given by eq. (32) and eq. (38).
On the other hand, taking into account eq. (31) and considering the tensorial relation

div(ΣT
ε v) = Σε · ∇v+divΣε · v , (42)

we can apply the divergence theorem to obtain

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=

∫

∂Ωε

Σεn · v −

∫

Ωε

divΣε · v . (43)

Thus, from eqs. (43,41) we observe that the Eshelby tensor has null divergence. In fact, since v

is an arbitrary velocity field, then from the fundamental theorem of the calculus of variations it is
straightforward to verify that

∫

Ωε

divΣε · v = 0 ∀ v ⇔ divΣε = 0 (44)
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and the shape derivative of the cost function Jτ (uτ ) defined through eq. (21), at τ = 0, becomes an
integral defined on the boundary ∂Ωε, that is,

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

=

∫

∂Ωε

Σεn · v . (45)

In other words, if the velocity field v is smooth enough in the domain Ωε, then the shape sensitivity
of the problem only depends on the definition of this field on the boundary ∂Ωε.

3.3 Topological sensitivity analysis

In order to compute the topological derivative using the Topological-Shape Sensitivity Method, we
need to substitute eq. (45) in the result of Theorem 1 (eq. 2). Therefore, from the definition of the
velocity field (eq. 4) and considering the shape derivative of the cost function (eq. 45), we have that

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

= −

∫

∂Bε

Σεn · n , (46)

where

Σεn · n =
1

2
Tε(uε) · Eε(uε) −Tε(uε)n · (∇uε)n . (47)

In addition, taking into account homogeneous Neumann boundary condition on the hole, we have,
from eq. (20), that Tε(uε)n = 0 on ∂Bε, therefore

d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

= −
1

2

∫

∂Bε

Tε(uε) ·Eε(uε) . (48)

Finally, substituting eq. (48) in the result of the Theorem 1 (eq. 2), the topological derivative becomes

DT (x̂) = −
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

Tε(uε) ·Eε(uε) . (49)

Considering the inverse of the constitutive relation Eε(uε) = C−1Tε(uε) (see eq. 15), then the
integrand of eq. (49) may be expressed as a function of the stress tensor as following

Tε(uε) ·Eε(uε) =
1

E

[

(1 + ν)Tε(uε) ·Tε(uε) − ν (trTε(uε))
2
]

. (50)

Let us introduce a spherical coordinate system (r, θ, ϕ) centered in x̂ (see fig. 2), then the stress
tensor Tε(uε) = (Tε(uε))

T , when defined on the boundary ∂Bε, can be decomposed as

Tε(uε)|∂Bε
= T rr

ε (er ⊗ er) + T rθ
ε (er ⊗ eθ) + T rϕ

ε (er ⊗ eϕ)

+ T rθ
ε (eθ ⊗ er) + T θθ

ε (eθ ⊗ eθ) + T θϕ
ε (eθ ⊗ eϕ)

+ T rϕ
ε (eϕ ⊗ er) + T θϕ

ε (eϕ ⊗ eθ) + Tϕϕ
ε (eϕ ⊗ eϕ) , (51)

where er, eθ and eϕ are the basis of the spherical coordinate system such that

er · er = eθ · eθ = eϕ · eϕ = 1 and er · eθ = er · eϕ = eθ · eϕ = 0 . (52)

Since we have homogeneous Neumann boundary condition on ∂Bε, then

Tε(uε)n = 0 ⇒ Tε(uε)er = 0 on ∂Bε . (53)

¿From the decomposition of the stress tensor shown in eq. (51) and taking into account eqs. (52,53),
we observe that

Tε(uε)er = T rr
ε er + T rθ

ε eθ + T rϕ
ε eϕ = 0 ⇒ T rr

ε = T rθ
ε = T rϕ

ε = 0 . (54)
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Substituting eqs. (51,54) into eq. (50), the topological derivative given by eq. (49) may be written in
terms of the components of the stress tensor in spherical coordinate, as following

DT (x̂) = −
1

2E
lim
ε→0

1

f ′ (ε)

