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1. Introduction

In these lectures we study the well-posedness of the Cauchy problem for

the homogeneous conservative continuity equation

(PDE)
d

dt
µt +Dx · (bµt) = 0 (t, x) ∈ I × Rd

and for the transport equation

d

dt
wt + b · ∇wt = ct.

Here b(t, x) = bt(x) is a given time-dependent vector field in Rd: we

are interested to the case when bt(·) is not necessarily Lipschitz and has,

for instance, a Sobolev or BV regularity. Vector fields with this “low”

regularity show up, for instance, in several PDE’s describing the motion of

fluids, and in the theory of conservation laws.

We are also particularly interested to the well posedness of the system of

ordinary differential equations

(ODE)

{
γ̇(t) = bt(γ(t))
γ(0) = x.

In some situations one might hope for a “generic” uniqueness of the

solutions of ODE, i.e. for “almost every” initial datum x. An even weaker

requirement is the research of a “selection principle”, i.e. a strategy to

select for L d-almost every x a solution X(·, x) in such a way that this

selection is stable w.r.t. smooth approximations of b.
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In other words, we would like to know that, whenever we approximate b

by smooth vector fields bh, the classical trajectories Xh associated to bh

satisfy

lim
h→∞

Xh(·, x) = X(·, x) in C([0, T ]; Rd), for L d-a.e. x.

We will see that there is a close link between the two problems, first

investigated in a nonsmooth setting by Di Perna and Lions in [53].

Let us now make some basic technical remarks on the continuity equation

and the transport equation:

Remark 1. [Regularity in space of bt and µt] (1) Since the continu-
ity equation (PDE) is in divergence form, it makes sense without any
regularity requirement on bt and/or µt, provided∫

I

∫
A

|bt| d|µt| dt < +∞ ∀A ⊂⊂ Rd. (1)

However, when we consider possibly singular measures µt, we must take
care of the fact that the product btµt is sensitive to modifications of bt

in L d-negligible sets. In the Sobolev or BV case we will consider only
measures µt = wtL d, so everything is well posed.

(2) On the other hand, due to the fact that the distribution bt · ∇w is
defined by

〈bt·∇w,ϕ〉 := −
∫

I

∫
w〈bt,∇ϕ〉dxdt−

∫
I

〈Dx·bt, wtϕt〉 dt ϕ ∈ C∞c (I×Rd)

(a definition consistent with the case when wt is smooth) the transport
equation makes sense only if we assume that Dx · bt = div btL d for
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L 1-a.e. t ∈ I. See also [28], [31] for recent results on the transport
equation when b satisfies a one-sided Lipschitz condition.

Next, we consider the problem of the time continuity of t 7→ µt and

t 7→ wt.

Remark 2. [Regularity in time of µt] For any test function ϕ ∈
C∞c (Rd), condition (1) gives

d

dt

∫
Rd
ϕdµt =

∫
Rd

bt · ∇ϕdµt ∈ L1(I)

and therefore the map t 7→ 〈µt, ϕ〉, for given ϕ, has a unique uniformly
continuous representative in I. By a simple density argument we can
find a unique representative µ̃t independent of ϕ, such that t 7→ 〈µ̃t, ϕ〉
is uniformly continuous in I for any ϕ ∈ C∞c (Rd). We will always work
with this representative, so that µt will be well defined for all t and
even at the endpoints of I.

An analogous remark applies for solutions of the transport equation.

There are some other important links between the two equations:

(1) The transport equation reduces to the continuity equation in the case

when ct = −wtdiv bt;
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(2) Formally, one can estabilish a duality between the two equations via

the (formal) identity

d

dt

∫
wt dµt =

∫
d

dt
wt dµt +

∫
d

dt
µtwt

=
∫

(−bt · ∇wt + c) dµt +
∫

bt · ∇wt dµt =
∫
c dµt.

This duality method is a classical tool to prove uniqueness in a sufficiently

smooth setting (but see also [28], [31]).

(3) Finally, if we denote by Y (t, s, x) the solution of the ODE at time t,

starting from x at the initial times s, i.e.

d

dt
Y (t, s, x) = bt(Y (t, s, x)), Y (s, s, x) = x,

then Y (t, ·, ·) are themselves solutions of the transport equation: to see

this, it suffices to differentiate the semigroup identity

Y (t, s,Y (s, l, x)) = Y (t, l, x)

w.r.t. s to obtain, after the change of variables y = Y (s, l, x), the

equation
d

ds
Y (t, s, y) + bs(y) · ∇Y (t, s, y) = 0.

This property is used in a essential way in [53] to characterize the flow Y

and to prove its stability properties. The approach developed here, based

on [7], is based on a careful analysis of the measures transported by the

flow, and ultimately on the homogeneous continuity equation only.
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2. Transport equation and continuity equation within
the Cauchy-Lipschitz framework

In this section we recall the classical representation formulas for solutions

of the continuity or transport equation in the case when

b ∈ L1
(
[0, T ];W 1,∞(Rd; Rd)

)
.

Under this assumption it is well known that solutions X(t, ·) of the ODE

are unique and stable. A quantitative information can be obtained by

differentiation:

d

dt
|X(t, x)−X(t, y)|2 = 2〈bt(X(t, x))− bt(X(t, y)),X(t, x)−X(t, y)〉

≤ 2Lip (bt)|X(t, x)−X(t, y)|2

(here Lip (f) denotes the least Lipschitz constant of f), so that Gronwall

lemma immediately gives

Lip (X(t, ·)) ≤ exp
(∫ t

0

Lip (bs) ds
)
. (2)

Turning to the continuity equation, uniqueness of measure-valued solu-

tions can be proved by the duality method. Or, following the techniques

developed in these lectures, it can be proved in a more general setting for

positive measure-valued solutions (via the superposition principle) and for

signed solutions µt = wtL d (via the theory of renormalized solutions).

So in this section we focus only on the existence and the representation

issues.
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The representation formula is indeed very simple:

Proposition 3. For any initial datum µ̄ the solution of the continuity

equation is given by

µt := X(t, ·)#µ̄, i.e.

∫
Rd
ϕdµt =

∫
Rd
ϕ(X(t, x)) dµ̄(x). (3)

Proof. Notice first that we need only to check the distributional
identity d

dtµt + Dx · (btµt) = 0 on test functions of the form ψ(t)ϕ(x),
so that ∫

R
ψ′(t)〈µt, ϕ〉 dt+

∫
R
ψ(t)

∫
Rd
〈bt,∇ϕ〉 dµt dt = 0.

This means that we have to check that t 7→ 〈µt, ϕ〉 belongs to
W 1,1(0, T ) for any ϕ ∈ C∞c (Rd) and that its distributional derivative is∫

Rd〈bt,∇ϕ〉 dµt.
We show first that this map is absolutely continuous, and in particu-
lar W 1,1(0, T ); then one needs only to compute the pointwise deriva-
tive. For every choice of finitely many, say n, pairwise disjoint intervals
(ai, bi) ⊂ [0, T ] we have

n∑
i=1

|ϕ(X(bi, x))− ϕ(X(ai, x))| ≤ ‖∇ϕ‖∞
∫
∪i(ai,bi)

|Ẋ(t, x)| dt

≤ ‖∇ϕ‖∞
∫
∪i(ai,bi)

sup |bt| dt

and therefore an integration with respect to µ̄ gives
n∑

i=1

|〈µbi
− µai

, ϕ〉| ≤ ‖∇ϕ‖∞
∫
∪i(ai,bi)

sup |bt| dt.
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The absolute continuity of the integral shows that the right hand side
can be made small when

∑
i(bi− ai) is small. This proves the absolute

continuity. For any x the identity Ẋ(t, x) = bt(X(t, x)) is fulfilled for
L 1-a.e. t ∈ [0, T ]. Then, by Fubini’s theorem, we know also that for
L 1-a.e. t ∈ [0, T ] the previous identity holds for µ̄-a.e. x, and therefore

d

dt
〈µt, ϕ〉 =

d

dt

∫
Rd
ϕ(X(t, x)) dµ̄(x)

=
∫

Rd
〈∇ϕ(X(t, x)), bt(X(t, x))〉 dµ̄(x)

= 〈btµt,∇ϕ〉

for L 1-a.e. in [0, T ]. �

In the case when µ̄ = ρL d we can say something more, proving that

the measures µt = X(t, ·)#µ̄ are absolutely continuous w.r.t. L d and

computing explicitely their density. Let us start by recalling the classical

area formula: if f : Rd → Rd is a (locally) Lipschitz map, then∫
A

g|Jf | dx =
∫

Rd

∑
x∈A∩f−1(y)

g(x) dy

for any Borel set A ⊂ Rd, where Jf = det∇f (recall that, by Rademacher

theorem, Lipschitz functions are differentiable L d-a.e.). Assuming in ad-

dition that f is 1-1 and onto and that |Jf | > 0 L d-a.e. on A we can set

A = f−1(B) and g = ρ/|Jf | to obtain∫
f−1(B)

ρ dx =
∫

B

ρ

|Jf |
◦ f−1 dy.
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In other words, we have got a formula for the push-forward:

f#(ρL d) =
ρ

|Jf |
◦ f−1L d. (4)

In our case f(x) = X(t, x) is surely 1-1, onto and Lipschitz. It remains to

show that |JX(t, ·)| does not vanish: in fact, one can show that JX > 0
and

exp
[
−
∫ t

0

‖[div bs]−‖∞ ds

]
≤ JX(t, x) ≤ exp

[∫ t

0

‖[div bs]+‖∞ ds

]
(5)

for L d-a.e. x, thanks to the following fact, whose proof is left as an

exercise.

Exercise 4. If b is smooth, we have

d

dt
JX(t, x) = div bt(X(t, x))JX(t, x).

Hint: use the ODE d
dt∇X = ∇bt(X)∇X.

The previous exercise gives that, in the smooth case, JX(·, x) solves a

linear ODE with the initial condition JX(0, x) = 1, whence the estimates

on JX follow. In the general case the upper estimate on JX still holds

by a smoothing argument, thanks to the lower semicontinuity of

Φ(v) :=

{
‖Jv‖∞ if Jv ≥ 0 L d-a.e.

+∞ otherwise
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with respect to the w∗-topology of W 1,∞(Rd; Rd). This is indeed the

supremum of the family of Φ1/p
p , where Φp are the polyconvex (and

therefore lower semicontinuous) functionals

Φp(v) :=
∫

Bp

|χ(Jv)|p dx.

Here χ(t), equal to ∞ on (−∞, 0) and equal to t on [0,+∞), is l.s.c. and

convex. The lower estimate can be obtained by applying the upper one in

a time reversed situation.

Now we turn to the representation of solutions of the transport equation:

Proposition 5. If w ∈ L1
loc

(
[0, T ]× Rd

)
solves

d

dt
wt + b · ∇w = c ∈ L1

loc

(
[0, T ]× Rd

)
then, for L d-a.e. x, we have

wt(X(t, x)) = w0(x) +
∫ t

0

cs(X(s, x)) ds ∀t ∈ [0, T ].

The (formal) proof is based on the simple observation that

d

dt
wt ◦X(t, x) =

d

dt
wt(X(t, x)) +

d

dt
X(t, x) · ∇wt(X(t, x))

=
d

dt
wt(X(t, x)) + bt(X(t, x)) · ∇wt(X(t, x))

= ct(X(t, x)).
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In particular, as X(t, x) = Y (t, 0, x) = [Y (0, t, ·)]−1(x), we get

wt(y) = w0(Y (0, t, y)) +
∫ t

0

cs(Y (s, t, y)) ds.

We conclude this presentation of the classical theory pointing out two

simple local variants of the assumption b ∈ L1
(
[0, T ];W 1,∞(Rd; Rd)

)
made throughout this section.

Remark 6. [First local variant] The theory outlined above still works
under the assumptions

b ∈ L1
(
[0, T ];W 1,∞

loc (Rd; Rd)
)
,

|b|
1 + |x|

∈ L1
(
[0, T ];L∞(Rd)

)
.

Indeed, due to the growth condition on b, we still have pointwise unique-
ness of the ODE and a uniform local control on the growth of |X(t, x)|,
therefore we need only to consider a local Lipschitz condition w.r.t. x,
integrable w.r.t. t.

The next variant will be used in the proof of the superposition principle.

Remark 7. [Second local variant] Still keeping the L1(W 1,∞
loc ) as-

sumption, and assuming µt ≥ 0, the second growth condition on |b|
can be replaced by a global, but more intrinsic, condition:∫ T

0

∫
Rd

|bt|
1 + |x|

dµt dt < +∞. (6)

Under this assumption one can show that for µ̄-a.e. x the maximal
solution X(·, x) of the ODE starting from x is defined up to t = T and
still the representation µt = X(t, ·)#µ̄ holds for t ∈ [0, T ].
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3. ODE uniqueness versus PDE uniqueness

In this section we illustrate some quite general principles, whose application

may depend on specific assumptions on b, relating the uniqueness of the

ODE to the uniqueness of the PDE. The viewpoint adopted in this

section is very close in spirit to Young’s theory [85] of generalized surfaces

and controls (a theory with remarkable applications also non-linear PDE’s

[52, 78] and Calculus of Variations [19]) and has also some connection

with Brenier’s weak solutions of incompressible Euler equations [24], with

Kantorovich’s viewpoint in the theory of optimal transportation [57, 76] and

with Mather’s theory [71, 72, 18]: in order to study existence, uniqueness

and stability with respect to perturbations of the data of solutions to the

ODE, we consider suitable measures in the space of continuous maps,

allowing for superposition of trajectories. Then, in some special situations

we are able to show that this superposition actually does not occur, but

still this “probabilistic” interpretation is very useful to understand the

underlying techniques and to give an intrinsic characterization of the flow.

The first very general criterion is the following.

Theorem 8. Let A ⊂ Rd be a Borel set. The following two properties

are equivalent:

(a) Solutions of the ODE are unique for any x ∈ A.

(b) Nonnegative measure-valued solutions of the PDE are unique for any µ̄

concentrated in A, i.e. such that µ̄(Rd \A) = 0.
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Proof. It is clear that (b) implies (a), just choosing µ̄ = δx and
noticing that two different solutions X(t), X̃(t) of the ODE induce two
different solutions of the PDE, namely δX(t) and δX̃(t). The converse
implication is less obvious and requires the superposition principle that
we are going to describe below, and that provides the representation

∫
Rd
ϕdµt =

∫
Rd

(∫
ΓT

ϕ(γ(t)) dηx(γ)

)
dµ0(x),

with ηx probability measures concentrated on the absolutely continuous
integral solutions of the ODE starting from x. Therefore, when these
are unique, the measures ηx are unique (and are Dirac masses), so that
the solutions of the PDE are unique. �

We will use the shorter notation ΓT for the space C
(
[0, T ]; Rd

)
and denote

by et : ΓT → Rd the evaluation maps γ 7→ γ(t), t ∈ [0, T ].

Definition 9. [Superposition solutions] Let η ∈ M+(Rd × ΓT ) be a

measure concentrated on the set of pairs (x, γ) such that γ is an absolutely

continuous integral solution of the ODE with γ(0) = x. We define

〈µη
t , ϕ〉 :=

∫
Rd×ΓT

ϕ(et(γ)) dη(x, γ) ∀ϕ ∈ Cb(Rd).

By a standard approximation argument the identity defining µη
t holds

for any Borel function ϕ such that γ 7→ ϕ(et(γ)) is η-integrable (or

equivalently any µη
t -integrable function ϕ).
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Under the (local) integrability condition∫ T

0

∫
Rd×ΓT

χBR
(et)|bt(et)| dη dt < +∞ ∀R > 0 (7)

it is not hard to see that µη
t solves the PDE with the initial condition

µ̄ := (πRd)#η: indeed, let us check first that t 7→ 〈µη
t , ϕ〉 is absolutely

continuous for any ϕ ∈ C∞c (Rd). For every choice of finitely many pairwise

disjoint intervals (ai, bi) ⊂ [0, T ] we have

n∑
i=1

|ϕ(γ(bi))− ϕ(γ(ai))| ≤ Lip (ϕ)
∫
∪i(ai,bi)

χBR
(|et(γ)|)bt(et(γ))| dt

for η-a.e. (x, γ), with R such that suppϕ ⊂ BR. Therefore an integration

with respect to η gives

n∑
i=1

|〈µη

bi
, ϕ〉 − 〈µη

ai
, ϕ〉| ≤ Lip (ϕ)

∫
∪i(ai,bi)

∫
Rd×ΓT

χBR
(et)|bt(et)| dη dt.

The absolute continuity of the integral shows that the right hand side

can be made small when
∑

i(bi − ai) is small. This proves the absolute

continuity.

It remains to evaluate the time derivative of t 7→ 〈µη
t , ϕ〉: we know that for

η-a.e. (x, γ) the identity γ̇(t) = bt(γ(t)) is fulfilled for L 1-a.e. t ∈ [0, T ].
Then, by Fubini’s theorem, we know also that for L 1-a.e. t ∈ [0, T ] the

previous identity holds for η-a.e. (x, γ), and therefore

d

dt
〈µη

t , ϕ〉 =
d

dt

∫
Rd
ϕ(X(t, x)) dµ̄(x)

=
∫

Rd×ΓT

〈∇ϕ(et(γ)), bt(et(γ))〉 dη = 〈btµt,∇ϕ〉 L 1-a.e. in [0, T ].
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Remark 10. Actually the formula defining µη
t does not contain x, and

so it involves only the projection of η on ΓT . Therefore one could
also consider measures σ in ΓT , concentrated on the set of solutions of
the ODE (for an arbitrary initial point x). These two viewpoints are
basically equivalent: given η one can build σ just by projection on ΓT ,
and given σ one can consider the conditional probability measures ηx

concentrated on the solutions of the ODE starting from x induced by
the random variable γ 7→ γ(0) in ΓT , the law µ̄ (i.e. the push forward)
of the same random variable and recover η as follows:∫

Rd×ΓT

ϕ(x, γ) dη(x, γ) :=
∫

Rd

(∫
ΓT

ϕ(x, γ) dηx(γ)

)
dµ̄(x). (8)

Our viewpoint has been chosen just for technical convenience, to avoid
the use, wherever this is possible, of the conditional probability theorem.

By restricting η to suitable subsets of Rd×ΓT , several manipulations with

superposition solutions of the continuity equation are possible and useful,

and these are not immediate to see just at the level of general solutions of

the continuity equation. This is why the following result is interesting.

Theorem 11. [Superposition principle] Let µt ∈ M+(Rd) solve PDE

and assume that ∫ T

0

∫
Rd

|b|t(x)
1 + |x|

dµt dt < +∞.

Then µt is a superposition solution, i.e. there exists η ∈ M+(Rd × ΓT )
such that µt = µη

t for any t ∈ [0, T ].
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In the proof we use the narrow convergence of positive measures, i.e.

the convergence with respect to the duality with continuous and bounded

functions, and the easy implication in Prokhorov compactness theorem:

any tight and bounded family F in M+(X) is (sequentially) relatively

compact w.r.t. the narrow convergence. Remember that tightness means:

for any ε > 0 there exists K ⊂ X compact s.t. µ(X \K) < ε ∀µ ∈ F .

A necessary and sufficient condition for tightness is the existence of a

coercive functional Ψ : X → [0,∞] such that
∫

Ψ dµ ≤ 1 for any µ ∈ F .

Proof. Step 1 (smoothing). [58] We mollify µt w.r.t. the space variable
with a kernel ρ having finite first moment M and support equal to the
whole of Rd (a Gaussian, for instance), obtaining smooth and strictly
positive functions µε

t. We also choose a function ψ : Rd → [0,+∞) such
that ψ(x) → +∞ as |x| → +∞ and∫

Rd
ψ(x)µ0 ∗ ρε(x) dx ≤ 1 ∀ε ∈ (0, 1)

and a convex nondecreasing function Θ : R+ → R having a more than
linear growth at infinity such that∫ T

0

∫
Rd

Θ(|bt|(x))
1 + |x|

dµtdt < +∞

(the existence of Θ is ensured by Dunford-Pettis theorem). Defining

µε
t := µt ∗ ρε, bε

t :=
(btµt) ∗ ρε

µε
t

,
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it is immediate that

d

dt
µε

t +Dx · (bε
tµ

ε
t) =

d

dt
µt ∗ ρε +Dx · (btµt) ∗ ρε = 0

and that bε ∈ L1
(
[0, T ];W 1,∞

loc (Rd; Rd)
)
. Therefore Remark 7 can be

applied and the representation µε
t = Xε(t, ·)#µε

0 still holds. Then, we
define

ηε := (x,Xε(·, x))# µ
ε
0,

so that∫
Rd
ϕdµηε

t =
∫

Rd×ΓT

ϕ(γ(t)) dηε (9)

=
∫

Rd
ϕ(Xε(t, x)) dµε

0(x) =
∫

Rd
ϕdµε

t.