∫

∂Bε

dT (T θθ
ε , T θϕ

ε , Tϕϕ
ε )

= −
1

2E
lim
ε→0

1

f ′ (ε)

∫

2π

0

(
∫ π

0

dT (T θθ
ε , T θϕ

ε , Tϕϕ
ε )ε2 sin θdθ

)

dϕ , (55)

where
dT (T θθ

ε , T θϕ
ε , Tϕϕ

ε ) = (T θθ
ε )2 + (Tϕϕ

ε )2 − 2νT θθ
ε Tϕϕ

ε + 2(1 + ν)(T θϕ
ε )2 . (56)

Now, it is enough to calculate the limit ε → 0 in the eq. (55) to obtain the final expression of
the topological derivative. Thus, an asymptotic analysis [15] shall be performed in order to know the

behavior of the solution T θθ
ε , T θϕ

ε and Tϕϕ
ε when ε → 0. This behavior may be obtained from the

analytical solution for a stress distribution around a spherical void in a three-dimensional elastic body
[23], which is given, for any δ > 0 and at r = ε, by (see Appendix A)

T θθ
ε

∣

∣

∣

∂Bε

=
3

4

1

7 − 5ν

{

σ1 (u)
[

3 − 5(1 − 2ν) cos 2ϕ+ 10 cos 2θ sin2 ϕ
]

+ σ2 (u)
[

3 + 5(1 − 2ν) cos 2ϕ+ 10 cos 2θ cos2 ϕ
]

+σ3 (u) [2(4 − 5ν) − 10 cos 2θ]} + O(ε1−δ) , (57)

T θϕ
ε

∣

∣

∣

∂Bε

=
15

2

1 − ν

7 − 5ν
(σ1 (u) − σ2 (u)) cos θ sin 2ϕ+ O(ε1−δ) , (58)

Tϕϕ
ε |∂Bε

=
3

4

1

7 − 5ν

{

σ1 (u)
[

8 − 5ν + 5(2 − ν) cos 2ϕ+ 10ν cos 2θ sin2 ϕ
]

+ σ2 (u)
[

8 − 5ν − 5(2 − ν) cos 2ϕ+ 10ν cos 2θ cos2 ϕ
]

−2σ3 (u) (1 + 5ν cos 2θ)} + O(ε1−δ) , (59)

where σ1 (u) , σ2 (u) and σ3 (u) are the principal
stress values of the tensor T (u), associated to the original domain without hole Ω (see eq. 12),

evaluated in the point x̂ ∈ Ω, that is T (u)|
x̂
.

Substituting the asymptotic expansion given by eqs. (57,58,59) in eq. (55) we observe that function
f (ε) must be chosen such that

f ′ (ε) = − |∂Bε| = −4πε2 ⇒ f (ε) = − |Bε| = −
4

3
πε3 (60)

in order to take the limit ε→ 0 in eq. (55).
Therefore, from this choice of function f (ε) shown in eq. (60), the final expression for the topo-

logical derivative becomes a scalar function that depends on the solution u associated to the original
domain Ω (without hole), that is (see also [9, 16]):

• in terms of the principal stress values σ1 (u), σ2 (u) and σ3 (u) of tensor T (u)

DT (x̂) =
3

4E

1 − ν

7 − 5ν
[10(1 + ν)S1(u) − (1 + 5ν)S2(u)] , (61)

where S1(u) and S2(u) are respectively given by

S1(u) = σ1 (u)2 + σ2 (u)2 + σ3 (u)2 and S2(u) = (σ1 (u) + σ2 (u) + σ3 (u))2 ; (62)

• in terms of the stress tensor T (u)

DT (x̂) =
3

4E

1 − ν

7 − 5ν

[

10(1 + ν)T (u) · T (u) − (1 + 5ν)(trT (u))2
]

; (63)
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• in terms of the stress T (u) and strain E (u) tensors

DT (x̂) =
3

4

1 − ν

7 − 5ν

[

10T (u) ·E (u) −
1 − 5ν

1 − 2ν
trT (u) trE (u)

]

; (64)

which was obtained from a simple manipulation considering the constitutive relation given by
eq. (14). See also eq. (15).