Step 2 (tightness). We will be using the inequality

((1 + |x|)c) ∗ ρε ≤ (1 + |x|) ∗ ρε + εc ∗ ρ̃ε (10)

for c nonnegative measure and ρ̃(y) = |y|ρ(y), and

Θ(|bε
t(x)|)µε

t(x) ≤ (Θ(|bt|)µt) ∗ ρε(x). (11)

The proof of the first one is elementary, while the proof of the second one
follows by applying Jensen’s inequality with the convex l.s.c. function
(z, t) 7→ Θ(|z|/t)t (set to +∞ if t < 0, or t = 0 and z 6= 0, and to 0
if z = t = 0) and with the measure ρε(x − ·)L d. Let us introduce the
functional

Ψ(x, γ) := ψ(x) +
∫ T

0

Θ(|γ̇|)
1 + |γ|

dt,
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set to +∞ on ΓT \ AC([0, T ]; Rd). Using Ascoli-Arzelá theorem, it is
not hard to show that Ψ is coercive (it suffices to show that max |γ| is
bounded on the sublevels {Ψ ≤ t}). Since∫

Rd×ΓT

∫ T

0

Θ(|γ̇|)
1 + |γ|

dt dηε(x, γ) =
∫ T

0

∫
Rd

Θ(|bε
t|)

1 + |x|
dµε

t dt

(10),(11)

≤ (1 + εM)
∫ T

0

∫
Rd

Θ(|bt|(x))
1 + |x|

dµtdt

and ∫
Rd×ΓT

ψ(x) dηε(x, γ) =
∫

Rd
ψ(x) dµε

0 ≤ 1

we obtain that
∫

Ψ dηε is uniformly bounded for ε ∈ (0, 1), and therefore
Prokhorov compactness theorem tells us that the family ηε is narrowly
sequentially relatively compact as ε ↓ 0. If η is any limit point we can
pass to the limit in (9) to obtain that µt = µη

t .

Step 3 (η is concentrated on solutions of the ODE). It suffices to show
that

∫
Rd×ΓT

∣∣∣γ(t)− x−
∫ t

0
bs(γ(s)) ds

∣∣∣
1 + max

[0,T ]
|γ|

dη = 0 (12)

for any t ∈ [0, T ]. The technical difficulty is that this test function, due
to the lack of regularity of b, is not continuous. To this aim, we prove
first that

∫
Rd×ΓT

∣∣∣γ(t)− x−
∫ t

0
cs(γ(s)) ds

∣∣∣
1 + max

[0,T ]
|γ|

dη ≤
∫ T

0

∫
Rd

|bs − cs|
1 + |x|

dµsds (13)
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for any continuous function c with compact support. Then, choosing a
sequence (cn) converging to b in L1(ν; Rd), with∫

ϕ(s, x) dν(s, x) :=
∫ T

0

∫
Rd

ϕ(s, x)
1 + |x|

dµs(x) ds

and noticing that∫
Rd×ΓT

∫ T

0

|bs(γ(s))− cn
s (γ(s))|

1 + |γ(s)|
dsdη =

∫ T

0

∫
Rd

|bs − cn
s |

1 + |x|
dµsds→ 0,

we can pass to the limit in (13) with c = cn to obtain (12).

It remains to show (13). This is a limiting argument based on the fact
that (12) holds for bε, ηε:∫

Rd×ΓT

∣∣∣γ(t)− x−
∫ t

0
cs(γ(s)) ds

∣∣∣
1 + max

[0,T ]
|γ|

dηε

=
∫

Rd

∣∣∣Xε(t, x)− x−
∫ t

0
cs(Xε(s, x)) ds

∣∣∣
1 + max

[0,T ]
|Xε(·, x)|

dµε
0(x)

=
∫

Rd

∣∣∣∫ t

0
bε

s(X
ε(s, x))− cs(Xε(s, x)) ds

∣∣∣
1 + max

[0,T ]
|Xε(·, x)|

dµε
0(x) ≤

∫ t

0

∫
Rd

|bε
s − cs|

1 + |x|
dµε

sds

≤
∫ t

0

∫
Rd

|bε
s − cε

s|
1 + |x|

dµε
sds+ ≤

∫ t

0

∫
Rd

|cε
s − cs|

1 + |x|
dµε

sds

≤
∫ t

0

∫
Rd

|bs − cs|
1 + |x|

dµsds+
∫ t

0

∫
Rd

|cε
s − cs|

1 + |x|
dµε

sds.

In the last inequalities we added and subtracted cε
t := (ctµt) ∗ ρε/µ

ε
t.
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Since cε
t → ct uniformly as ε ↓ 0 thanks to the uniform continuity of c,

passing to the limit in the chain of inequalities above we obtain (13).
�

The applicability of Theorem 8 is strongly limited by the fact that, on

one hand, pointwise uniqueness properties for the ODE are known only

in very special situations, for instance when there is a Lipschitz or a

one-sided Lipschitz (or log-Lipschitz, Osgood...) condition on b. On the

other hand, also uniqueness for general measure-valued solutions is known

only in special situations. It turns out that in many cases uniqueness of

the PDE can only be proved in smaller classes L of solutions, and it is

natural to think that this should reflect into a weaker uniqueness condition

at the level of the ODE.

We will see indeed that there is uniqueness in the “selection sense”. In

order to illustrate this concept, in the following we consider a convex class

Lb of measure-valued solutions µt ∈ M+(Rd) of the continuity equation

relative to b, satifying the following monotonicity property:

0 ≤ µ′t ≤ µt ∈ Lb =⇒ µ′t ∈ Lb (14)

whenever µ′t still solves the continuity equation relative to b, and the

integrability condition∫ T

0

∫
Rd

|bt(x)|
1 + |x|

dµt(x)dt < +∞.

The typical application will be with absolutely continuous measures

µt = wtL d, whose densities satisfy some quantitative and possibly time-

depending bound (e.g. L∞(L1) ∩ L∞(L∞)).
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Definition 12. [Lb-lagrangian flows] Given the class Lb, we say that

X(t, x) is a Lb-Lagrangian flow starting from µ̄ ∈ M+(Rd) (at time 0) if

the following two properties hold:

(a) X(·, x) is absolutely continuous solution in [0, T ] and satisfies

X(t, x) = x+
∫ t

0

bs(X(s, x)) ds ∀t ∈ [0, T ]

for µ̄-a.e. x;

(b) µt := X(t, ·)#µ̄ ∈ Lb.

Heuristically Lb-Lagrangian flows can be thought as suitable selections of

the solutions of the ODE (possibly non unique), made in such a way to

produce a density in Lb.

We will show that the Lb-Lagrangian flow starting from µ̄ is unique,

modulo µ̄-negligible sets, whenever a comparison principle for the PDE

holds, in the class Lb (i.e. the inequality between two solutions at t = 0
is preserved at later times).

Before stating and proving the uniqueness theorem for Lb-Lagrangian

flows, we state two elementary but useful results. The first one is a simple

exercise:

Exercise 13. Let σ ∈ M+(ΓT ) and let D ⊂ [0, T ] be a dense set. Show
that σ is a Dirac mass in ΓT iff its projections (e(t))#σ, t ∈ D, are Dirac
masses in Rd.
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The second one is concerned with a family of measures ηx:

Lemma 14. Let ηx be a measurable family of positive finite measures in

ΓT with the following property: for any t ∈ [0, T ] and any pair of disjoint

Borel sets E, E′ ⊂ Rd we have

ηx ({γ : γ(t) ∈ E}) ηx ({γ : γ(t) ∈ E′}) = 0 µ̄-a.e. in Rd. (15)

Then ηx is a Dirac mass for µ̄-a.e. x.

Proof. Taking into account Exercise 13, for a fixed t ∈ (0, T ] it
suffices to check that the measures λx := γ(t)#ηx are Dirac masses
for µ̄-a.e. x. Then (15) gives λx(E)λx(E′) = 0 µ̄-a.e. for any pair
of disjoint Borel sets E, E′ ⊂ Rd. Let δ > 0 and let us consider a
partition of Rd in countably many Borel sets Ri having a diameter less
then δ. Then, as λx(Ri)λx(Rj) = 0 µ-a.e. whenever i 6= j, we have a
corresponding decomposition of µ̄-almost all of Rd in Borel sets Ai such
that suppλx ⊂ Ri for any x ∈ Ai (just take {λx(Ri) > 0} and subtract
from him all other sets {λx(Rj) > 0}, j 6= i). Since δ is arbitrary the
statement is proved. �

Theorem 15. [Uniqueness of Lb-Lagrangian flows] Assume that the

PDE fulfils the comparison principle in Lb. Then the Lb-Lagrangian

flow starting from µ̄ is unique, i.e. two different selections X1(t, x) and

X2(t, x) of solutions of the ODE inducing solutions of the the continuity

equation in L satisfy

X1(·, x) = X2(·, x) in ΓT , for µ̄-a.e. x.
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Proof. If the statement were false we could produce a measure η not
concentrated on a graph inducing a solution µη

t ∈ Lb of the PDE. This
is not possible, thanks to the next result. The measure η can be built
as follows:

η :=
1
2
(η1 + η2) =

1
2

((x,X1(·, x))#µ̄+ (x,X2(·, x))#µ̄) .

Since Lb is convex we still have µη
t = 1

2(µ
η
1

t + µη
2

t ) ∈ Lb. �

Remark 16. In the same vein, one can also show that

X1(·, x) = X2(·, x) in ΓT for µ̄1 ∧ µ̄2-a.e. x

whenever X1, X2 are Lb-Lagrangian flows starting respectively from
µ̄1 and µ̄2.

We used the following basic result, having some analogy with Kantorovich’s

and Mather’s theories.

Theorem 17. Assume that the PDE fulfils the comparison principle

in Lb. Let η ∈ M+(Rd × ΓT ) be concentrated on the pairs (x, γ)
with γ absolutely continuous solution of the ODE, and assume that

µη
t ∈ Lb. Then η is concentrated on a graph, i.e. there exists a function

x 7→ X(·, x) ∈ ΓT such that

η =
(
x,X(·, x)

)
#
µ̄, with µ̄ := (πRd)#η = µη

0.
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Proof. We use the representation (8) of η, given by the disintegration
theorem, the criterion stated in Lemma 14 and argue by contradiction.If
the thesis is false then ηx is not a Dirac mass in a set of µ̄ positive
measure and we can find t ∈ (0, T ], disjoint Borel sets E, E′ ⊂ Rd and
a Borel set C with µ̄(C) > 0 such that

ηx ({γ : γ(t) ∈ E}) ηx ({γ : γ(t) ∈ E′}) > 0 ∀x ∈ C.

Possibly passing to a smaller set having still strictly positive µ̄ measure
we can assume that

0 < ηx({γ : γ(t) ∈ E}) ≤Mηx({γ : γ(t) ∈ E′}) ∀x ∈ C (16)

for some constant M . We define measures η1, η2 whose disintegrations
η1

x, η2
x are given by

η1
x := χC(x)ηx {γ : γ(t) ∈ E}, η2

x := MχC(x)ηx {γ : γ(t) ∈ E′}

and denote by µi
t the (superposition) solutions of the continuity equa-

tion induced by ηi. Then

µ1
0 = ηx({γ : γ(t) ∈ E})µ̄ C, µ2

0 = Mηx({γ : γ(t) ∈ E′})µ̄ C,

so that (16) yields µ1
0 ≤ µ2

0. On the other hand, µ1
t is orthogonal to µ2

t :
precisely, denoting by ηtx the image of η under the map γ 7→ γ(t), we
have

µ1
t =

∫
C

ηtx E dµ(x) ⊥M

∫
C

ηtx E′ dµ(x) = µ2
t .

Notice also that µi
t ≤ µt and so the monotonicity assumption (14) on

Lb gives µi
t ∈ Lb. This contradicts the assumption on the validity of

the comparison principle in Lb. �
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Now we come to the existence of Lb-Lagrangian flows.

Theorem 18. [Existence of Lb-Lagrangian flows] Assume that the

PDE fulfils the comparison principle in Lb and that for some µ̄ ∈ M+(Rd)
there exists a solution µt ∈ Lb with µ0 = µ̄. Then there exists a (unique)

Lb-Lagrangian flow starting from µ̄.

Proof. By the superposition principle we can represent µt as (et)#η

for some η ∈ M+(Rd×ΓT ) concentrated on pairs (x, γ) solutions of the
ODE. Then, Theorem 17 tells us that η is concentrated on a graph, i.e.
there exists a function x 7→ X(·, x) ∈ ΓT such that(

x,X(·, x)
)
#
µ̄ = η.

Pushing both sides via et we obtain

X(t, ·)#µ̄ = (et)#η = µt ∈ Lb,

and therefore X is a Lb-Lagrangian flow. �
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Finally, let us discuss the stability issue. This is particularly relevant, as

we will see, in connection with the applications to PDE’s.

Definition 19. [Convergence of velocity fields] We define the conver-
gence of bh to b in a indirect way, defining rather a convergence of L

bh

to Lb: we require that

bhµh
t ⇀ bµ in (0, T )× Rd and µt ∈ Lb

whenever µh
t ∈ L

bh and µh
t → µt narrowly for all t ∈ [0, T ].

For instance, in the typical case when L is bounded and closed, w.r.t the

weak∗ topology, in L∞(L1) ∩ L∞(L∞), and

Lc := L ∩
{
w :

d

dt
w +Dx · (cw) = 0

}
the implication is fulfilled whenever bh → b strongly in L1

loc.

The natural convergence for the stability theorem is convergence in
measure. Let us recall that a Y -valued sequence (vh) is said to con-

verge in µ̄-measure to v if

lim
h→∞

µ̄ ({dY (vh, v) > δ}) = 0 ∀δ > 0.

This is equivalent to the L1 convergence to 0 of the R+-valued maps

1 ∧ dY (vh, v).

Recall also that convergence µ̄-a.e. implies convergence in measure, and

that the converse implication is true passing to a suitable subsequence.
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Theorem 20. [Stability of L -Lagrangian flows] Assume that

(i) L
bh converge to Lb;

(ii) Xh are L
bh-flows relative to bh starting from µ̄ ∈ M+(Rd);

(iii) setting µh
t := Xh(t, ·)#µ̄, we have∫ T

0

∫
Rd

Θ(|bh
t |)

1 + |x|
dµh

t (x)dt ≤ 1 (17)

for some function θ : R+ → R having a more than linear growth at

infinity, and

lim sup
h→∞

∫ T

0

∫
Rd

|bh
t |

1 + |x|
dµh

t dt ≤
∫ T

0

∫
Rd

|bt|
1 + |x|

dµtdt; (18)

(iv) the PDE fulfils the comparison principle in Lb.

Then x 7→ Xh(·, x) converge to x 7→ X(·, x) in µ̄-measure, i.e.

lim
h→∞

∫
Rd

1 ∧ sup
[0,T ]

|Xh(·, x)−X(·, x)| dµ̄(x) = 0.

Proof. Following the same strategy used in the proof of the superpo-
sition principle, we push µ̄ onto the graph of the map x 7→ Xh(·, x),
i.e.

ηh :=
(
x,Xh(·, x)

)
#
µ̄
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and we obtain, using (17) in (iii) and the same argument used in Step 2
of the proof of the superposition principle, that ηh is tight in M+(Rd×
ΓT ).

Let now η be any limit point of ηh. Using the same argument used in
Step 3 of the proof of the superposition principle and (18) we obtain that
η is concentrated on pairs (x, γ) with γ absolutely continuous solution
of the ODE relative to b starting from x. Indeed, this argument was
using only the property

lim
h→∞

∫ T

0

∫
Rd

|bh
t − ct|

1 + |x|
dµh

t dt =
∫ T

0

∫
Rd

|bt − ct|
1 + |x|

dµt dt

for any continuous function c with compact support in (0, T )×Rd, and
this property is ensured by Lemma 22 below.

Let µt := (et)#η and notice that µh
t = (et)#ηh, hence µh

t → µt narrowly
for any t ∈ [0, T ]. As µh

t ∈ L
bh, assumption (i) gives that µt ∈ Lb and

assumption (iv) together with Theorem 17 imply that η is concentrated
on the graph of the map x 7→ X(·, x), where X is the unique Lb-
Lagrangian flow. We have thus obtained that(

x,Xh(·, x)
)
#
µ̄ ⇀

(
x,X(·, x)

)
#
µ̄.

By applying the following general principle we conclude. �

Lemma 21. [Narrow convergence and convergence in measure] Let

vh, v : X → Y be Borel maps and let µ ∈ M+(X). Then vh → v in

µ̄-measure iff

(x, vh(x))#µ̄ converges to (x, v(x))#µ̄ narrowly in M+(X × Y ).
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Proof. If vh → v in µ̄-measure then ϕ(x, vh(x)) converges in L1(µ̄)
to ϕ(x, v(x)), and we immediately obtain the convergence of the push-
forward measures. Conversely, let δ > 0 and, for any ε > 0, let w ∈
Cb(X;Y ) be such that µ̄({v 6= w}) ≤ ε. We define

ϕ(x, y) := 1 ∧ dY (y, w(x))
δ

∈ Cb(X × Y )

and notice that

µ̄ ({v 6= w}) +
∫

X×Y

ϕd(x, vh(x))#µ̄ ≥ µ̄({dY (v, vh) > δ}),

∫
X×Y

ϕd(x, v(x))#µ̄ ≤ µ̄({w 6= v}).

Taking into account the narrow convergence of the push-forward we
obtain that

lim sup
h→∞

µ̄({dY (v, vh) > δ}) ≤ 2µ̄({w 6= v}) ≤ 2ε

and since ε is arbitrary the proof is achieved. �

Lemma 22. Let A ⊂ Rm be an open set, and let σh ∈ M+(A) be

narrowly converging to σ ∈ M+(A). Let fh ∈ L1(A, σh,Rk), f ∈
L1(A, σ,Rk) and assume that

(i) fhσh weakly converge, in the duality with Cc(A; Rk), to fσ;

(ii)
∫

A
Θ(fh) dσh is uniformly bounded, for some function Θ : R+ → R+

having a more than linear growth at infinity;
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(iii) lim sup
h→∞

∫
A
|fh| dσh ≤

∫
A
|f | dσ.

Then
∫

A
|fh − c| dσh →

∫
A
|f − c| dσ for any c ∈ Cb(A; Rk).

Proof. We consider the measures νh := (x,fh(x))#σh in A × Rk

and we assume, possibly extracting a subsequence, that νh ⇀ ν, with
ν ∈ M+(A×Rk), in the duality with Cc(A×Rk). Using condition (ii),
the narrow convergence of σh and a truncation argument it is easy to
see that the convergence actually occurs for any continuous test func-
tion ψ(x, y) having a linear growth w.r.t. y (uniform w.r.t. x). Then,
choosing test functions ψ = ψ(x) ∈ Cb(A), the convergence of σh to σ
gives ∫

A×Rk
ψ dν =

∫
A

ψ dσ

and therefore, according to the disintegration theorem, we can repre-
sent ν as∫

A×Rk
ψ(x, y) dν(x, y) =

∫
A

(∫
Rk
ψ(x, y) dνx(y)

)
dσ(x) (19)

for a suitable Borel family of probability measures νx in Rk. Next, we
can use ψ(x)yj as test functions and assumption (i), to obtain

lim
h→∞

∫
A

fh
jψ dµ

h = lim
h→∞

∫
A×Rk

ψ(x)yj dν
h =

∫
A

ψ(x)
(∫

Rk
yj dνx(y)

)
dσ(x).

As ψ and j are arbitrary, this means that the first moment νx, i.e.∫
y dνx, is equal to f(x) for σ-a.e. x.
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On the other hand, choosing |y| as test function, assumption (iii) gives∫
A

∫
Rk
|y| dνx(y) dσ(x) = lim

h→∞

∫
A×Rk

|y| dνh = lim
h→∞

∫
A

|fh| dσh =
∫

A

|f | dσ,

hence
∫
|y| dνx = f(x) =

∣∣∫ y dνx

∣∣ for σ-a.e. x. This can happen only
if νx = δf(x) for σ-a.e. x.

Finally, taking into account the representation (19) of ν with νx =
δf(x), the convergence statement can be achieved just choosing the test
function ψ(x, y) = |y − c(x)|. �
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4. Vector fields with a Sobolev spatial regularity

Here we discuss the well-posedness of the continuity or transport equations

assuming the bt(·) has a Sobolev regularity, following [53]. Then, the

general theory previously developed provides existence, uniqueness and

stability of the L -Lagrangian flow, with L := L∞(L1) ∩ L∞(L∞). We

denote by I ⊂ R an open interval.

Definition 23. [Renormalized solutions] Let b ∈ L1
loc

(
I;L1

loc(Rd; Rd)
)

be such that D · bt = div btL d for L 1-a.e. t ∈ I, with

div bt ∈ L1
loc

(
I;L1

loc(Rd)
)
.

Let w ∈ L∞loc

(
I;L∞loc(Rd)

)
and assume that

c :=
d

dt
w + b · ∇w ∈ L1

loc(I × Rd). (20)

Then, we say that w is a renormalized solution of (20) if

d

dt
β(w) + b · ∇β(w) = cβ′(w) ∀β ∈ C1(R).

Equivalently, recalling the definition of the distribution b·∇w, the definition

could be given in a conservative form, writing

d

dt
β(w) +Dx · (bβ(w)) = cβ′(w) + div btβ(w).
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Notice also that the concept makes sense, choosing properly the class

of “test” functions β, also for w that do not satisfy (20), or are not

even locally integrable. This is particularly relevant in connection with

DiPerna-Lions’s existence theorem for Boltzmann equation , or with the

case when w is the characteristic of an unbounded vector field b. This

concept is also reminiscent of Kruzkhov’s concept of entropy solution for

a scalar conservation law

d

dt
u+Dx · (f(u)) = 0 u : (0,+∞)× Rd → R.

In this case a distributional one-sided inequality is required:

d

dt
η(u) +Dx · (q(u)) ≤ 0

for any convex entropy-entropy flux pair (η, q) (i.e. η is convex and

η′f ′ = q′).

Remark 24. [Time continuity] Using the fact that both t 7→ wt and
t 7→ β(wt) have a uniformly continuous representative (w.r.t. the w∗ −
L∞loc topology), we obtain that, for any renormalized solution w, t 7→ wt

has a unique representative which is continuous w.r.t. the L1
loc topology.

The proof follows by a classical weak-strong convergence argument:

fn ⇀ f, β(fn) ⇀ β(f) =⇒ fn → f

provided β is strictly convex. In the case of scalar conservation laws
there are analogous results [82], [73].
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Using the concept of renormalized solution we can prove a comparison

principle in the following natural class L :

L :=
{
w ∈ L∞

(
[0, T ];L1(Rd)

)
∩ L∞

(
[0, T ];L∞(Rd)

)
: (21)

w ∈ C
(
[0, T ];w∗ − L∞(Rd)

)}
.