Remark 3 It is interesting to observe that if we take ν = 1/5 in eq. (64), the final expression for the
topological derivative in terms of T (u) and E (u) becomes

DT (x̂) = T (u) ·E (u) . (65)

4 Conclusions

In this work, we have computed the topological derivative in three-dimensional linear elasticity taking
the total potential energy as the cost function and the state equation in its weak form as the constraint.
The relationship between shape and topological derivatives was formally established in Theorem 1,
leading to the Topological-Shape Sensitivity Method. Therefore, results from classical shape sensitivity
analysis could be used to compute the topological derivative in a systematic way. In particular, we
have obtained the explicit formula for the topological derivative for the problem under consideration
given by eqs. (61,63,64), whose result can be applied in several engineering problems such as topology
optimization of three-dimensional linear elastic structures (see, for instance, [2]).
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[18] P. Neittaanmäki et alli (eds.). European Congress on Computational Methods in Applied Sciences
and Engineering. Mini-symposium on Topological Sensitivity Analysis: Theory and Applications,
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[20] A.A. Novotny, R.A. Feijóo, C. Padra & E. Taroco. Topological Sensitivity Analysis. Computer
Methods in Applied Mechanics and Engineering, 192:803-829, 2003.
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A Asymptotic Analysis

In this appendix we present the analytical solution for the stress distribution around a spherical cavity
in a three-dimensional linear elastic body, whose result was used to perform the asymptotic analysis
in relation to the parameter ε in Section 3.3. Therefore, let us introduce a spherical coordinate system
(r, θ, ϕ) centered in x̂, as shown in fig. 2.

x^

e
3

e
2

e
1

r

e
r

eq

ej

q

j

e
n

Figure 2: spherical coordinate system (r, θ, ϕ) positioned in the center x̂ of the ball Bε.

Then, the stress distribution around the spherical cavity Bε is given, for any δ > 0, by

T rr
ε = T rr

1 + T rr
2 + T rr

3 + O(ε1−δ) ,
T rθ

ε = T rθ
1 + T rθ

2 + T rθ
3 + O(ε1−δ) ,

T rϕ
ε = T rϕ

1 + T rϕ
2 + T rϕ

3 + O(ε1−δ) ,
T θθ

ε = T θθ
1 + T θθ

2 + T θθ
3 + O(ε1−δ) ,

T θϕ
ε = T θϕ

1 + T θϕ
2 + T θϕ

3 + O(ε1−δ) ,
Tϕϕ

ε = Tϕϕ
1 + Tϕϕ

2 + Tϕϕ
3 + O(ε1−δ) ,

(66)

where T rr
i , T rθ

i , T rϕ
i , T θθ

i , T θϕ
i and Tϕϕ

i , for i = 1, 2, 3, are written, as:
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• for i = 1

T rr
1 =

σ1

14 − 10ν

[

12

(

ε3

r3
−
ε5

r5

)

+

(

14 − 10ν − 10(5 − ν)
ε3

r3
+ 36

ε5

r5

)

sin2 θ sin2 ϕ

]

, (67)

T rθ
1 =

σ1

14 − 10ν

[

7 − 5ν + 5(1 + ν)
ε3

r3
− 12

ε5

r5

]

sin 2θ sin2 ϕ , (68)

T rϕ
1 =

σ1

14 − 10ν

[

7 − 5ν + 5(1 + ν)
ε3

r3
− 12

ε5

r5

]

sin θ sin 2ϕ , (69)

T θθ
1 =

σ1

56 − 40ν

[

14 − 10ν + (1 + 10ν)
ε3

r3
+ 3

ε5

r5
−

(

14 − 10ν + 25(1 − 2ν)
ε3

r3
− 9

ε5

r5

)

cos 2ϕ

+

(

28 − 20ν − 10(1 − 2ν)
ε3

r3
+ 42

ε5

r5

)

cos 2θ sin2 ϕ

]

, (70)

T θϕ
1 =

σ1

14 − 10ν

[

7 − 5ν + 5(1 − 2ν)
ε3

r3
+ 3

ε5

r5

]

cos θ sin 2ϕ , (71)