Theorem 25. [Comparison principle] Assume that

|b|
1 + |x|

∈ L1
(
[0, T ];L∞(Rd)

)
+ L1

(
[0, T ];L1(Rd)

)
, (22)

that D · bt = div btL d for L 1-a.e. t ∈ [0, T ], and that

[div bt]− ∈ L1
loc

(
[0, T )× Rd

)
. (23)

Setting bt ≡ 0 for t < 0, assume in addition that any solution of (20)

in (−∞, T ) × Rd is renormalized. Then the comparison principle for the

continuity equation holds in the class L .

Proof. By the linearity of the equation, it suffices to show that
w ∈ L and w0 ≤ 0 implies wt ≤ 0 for any t ∈ [0, T ]. We extend
first the PDE to negative times, setting wt = w0. Then, fix a cut-off
function ϕ ∈ C∞c (Rd) with suppϕ ⊂ B2(0) and ϕ ≡ 1 on B1(0), and
the renormalization functions

βε(t) :=
√
ε2 + (t+)2 − ε ∈ C1(R).

Notice that

βε(t) ↑ t+ as ε ↓ 0, tβ′ε(t)− βε(t) ∈ [0, ε]. (24)

34



We know that

d

dt
βε(wt) +Dx · (bβε(wt)) = div bt(βε(wt)− wtβ

′
ε(wt))

in the sense of distributions in (−∞, T )×Rd. Plugging ϕR(·) := ϕ(·/R),
with R ≥ 1, into the PDE we obtain

d

dt

∫
Rd
ϕRβε(wt) dx =

∫
Rd
βε(wt)〈bt,∇ϕR〉 dx+

∫
Rd
ϕRdiv bt(βε(wt)−wtβ

′
ε(wt)) dx.

Splitting b as b1 + b2, with

b1

1 + |x|
∈ L1

(
[0, T ];L∞(Rd)

)
and

b2

1 + |x|
∈ L1

(
[0, T ];L1(Rd)

)
and using the inequality

1
R
χ{R≤|x|≤2R} ≤

3
1 + |x|

χ{R≤|x|}

we can estimate the first integral in the right hand side with

3‖∇ϕ‖∞‖
b1t

1 + |x|
‖∞
∫
{|x|≥R}

|wt| dx+3‖∇ϕ‖∞‖wt‖∞
∫
{|x|≥R}

|b1t|
1 + |x|

dx.

The second integral can be estimated with

ε

∫
Rd
ϕR[div bt]− dx,

Passing to the limit first as ε ↓ 0 and then as R → +∞ and using the
integrability assumptions on b and w we get

d

dt

∫
Rd
w+

t dx ≤ 0
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in the distribution sense in R. Since the function vanishes for negative
times, this suffices to conclude using Gronwall lemma. �

Remark 26. It would be nice to have a completely non-linear com-
parison principle between renormalized solutions, as in the Kruzkhov
theory. Here, on the other hand, we rather used the fact that the dif-
ference of the two solutions is renormalized.

In any case, Di Perna and Lions proved that all distributional solutions are

renormalized when there is a Sobolev regularity with respect to the spatial

variables.

Theorem 27. Let b ∈ L1
loc

(
I;W 1,1

loc (Rd; Rd)
)

and let w ∈ L∞loc(I × Rd)
be a distributional solution of (20). Then w is a renormalized solution.

Proof. We mollify with respect to the spatial variables and we set

rε := (b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)), wε := w ∗ ρε

to obtain
d

dt
wε + b · ∇wε = c ∗ ρε − rε.

By the smoothness of wε w.r.t. x, the PDE above tells us that d
dtw

ε
t ∈

L1
loc, therefore wε ∈W 1,1

loc (I ×Rd) and we can apply the standard chain
rule in Sobolev spaces, getting

d

dt
β(wε) + b · ∇β(wε) = β′(wε)c ∗ ρε − β′(wε)rε.
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When we let ε ↓ 0 the convergence in the distribution sense of all terms
in the identity above is trivial, with the exception of the last one. To
ensure its convergence to zero, it seems necessary to show that rε → 0
strongly in L1

loc (remember that β′(wε) is locally equibounded w.r.t. ε).
This is indeed the case, and it is exactly here that the Sobolev regularity
plays a role. �

Proposition 28. [Strong convergence of commutators] If

w ∈ L∞loc(I × Rd) and b ∈ L1
loc

(
I;W 1,1

loc (Rd; Rd)
)

we have

L1
loc- lim

ε↓0
(b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)) = 0.

Proof. Playing with the definitions of b · ∇w and convolution product
of a distribution and a smooth function, one proves first the identity

rε(t, x) =
∫

Rd
w(t, x−εy)(bt(x− εy)− bt(x)) · ∇ρ(y)

ε
dy−(wdiv bt)∗ρε(x).

(25)

Introducing the commutators in the (easier) conservative form

Rε := (Dx · (bw)) ∗ ρε −Dx · (bwε)

(here we set again wε := w ∗ ρε) it suffices to show that Rε = Lε −
wεdiv bt, where

Lε(t, x) :=
∫

Rd
w(t, z)(bt(x)− bt(z)) · ∇ρε(z − x) dz.
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Indeed, for any test function ϕ, we have that 〈Rε, ϕ〉 is given by

−
∫

I

∫
wb · ∇ρε ∗ ϕdy −

∫
I

∫
ϕb · ∇ρε ∗ wdx−

∫
I

∫
wεϕdiv bt

= −
∫

I

∫ ∫
wt(y)bt(y) · ∇ρε(y − x) dxdy

−
∫

I

∫ ∫
bt(x)∇ρε(x− y)wt(y)ϕ(x)dydx−

∫
I

∫
wεϕdiv bt

=
∫

I

∫
Lεϕ−

∫
I

∫
wεdiv bt

(in the last equality we used the fact that ∇ρ is odd).

Then, one uses the strong convergence of translations in Lp and the
strong convergence of the difference quotients (a property that charac-
terizes functions in Sobolev spaces)

u(x+ εz)− u(x)
ε

→ ∇u(x)z strongly in L1
loc, for u ∈W 1,1

loc

to obtain that rε strongly converge in L1
loc(I × Rd) to

−w(t, x)
∫

Rd
〈∇bt(x)y,∇ρ(y)〉 dy − w(t, x)div bt(x).

The elementary identity ∫
Rd
yi
∂ρ

∂yj
dy = −δij

then shows that the limit is 0 (this can also be derived by the fact that,
in any case, the limit of rε in the distribution sense should be 0). �
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In this context, given µ̄ = ρL d with ρ ∈ L1∩L∞, the L -Lagrangian flow

starting from µ̄ (at time 0) is defined by the following two properties:

(a) X(·, x) is absolutely continuous in [0, T ] and satisfies

X(t, x) = x+
∫ t

0

bs(X(s, x)) ds ∀t ∈ [0, T ]

for µ̄-a.e. x;

(b) X(t, ·)#µ̄ ≤ CL d for all t ∈ [0, T ], with C independent of t.

Summing up what we obtained so far, the general theory provides us with

the following existence and uniqueness result.

Theorem 29. [Existence and uniqueness of L -Lagrangian flows] Let

b ∈ L1
(
[0, T ];W 1,1

loc (Rd; Rd)
)

be satisfying

(i)
|b|

1 + |x|
∈ L1

(
[0, T ];L1(Rd)

)
+ L1

(
[0, T ];L∞(Rd)

)
;

(ii) [div bt]− ∈ L1
(
[0, T ];L∞(Rd)

)
.

Then the L -Lagrangian flow relative to b exists and is unique.

Proof. By the previous results, the comparison principle holds for
the continuity equation relative to b. Therefore the general theory
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previously developed applies, and Theorem 15 provides uniqueness of
the L -Lagrangian flow. As for the existence, still the general theory
(Theorem 18) tells us that it can be achieved provided we are able to
solve, within L , the continuity equation

d

dt
w +Dx · (bw) = 0 (26)

for any nonnegative initial datum w0 ∈ L1∩L∞. The existence of these
solutions can be immediately achieved by a smoothing argument: we
approximate b in L1

loc by smooth bh with a uniform bound in L1(L∞)
for [div bh

t ]−. This bound, in turn, provides a uniform lower bound on
JXh and finally a uniform upper bound on wh

t = (w0/JXh
t ) ◦ (Xh

t )−1,
solving

d

dt
wh +Dx · (bhwh) = 0.

Therefore, any weak limit of wh solves (26). �

Notice also that, choosing for instance a Gaussian, we obtain that the L -

Lagrangian flow is well defined up to L d-negligible sets (and independent

of µ̄� L d, thanks to Remark 16).

40



It is interesting to compare our characterization of Lagrangian flows with

the one given in [53]. Heuristically, while the Di Perna-Lions one is based

on the semigroup of transformations x 7→ X(t, x), our one is based on the

properties of the map x 7→ X(·, x).

Remark 30. The definition of the flow in [53] is based on the following
three properties:

(a)
∂Y

∂t
(t, s, x) = b (t,Y (t, s, x)) and Y (s, s, x) = x in the distribution

sense in (0, T )× Rd;

(b) the image λt of L d under Y (t, s, ·) satisfies

1
C

L d ≤ λt ≤ CL d for some constant C > 0;

(c) for all s, s′, t ∈ [0, T ] we have

Y (t, s,Y (s, s′, x)) = Y (t, s′, x) for L d-a.e. x.

Then, Y (t, s, x) corresponds, in our notation, to the flow Xs(t, x) start-
ing at time s (well defined even for t < s if one has two-sided L∞ bounds
on the divergence). In our setting condition (c) can be recovered as a
consequence with the following argument: assume to fix the ideas that
s′ ≤ s ≤ T and define

X̃(t, x) :=


Xs′(t, x) if t ∈ [s′, s];

Xs
(
t,Xs′(s, x)

)
if t ∈ [s, T ]
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It is immediate to check that X̃(·, x) is an integral solution of the ODE
in [s′, T ] for L d-a.e. x and that X̃(t, ·)#µ̄ is bounded by C2L d. Then,
Theorem 29 (with s′ as initial time) gives X̃(·, x) = X(·, s′, x) in [s′, T ]
for L d-a.e. x, whence (c) follows.

Moreover, the stability Theorem 20 can be read in this context as follows.

Theorem 31. [Stability] Let bh, b ∈ L1
(
[0, T ];W 1,1

loc (Rd; Rd)
)
, let

Xh, X be the L -Lagrangian flows relative to bh, b, let µ̄ = ρL d ∈
M+(Rd) and assume that

(i) bh → b in L1
loc

(
(0, T )× Rd

)
;

(ii) setting µh
t := Xh(t, ·)#ρL d, we have

sup
h

∫ T

0

∫
Rd

Θ(|bh|)
1 + |x|

dµh
t dt < +∞

for some function Θ : R+ → R+ having a more than linear growth at

infinity;

(iii) [div bh
t ]− is bounded in L1

(
[0, T ];L∞(Rd)

)
.

Then,

lim
h→∞

∫
Rd

max
[0,T ]

|Xh(·, x)−X(·, x)| ∧ ρ(x) dx = 0.
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Taking into account the uniform upper bounds on µh
t , ensured by (iii),

condition (ii) is easily seen to be fulfilled if one has the decomposition

bh = ch + dh, with

ch

1 + |x|
converging strongly in L1

(
[0, T ];L1(Rd)

)
and dh/(1 + |x|) bounded in L1

(
[0, T ];L∞(Rd)

)
.

Finally, we conclude this section with the illustration of some recent results

[64], [13], [14] that seem to be more specific of the Sobolev case, concerned

with the “differentiability” w.r.t. to x of the flow X(t, x). These results

provide a sort of bridge with the standard Cauchy-Lipschitz calculus:

Theorem 32. There exist Borel maps Lt : Rd →Md×d satisfying

lim
h→0

X(t, x+ h)−X(t, x)− hLt(x)
|h|

= 0 locally in measure

for any t ∈ [0, T ]. If, in addition, we assume that∫ T

0

∫
BR

|∇bt| ln(2 + |∇bt|) dxdt < +∞ ∀R > 0

then the flow has the following “local” Lipschitz property: for any ε > 0
there exists a Borel set A with µ̄(Rd \ A) < ε such that X(·, t)|A is

Lipschitz for any t ∈ [0, T ].

According to this result, L can be thought as a (very) weak derivative of

the flow X. It is still not clear whether the local Lipschitz property holds

in the W 1,1
loc case, or in the BVloc case discussed in the next section.
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5. Vector fields having a BV spatial regularity

In this section we prove the renormalization Theorem 27 under the weaker

assumption of a BV dependence w.r.t. the spatial variables, but still

assuming that

D · bt � L d for L 1-a.e. t ∈ (0, T ). (27)

Theorem 33. Let b ∈ L1
loc

(
(0, T );BVloc(Rd; Rd)

)
be satisfying (27).

Then any distributional solution w ∈ L∞loc

(
(0, T )× Rd

)
of

d

dt
w +Dx · (bw) = c ∈ L1

loc

(
(0, T )× Rd

)
is a renormalized solution.

We try to give reasonably detailed proof of this result, referring to the

original paper [7] for minor details. Before doing that we set up some

notation, denoting by Dbt = ∇btL d +Dsbt the Radon–Nikodym decom-

position of Dbt in absolutely continuous and singular part w.r.t. L d. We

also introduce the measures |Db| and |Dsb| by integration w.r.t. the time

variable, i.e. ∫
ϕ(t, x) d|Db| :=

∫ T

0

∫
Rd
ϕ(t, x) d|Dbt| dt,

∫
ϕ(t, x) d|Dsb| :=

∫ T

0

∫
Rd
ϕ(t, x) d|Dsbt| dt.
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We shall also assume, by the locality of the arguments involved, that

‖w‖∞ ≤ 1.

We are going to find two estimates on the commutators, quite sensitive

to the choice of the convolution kernel, and then combine them in a

(pointwise) kernel optimization argument.

Step 1 (anisotropic estimate). Let us start from the expression

rε(t, x) =
∫

Rd
w(t, x−εy)(bt(x− εy)− bt(x)) · ∇ρ(y)

ε
dy−(wdiv bt)∗ρε(x)

(28)

of the commutators (b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)): since bt /∈ W 1,1 we

cannot use anymore the strong convergence of the difference quotients.

However, for any function u ∈ BVloc and any z ∈ Rd we have a classical

L1 estimate on the difference quotients∫
K

|u(x+ z)− u(x)| dx ≤ |Dzu|(Kε) for any K ⊂ Rd compact,

where Du = (D1u, . . . ,Ddu) stands for the distributional derivative of u,

Dzu = 〈Du, z〉 =
∑

i ziDiu denotes the component along z of Du and Kε

is the open ε-neighbourhood of K. Its proof follows from an elementary

smoothing and lower semicontinuity argument.

We notice that

Dz〈bt,∇ρ(z)〉 = 〈Mt(·)z,∇ρ(z)〉|Db| ∀z ∈ Rd

and therefore the L1 estimate on difference quotients gives the anisotropic
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estimate

lim sup
ε↓0

∫
K

|rε| dx ≤
∫

K

∫
Rd
|〈Mt(x)z,∇ρ(z)〉| dzd|Db|(t, x)+d|Dab|(K)

(29)

for any compact set K ⊂ (0, T )× Rd.

Step 2 (isotropic estimate). On the other hand, a different estimate of the

commutators that reduces to the standard one when b(t, ·) ∈W 1,1
loc can be

achieved as follows. Let us start from the case d = 1: if µ is a Rm-valued

measure in R with locally finite variation, then by Jensen’s inequality the

functions

µ̂ε(t) :=
µ([t, t+ ε])

ε
= µ ∗

χ[−ε,0]

ε
(t), t ∈ R

satisfy ∫
K

|µ̂ε| dt ≤ |µ|(Kε) for any compact set K ⊂ R, (30)

where Kε is again the open ε neighbourhood of K. A density argument

based on (30) then shows that µ̂ε converge in L1
loc(R) to the density of µ

with respect to L 1 whenever µ � L 1. If u ∈ BVloc and ε > 0 we know

that

u(x+ ε)− u(x)
ε

=
Du([x, x+ ε])

ε
=
Dau([x, x+ ε])

ε
+
Dsu([x, x+ ε])

ε

for L 1-a.e. x (the exceptional set possibly depends on ε). In this way

we have canonically split the difference quotient of u as the sum of two
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functions, one strongly converging to ∇u in L1
loc, and the other one having

an L1 norm on any compact set K asymptotically smaller than |Dsu|(K).

If we fix the direction z of the difference quotient, the slicing theory of

BV functions gives that this decomposition can be carried on also in d

dimensions, showing that the difference quotients

bt(x+ εz)− bt(x)
ε

can be canonically split into two parts, the first one strongly converging

in L1
loc(Rd) to ∇bt(x)z, and the second one having an L1 norm on K

asymptotically smaller than |〈Dsbt, z〉|(K). Then, repeating the DiPerna–

Lions argument and taking into account the error induced by the presence

of the second part of the difference quotients, we get the isotropic estimate

lim sup
ε↓0

∫
K

|rε| dx ≤
(∫

K

∫
Rd
|z||∇ρ(z)| dz

)
d|Dsb|(t, x) (31)

for any compact set K ⊂ (0, T )× Rd.

Step 3 (reduction to a pointwise optimization problem). Roughly speak-

ing, the isotropic estimate is useful in the regions where the absolutely

continuous part is the dominant one, so that |Dsb|(K) << 1, while the

anisotropic one turns out to be useful in the regions where the dominant

part is the singular one. Let us see how the two estimates can be

combined: coming back to the smoothing scheme, we have

d

dt
β(wε) + b · ∇β(wε)− β′(wε)c ∗ ρε = β′(wε)rε. (32)
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Let L be the supremum of |β′| on [−1, 1]. Then, since K is an arbitrary

compact set, (31) tells us that any limit measure ν of |β′(wε)rε|L d as

ε ↓ 0 satisfies

ν ≤ LI(ρ)|Dsb| with I(ρ) :=
∫

Rd
|z||∇ρ(z)| dz.

and, in particular, is singular with respect to L d. On the other hand, the

estimate (29) tells also us that

ν ≤ L

∫
Rd
|〈M·(·)z,∇ρ(z)〉| dz|Db|.

The second estimate and the singularity of ν with respect to L d give

ν ≤ L

∫
Rd
|〈M·(·)z,∇ρ(z)〉| dz|Dsb|. (33)

Notice that in this way we got rid of the potentially dangerous term I(ρ):
in fact, we are going to choose very anisotropic kernels ρ on which I(ρ)
can be arbitrarily large. The measure ν can of course depend on the

choice of ρ, but (32) tells us that the “defect” measure

σ :=
d

dt
β(wt) + b · ∇β(wt)− ctβ

′(wt),

clearly independent of ρ, satisfies |σ| ≤ ν. Eventually we obtain

|σ| ≤ LΛ(M·(·), ρ)|Dsb| with Λ(N, ρ) :=
∫

Rd
|〈Nz,∇ρ(z)〉| dz. (34)

For (x, t) fixed, we are thus led to the minimum problem

G(N) := inf
{

Λ(N, ρ) : ρ ∈ C∞c (B1), ρ ≥ 0,
∫

Rd
ρ = 1

}
(35)
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with N = Mt(x). Notice that (34) gives

|σ| ≤ L inf
ρ∈D

Λ(M·(·), ρ)|Dsb|

for any countable set D of kernels ρ, and the continuity of ρ 7→ Λ(N, ρ)
w.r.t. the W 1,1(B1) norm and the separability of W 1,1(B1) give

|σ| ≤ LG(M·(·))|Dsb|. (36)

Notice now that the assumption that D · bt � L d for L 1-a.e. t ∈ (0, T )
gives

traceMt(x)|Dsbt| = 0 for L 1-a.e. t ∈ (0, T ).

Hence, recalling the definition of |Dsb|, the trace of Mt(x) vanishes for

|Dsb|-a.e. (t, x). Applying the following lemma, a courtesy of Alberti, and

using (36) we obtain that σ = 0, thus concluding the proof.

Lemma 34. [Alberti] For any d × d matrix N the infimum in (35) is

|traceN |.

Proof. Notice first that the lower bound follows immediately by the
identity∫

Rd
〈Nz,∇ρ(z)〉 dz =

∫
Rd
−ρ(z)divNz + div (ρ(z)Nz) dz = −traceN,

Hence, we have to show only the upper bound. Again, by the identity

〈Nz,∇ρ(z)〉 = div (Nzρ(z))− traceNρ(z)
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it suffices to show that for any T > 0 there exists ρ such that∫
Rd
|div (Nzρ(z))| dz ≤ 2

T
. (37)

The heuristic idea is (again...) to build ρ as the superposition of elemen-
tary probability measures associated to the curves etNx, 0 ≤ t ≤ T , on
which the divergence operator can be easily estimated. Given a smooth
convolution kernel θ with compact support, it turns out that the func-
tion

ρ(z) :=
1
T

∫ T

0

θ(e−tNz)e−t trace N dt (38)

has the required properties (here etNx =
∑

i t
iN ix/i! is the solution

of the ODE γ̇ = Nγ with the initial condition γ(0) = x). Indeed, it
is immediate to check that ρ is smooth and compactly supported. To
estimate the divergence of Nzρ(z), we notice that ρ =

∫
θ(x)µx dx,

where µx are the probability 1-dimensional measures concentrated on
the image of the curves t 7→ etNx defined by

µx := (e·Nx)#(
1
T

L 1 [0, T ]).