Tϕϕ
1 =

σ1

56 − 40ν

[

28 − 20ν + (11 − 10ν)
ε3

r3
+ 9

ε5

r5
+

(

28 − 20ν + 5(1 − 2ν)
ε3

r3
+ 27

ε5

r5

)

cos 2ϕ

−30

(

(1 − 2ν)
ε3

r3
−
ε5

r5

)

cos 2θ sin2 ϕ

]

, (72)

• for i = 2

T rr
2 =

σ2

14 − 10ν

[

12

(

ε3

r3
−
ε5

r5

)

+

(

14 − 10ν − 10(5 − ν)
ε3

r3
+ 36

ε5

r5

)

sin2 θ cos2 ϕ

]

, (73)

T rθ
2 =

σ2

14 − 10ν

[

7 − 5ν + 5(1 + ν)
ε3

r3
− 12

ε5

r5

]

cos2 ϕ sin 2θ , (74)

T rϕ
2 =

−σ2

14 − 10ν

[

7 − 5ν + 5(1 + ν)
ε3

r3
− 12

ε5

r5

]

sin θ sin 2ϕ , (75)

T θθ
2 =

σ2

56 − 40ν

[

14 − 10ν + (1 + 10ν)
ε3

r3
+ 3

ε5

r5
+

(

14 − 10ν + 25(1 − 2ν)
ε3

r3
− 9

ε5

r5

)

cos 2ϕ

+

(

28 − 20ν − 10(1 − 2ν)
ε3

r3
+ 42

ε5

r5

)

cos 2θ cos2 ϕ

]

, (76)

T θϕ
2 =

−σ2

14 − 10ν

[

7 − 5ν + 5(1 − 2ν)
ε3

r3
+ 3

ε5

r5

]

cos θ sin 2ϕ , (77)

Tϕϕ
2 =

σ2

56 − 40ν

[

28 − 20ν + (11 − 10ν)
ε3

r3
+ 9

ε5

r5
−

(

28 − 20ν + 5(1 − 2ν)
ε3

r3
+ 27

ε5

r5

)

cos 2ϕ

−30

(

(1 − 2ν)
ε3

r3
−
ε5

r5

)

cos 2θ cos2 ϕ

]

, (78)
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• for i = 3

T rr
3 =

σ3

14 − 10ν

[

14 − 10ν − (38 − 10ν)
ε3

r3
+ 24

ε5

r5

−

(

14 − 10ν − 10(5 − ν)
ε3

r3
+ 36

ε5

r5

)

sin2 θ

]

, (79)

T rθ
3 =

−σ3

14 − 10ν

[

14 − 10ν + 10(1 + ν)
ε3

r3
− 24

ε5

r5

]

cos θ sin θ , (80)

T rϕ
3 = 0 , (81)

T θθ
3 =

σ3

14 − 10ν

[

(9 − 15ν)
ε3

r3
− 12

ε5

r5
+

(

14 − 10ν − 5(1 − 2ν)
ε3

r3
+ 21

ε5

r5

)

sin2 θ

]

, (82)

T θϕ
3 = 0 , (83)

Tϕϕ
3 =

σ3

14 − 10ν

[

(9 − 15ν)
ε3

r3
− 12

ε5

r5
− 15

(

(1 − 2ν)
ε3

r3
−
ε5

r5

)

sin2 θ

]

, (84)

where σ1, σ2 and σ3 are the principal stress values of the tensor T (u), associated to the original
domain without hole Ω, evaluated in the point x̂ ∈ Ω, that is T (u)|

x̂
. In other words, the tensor

T (u) was diagonalized in the following way

T (u)|
x̂

=

3
∑

i=1

σi(ei ⊗ ei) , (85)

where σi is the eigen-value associated to the ei eigen-vector of the tensor T (u)|
x̂
.

Remark 4 It is important to mention that the stress distribution for i = 1, 2 was obtained from a
rotation of the stress distribution for i = 3. In addition, the derivation of this last result (for i = 3)
can be found in [23], for instance.
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