Indeed, for any ϕ ∈ C∞c (Rd) we have∫
Rd
θ(x)〈µx, ϕ〉 dx =

1
T

∫ T

0

∫
Rd
θ(x)ϕ(etNx) dxdt

=
1
T

∫ T

0

∫
Rd
θ(e−tNy)e−t traceNϕ(y) dydt

=
∫

Rd
ρ(y)ϕ(y) dy.
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By the linearity of the divergence operator, it suffices to check that

|Dz · (Nzµx)|(Rd) ≤ 2
T

∀x ∈ Rd.

But this is elementary, since∫
Rd
〈Nz,∇ϕ(z)〉 dµx(z) =

1
T

∫ T

0

〈NetNx,∇ϕ(etNx)〉 dt =
ϕ(eTNx)− ϕ(x)

T

for any ϕ ∈ C∞c (Rd), so that TDz · (Nzµx) = δx − δeTNx. �

The original argument in [7] was slightly different and used, instead of

Lemma 34, a much deeper result, still due to Alberti, saying that for a

BVloc function u : Rd → Rm the matrix M(x) in the polar decomposition

Du = M |Du| has rank 1 for |Dsu|-a.e. x, i.e. there exist unit vectors

ξ(x) ∈ Rd and η(x) ∈ Rm such that M(x)z = η(x)〈z, ξ(x)〉. In this case

the asymptotically optimal kernels are much easier to build, by mollifying

in the ξ direction much faster than in all other ones. This is precisely what

Bouchut and Lions did in some particular cases (respectively “Hamiltonian”

vector fields and piecewise Sobolev ones).

As in the Sobolev case we can now obtain from the general theory

given in Section 3 existence and uniqueness of L -Lagrangian flows,

with L = L∞(L1) ∩ L∞(L∞): we just replace in the statement of

Theorem 29 the assumption b ∈ L1
(
[0, T ];W 1,1

loc (Rd; Rd)
)

with b ∈
L1
(
[0, T ];BVloc(Rd; Rd)

)
, assuming as usual that D · bt � L d for L 1-

a.e. t ∈ [0, T ].

Analogously, with the same replacements in Theorem 31 (for b and bh)

we obtain stability of L -Lagrangian flows.
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6. Applications

6.1. A system of conservation laws. Let us consider the Cauchy problem

(studied in one space dimension by Keyfitz–Kranzer in [63])

d

dt
u+

d∑
i=1

∂

∂xi
(f i(|u|)u) = 0, u : Rd × (0,+∞) → Rk (39)

with the initial condition u(·, 0) = ū. Here f : R → Rd is a C1 function.

In a recent paper [32] Bressan showed that the problem can be ill-posed

for L∞ initial data and he conjectured that it could be well posed for

BV initial data, suggesting to extend to this case the classical method

of characteristics. In [8] we proved that this procedure can really be

implemented, thanks to the results in [7], for initial data ū such that

ρ̄ := |ū| ∈ BV ∩ L∞, with 1/|ū| ∈ L∞. Later on, in a joint work with

Bouchut and De Lellis [10], we proved that the lower bound on ρ̄ is not

necessary and, moreover, we proved that the solution built in [8] is unique

in a suitable class of admissible functions: those whose modulus ρ satisfies

the scalar PDE

d

dt
ρ+

d∑
i=1

∂

∂xi
(f i(ρ)ρ) = 0 (40)

in the Kruzhkov sense (i.e. η(ρ)t + Dx · (q(ρ)) ≤ 0 for any convex

entropy-entropy flux pair (η, q), here sf ′(s)η′(s) = q′(s)), with the initial

condition ρ(0, ·) = ρ̄.
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Notice that the regularity theory for this class of solutions gives that ρ ∈
L∞∩BVloc

(
[0,+∞)× Rd

)
, due to the BV regularity and the boundedness

of |ū|. Furthermore the maximum principle gives 0 < 1/ρ ≤ 1/|ū| ∈ L∞.

In order to obtain the (or, better, a) solution u we can formally decouple

the system, writing

u = θρ, ū = θ̄ρ̄, |θ| = |θ̄| = 1,

thus reducing the problem to the system (decoupled, if one neglects the

constraint |θ| = 1) of transport equations

θt +
d∑

i=1

∂

∂xi
(f i(ρ)θ) = 0 (41)

with the initial condition θ(0, ·) = θ̄.

A formal solution of the system, satisfying also the constraint |θ| = 1, is

given by

θ(t, x) := θ̄
(
[X(t, ·)]−1(x)

)
,

where X(t, ·) is the flow associated to f(ρ). Notice that the non-

autonomous vector field f(ρ) is bounded and of class BVloc, but the

theory illustrated in these lectures is not immediately applicable because

its divergence is not absolutely continuous with respect to L d+1. In this

case, however, a simple argument still allows the use of the theory, rep-

resenting f(ρ) as a part of the autonomous vector field b := (ρ, ρf(ρ))
in R+ × Rd. This new vector field is still BVloc and bounded, and it is

divergence-free due to (40).
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At this point, it is not hard to see that the reparameterization of the flow

(t(s),x(s)) associated to b(
ṫ(s), ẋ(s)

)
= (ρ(t(s),x(s)),f(ρ(t(s),x(s)))ρ(t(s),x(s)))

defined by x̃(t) = x(t(s)−1(t)) (and here we use the assumption ρ > 0)

defines a flow for the vector field f(ρ) we were originally interested to.

In this way we get a kind of formal, or pointwise, solution of the system

(40), that could indeed be very far from being a distributional solution.

But here comes into play the stability theorem, showing that all formal

computations above can be justified just assuming first (ρ,f(ρ)) smooth,

and then by approximation (see [8] for details).
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6.2. Lagrangian solutions of semi-geostrophic equations. The semi-

geostrophic equations are a simple model of the atmosphere/ocean flows

[45], described by the system of transport equations

(SGE)


d

dt
∂2p+ u · ∇∂2p = −u2 + ∂1p

d

dt
∂1p+ u · ∇∂1p = −u1 − ∂2p

d

dt
∂3p+ u · ∇∂3p = 0.

Here u, the velocity, is a divergence-free field, p is the pressure and

ρ := −∂3p represents the density of the fluid. We consider the problem in

[0, T ]×Ω, with Ω bounded and convex. Initial conditions are given on the

pressure and a no-flux condition through ∂Ω is imposed for all times.

Introducing the modified pressure Pt(x) := pt(x) + (x2
1 + x2

2)/2, (SGE)

can be written in a more compact form as

d

dt
∇P + u · ∇P = J(∇P − x) with J :=

0 −1 0
1 0 0
0 0 0

 . (42)

Existence (and uniqueness) of solutions are still open for this problem.

In [20] and [46], existence results have been obtained in the so-called dual

coordinates, where we replace the physical variable x by X = ∇Pt(x).
Under this change of variables, and assuming Pt to be convex, the system

becomes

d

dt
αt +Dx · (U tαt) = 0 with U t(X) := J (X −∇P ∗t (X)) (43)
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with αt := (∇Pt)#(LΩ) (here we denote by LΩ the restriction of L d

to Ω). Indeed, for any test function ϕ we can use the fact that u is

divergence-free to obtain:

d

dt

∫
Rd
ϕdαt =

∫
Rd
∇ϕ(∇Pt) ·

d

dt
∇Pt dx

=
∫

Rd
∇ϕ(∇Pt) · J(∇Pt − x) dx+

∫
Rd
∇ϕ(∇Pt)∇2Pt · u dx

=
∫

Rd
∇ϕ · J(X −∇P ∗t ) dαt +

∫
Rd
∇(ϕ ◦ ∇Pt) · u dx

=
∫

Rd
∇ϕ ·U t dαt.

Existence of a solution to (43) can be obtained by a suitable time

discretization scheme. Now the question is: can we go back to the original

physical variables ? An important step forward has been achieved by Cullen

and Feldman in [47], with the concept of Lagrangian solution of (SGE).

Taking into account that the vector field U t(X) = J(X − ∇P ∗t (X)) is

BV , bounded and divergence-free, there is a well defined, stable and

measure preserving flow X(t,X) = Xt(X) relative to U . This flow can

be carried back to the physical space with the transformation

Ft(x) := ∇P ∗t ◦Xt ◦ ∇P0(x),

thus defining maps Ft preserving L d
Ω.
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Using the stability theorem can also show that Zt(x) := ∇Pt(Ft(x)) solve,

in the distributions sense, the Lagrangian form of (42), i.e.

d

dt
Zt(x) = J(Zt − Ft) (44)

This provides us with a sort of weak solution of (42), and it is still an open

problem how the Eulerian form could be recovered (see Section 7).
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7. Open problems, bibliographical notes, and references

Section 2. The material contained in this section is classical. Good

references are [56], Chapter 8 of [12], [29] and [53]. For the proof of the

area formula, see for instance [6], [55], [60].

The proof of the second local variant, under the stronger assumption∫ T

0

∫
Rd |bt| dµtdt < +∞, is given in Proposition 8.1.8 of [12]. The same

proof works under the weaker assumption (6).

Section 3. Many ideas of this section, and in particular the idea of

looking at measures in the space of continuous maps to characterize the

flow and prove its stability, are borrowed from [7], dealing with BV vector

fields. Later on, the arguments have been put in a more general form,

independent of the specific class of vector fields under consideration, in

[9]. Here we present a more refined version of [9].

The idea of a probabilistic representation is of course classical, and

appears in many contexts (particularly for equations of diffusion type);

to my knoledge the first reference in the context of conservation laws

and fluid mechanics is [24], where a similar approach is proposed for

the incompressible Euler equation (see also [25], [26], [27]): in this case

the compact (but neither metrizable, nor separable) space X [0,T ], with

X ⊂ Rd compact, has been considered.

This approach is by now a familiar one also in optimal transport theory,

where transport maps and transference plans can be thought in a natural

way as measures in the space of minimizing geodesics [76], and in the so

called irrigation problems, a nice variant of the optimal transport problem

[22]. See also [18] for a similar approach within Mather’s theory. The
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Lecture Notes [84] (see also the Appendix of [69]) contain, among several

other things, a comprehensive treatment of the topic of measures in the

space of action-minimizing curves, including at the same time the optimal

transport and the dynamical systems case (this unified treatment was

inspired by [21]). Another related reference is [50].

The superposition principle is proved, under the weaker assumption∫ T

0

∫
Rd |bt|p dµtdt < +∞ for some p > 1, in Theorem 8.2.1 of [12], see

also [70] for the extension to the case p = 1 and to the non-homogeneous

continuity equation. Very closely related results, relative to the represen-

tation of a vector field as the superposition of “elementary” vector fields

associated to curves, appear in [77], [18].

In [16] an interesting variant of the stability Theorems 20 and 31 is

discussed, peculiar of the case when the limit vector field b is a sufficiently

regular gradient. In this case it has been proved in [16] that narrow

convergence of µh
t to µt for all t ∈ [0, T ] and the energy estimate

lim sup
h→∞

∫ T

0

∫
Rd
|bh

t |2 dµh
t dt ≤

∫ T

0

∫
Rd
|bt|2 dµtdt < +∞

are sufficient to obtain the stability property. This is due to the fact that,

given µt, gradient vector fields minimize
∫ T

0

∫
|ct|2 dµt among all velocity

fields ct for which the continuity equation d
dtµt + Dx · (ctµt) = 0 holds

(see Chapter 8 of [12] for a general proof of this fact, and for references

to earlier works of Otto, Benamou-Brenier).

The convergence result in [16] can be used to answer positively a question

raised in [59], concerning the convergence of the implicit Euler scheme

uk+1 ∈ Argmin
[

1
2h

∫
Ω

|u− uk|2 +
∫

Ω

F (∇u) dx
]
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(here Ω, Ω′ are bounded open in Rd and u : Ω → Ω′) in the case when

F (∇u) depends only, in a convex way, only on the determinant of ∇u. It

turns out that, representing as in [59] uk as the composition of k optimal

transport maps, u[t/h] converge as h ↓ 0 to the solution ut of

d

dt
ut = div (∇F (∇ut)) ,

built in [59] by purely differential methods (coupling a nonlinear diffusion

equation for the measures βt := (ut)#(LΩ) in Ω′ to a transport equation

for u−1
t ). Existence of solutions (via differential or variational methods)

for wider classes of energy densities F is a largely open problem.

Section 4. The definition of renormalized solution and the strong con-

vergence of commutators are entirely borrowed from [53]. See also [54]

for the relevance of this concept in connection with the existence theory

for Boltzmann equation. The proof of the comparison principle assuming

only an L1(L1
loc) bound (instead of an L1(L∞) one, as in [53], [7]) on

the divergence was suggested to me by G.Savaré. The differentiability

properties of the flow have been found in [64]: later on, this differentiabil-

ity property has been characterized and compared with the more classical

approximate differentiability [60] in [14], while [13] contains the proof of

the stronger “local” Lipschitz properties. Theorem 32 summarizes all these

results. The paper [44] contains also more explicit Lipschitz estimates and

an independent proof of the compactness of flows. See also [37] for a

proof, using radial convolution kernels, of the renormalization property for

vector fields satisfying Dib
j +Djb

i ∈ L1
loc.

Both methods, the one illustrated in these notes and the DiPerna–Lions

one, are based on abstract compactness arguments and do not provide a

rate of convergence in the stability theorem. It would be interesting to
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find an explicit rate of convergence (in mean with respect to x) of the

trajectories. This problem is open even for autonomous, bounded and

Sobolev (but not Lipschitz) vector fields.

No general existence result for Sobolev (or even BV ) vector fields seems to

be known in the infinite-dimensional case: the only reference we are aware

of is [23]. Also the investigation of non-Euclidean geometries, e.g. Carnot

groups and horizontal vector fields, could provide interesting results.

Finally, notice that the theory has a natural invariance, namely if X is

a flow relative to b, then X is a flow relative to b̃ whenever {b̃ 6= b}
is L 1+d-negligible in (0, T ) × Rd. So a natural question is whether

the uniqueness “in the selection sense” might be enforced by choosing a

canonical representative b̃ in the equivalence class of b: in other words we

may think that, for a suitable choice of b̃, the ODE γ̇(x) = b̃t(γ(t)) has a

unique absolutely continuous solution starting from x for L d-a.e. x.

Section 5. Here we followed closely [7]. The main idea of this section,

i.e. the adaptation of the convolution kernel to the local behaviour of the

vector field, has been used at various level of generality in [30], [66], [41]

(see also [38], [39] for related results independent of this technique), until

the general result [7].

The optimal regularity condition on b ensuring the renormalization property,

and therefore the validity of the comparison principle in Lb, is still not

known. New results, both in the Sobolev and in the BV framework, are

presented in [11], [64], [65].

In [15] we investigate in particular the possibility to prove the renormaliza-

tion property for nearly incompressible BVloc∩L∞ fields b: they are defined

by the property that there exists a positive function ρ, with ln ρ ∈ L∞,

such that the space-time field (ρ, ρb) is divergence free. As in the case of
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the Keyfitz-Kranzer system, the existence a function ρ with this property

seems to be a natural replacement of the condition Dx · b ∈ L∞ (and is

actually implied by it); as explained in [10], a proof of the renormalization

property in this context would lead to a proof of a conjecture, due to

Bressan, on the compactness of flows associated to a sequence of vector

fields bounded in BVt,x.

Section 6. In connection with the Keyfitz–Kranzer system there are several

open questions: in particular one would like to obtain uniqueness (and

stability) of the solution in more general classes of admissible functions

(partial results in this direction are given in [10]). A strictly related problem

is the convergence of the vanishing viscosity method to the solution built

in [8]. Also, very little about the regularity of solutions is presently

known: we know [49] that BV estimates do not hold and, besides, that

the contruction in [8] seems not applicable to more general systems of

triangular type, see the counterexample in [43].

In connection with the semi-geostrophic problem, the main problem is the

existence of solutions in the physical variables, i.e. in the Eulerian form. A

formal argument suggests that, given Pt, the velocity u should be defined

by

∂t∇P ∗t (∇Pt(x)) +∇2P ∗t (∇Pt(x))J
(
∇Pt(x)− x

)
.

On the other hand, the a-priori regularity on ∇Pt (ensured by the convexity

of Pt) is a BV regularity, and it is still not clear how this formula could

be rigorously justified. In this connection, an important intermediate step

could be the proof of the W 1,1 regularity of the maps ∇Pt (see also [33],

[34], [35], [36], [80], [81] for the regularity theory of optimal transport

maps under regularity assumptions on the initial and final densities).
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to gradient vector fields and convergence of iterated transport maps.

In preparation.

[17] E.J.Balder: New fundamentals of Young measure convergence.

CRC Res. Notes in Math. 411, 2001.

64



[18] V.Bangert: Minimal measures and minimizing closed normal one-

currents. Geom. funct. anal., 9 (1999), 413–427.

[19] J.Ball & R.James: Fine phase mixtures as minimizers of energy.

Arch. Rat. Mech. Anal., 100 (1987), 13–52.

[20] J.-D.Benamou & Y.Brenier: Weak solutions for the semi-

geostrophic equation formulated as a couples Monge-Ampere trans-

port problem. SIAM J. Appl. Math., 58 (1998), 1450–1461.

[21] P.Bernard & B.Buffoni: Optimal mass transportation and

Mather theory. Preprint, 2004.

[22] M.Bernot, V.Caselles & J.M.Morel: Traffic plans. Preprint,

2004.

[23] V.Bogachev & E.M.Wolf: Absolutely continuous flows gener-

ated by Sobolev class vector fields in finite and infinite dimensions. J.

Funct. Anal., 167 (1999), 1–68.

[24] Y.Brenier: The least action principle and the related concept of

generalized flows for incompressible perfect fluids. J. Amer. Mat. Soc.,

2 (1989), 225–255.

[25] Y.Brenier: The dual least action problem for an ideal, incompress-

ible fluid. Arch. Rational Mech. Anal., 122 (1993), 323–351.

[26] Y.Brenier: A homogenized model for vortex sheets. Arch. Rational

Mech. Anal., 138 (1997), 319–353.

65



[27] Y.Brenier: Minimal geodesics on groups of volume-preserving maps

and generalized solutions of the Euler equations. Comm. Pure Appl.

Math., 52 (1999), 411–452.

[28] F.Bouchut & F.James: One dimensional transport equation with

discontinuous coefficients. Nonlinear Analysis, 32 (1998), 891–933.

[29] F. Bouchut, F. Golse & M. Pulvirenti: Kinetic equations and

asymptotic theory. Series in Appl. Math., Gauthiers-Villars, 2000.

[30] F.Bouchut: Renormalized solutions to the Vlasov equation with

coefficients of bounded variation. Arch. Rational Mech. Anal., 157
(2001), 75–90.

[31] F.Bouchut, F.James & S.Mancini: Uniqueness and weak stabil-

ity for multi-dimensional transport equations with one-sided Lipschitz

coefficients. Preprint, 2004 (to appear on Annali Scuola Normale

Superiore).

[32] A.Bressan: An ill posed Cauchy problem for a hyperbolic system in

two space dimensions. Rend. Sem. Mat. Univ. Padova, 110 (2003),

103–117.

[33] L.A.Caffarelli: Some regularity properties of solutions of Monge

Ampère equation, Comm. Pure Appl. Math., 44 (1991), pp. 965–969.

[34] L.A.Caffarelli: Boundary regularity of maps with convex poten-

tials, Comm. Pure Appl. Math., 45 (1992), 1141–1151.

[35] L.A.Caffarelli: The regularity of mappings with a convex poten-

tial. J. Amer. Math. Soc., 5 (1992), 99–104.

66



[36] L.A.Caffarelli: Boundary regularity of maps with convex poten-

tials., Ann. of Math., 144 (1996), 453–496.

[37] I.Capuzzo Dolcetta & B.Perthame: On some analogy between

different approaches to first order PDE’s with nonsmooth coefficients.

Adv. Math. Sci Appl., 6 (1996), 689–703.

[38] A.Cellina: On uniqueness almost everywhere for monotonic differ-

ential inclusions. Nonlinear Analysis, TMA, 25 (1995), 899–903.

[39] A.Cellina & M.Vornicescu: On gradient flows. Journal of Dif-

ferential Equations, 145 (1998), 489–501.

[40] F.Colombini & N.Lerner: Uniqueness of continuous solutions for

BV vector fields. Duke Math. J., 111 (2002), 357–384.

[41] F.Colombini & N.Lerner: Uniqueness of L∞ solutions for a class

of conormal BV vector fields. Preprint, 2003.

[42] F.Colombini, T. Luo & J.Rauch: Uniqueness and nonuniqueness

for nonsmooth divergence-free transport. Preprint, 2003.

[43] G.Crippa & C.De Lellis: Oscillatory solutions to transport equa-

tions. Preprint, 2005 (available at http://cvgmt.sns.it).

[44] G.Crippa & C.De Lellis: Estimates for transport equations and

regularity of the DiPerna-Lions flow. In preparation.

[45] M.Cullen: On the accuracy of the semi-geostrophic approximation.

Quart. J. Roy. Metereol. Soc., 126 (2000), 1099–1115.

67



[46] M.Cullen & W.Gangbo: A variational approach for the 2-

dimensional semi-geostrophic shallow water equations. Arch. Rational

Mech. Anal., 156 (2001), 241–273.

[47] M.Cullen & M.Feldman: Lagrangian solutions of semi-

geostrophic equations in physical space. Preprint, 2003.

[48] C.Dafermos: Hyperbolic conservation laws in continuum physics.

Springer Verlag, 2000.

[49] C.De Lellis: Blow-up of the BV norm in the multidimensional

Keyfitz and Kranzer system. Duke Math. J., 127 (2004), 313–339.

[50] L.De Pascale, M.S.Gelli & L.Granieri: Minimal mea-

sures, one-dimensional currents and the Monge-Kantorovich problem.

Preprint, 2004 (available at http://cvgmt.sns.it).
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