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Introduction

-TO find an optimal domain is equivalent to find its charac-
teristic function (0-1 optimization problem).

Three ways to make this problem differentiable:

e The relaxation method: the material density function
0<60<1 (G. Allaire, M. Bendsoe, N. Kikuchi),

e The level set method: the gradient with respect to
domain variations (G. Allaire, S. Osher, F. Santosa),

e The topological asymptotic expansion: it is possible to
derive the variation of a cost function if we switch from
Otolor from 1l to O in a small area.



Level Set Approaches

In topological optimization, the unknown domain is repre-
sented by a level set function

e The relaxation method: the material density function
(G. Allaire, M. Bendsoe, N. Kikuchi)

e The level set method: the built-in level set function (G.
Allaire, S. Osher, F. Santosa)

e T he topological asymptotic expansion: the topological
gradient.
The positivity of the topological gradient IS a necessary
(and even a sufficient) optimality condition.



Generic form of the topological
expansion

£2 = ug — J(2) = J(ug)

J(E0\B(z,¢)) — j(§2) = f(e)

g(x)

+ o(f(e))

f(e) > 0 and &!l_% f(e) = 0.

g is the topological gradient

Schumacher, J. Sokolowski,
G. Allaire, Ph. Guillaume, MM



Example : the Laplace equation

fe) | g(=)
Schumache| Neumann 2D | me® | —2Vu.Vp
Sokolowski] | Neumann 3D | Z7me3 | 2Vu.Vp

S — 27
Dirichlet 2D log (e) | UP

Dirichlet 3D |47 | up

Au= B and A*p = —VJ(u).



The expression g = u.p Is still valid for:

e Linear elasticity (P. Guillaume, S. Garreau, MM)

e Stokes equations (P. Guillaume, K. Sid Idriss),

e Helmholtz equation (B. Samet, S. Amstutz, MM),

e Navier-Stokes (S. Amstutz),

with a Dirichlet condition type on the boundary of the hole.

See our server : http://mip.ups-tise.fr for preprints



~ An Example
(the linear elasticity problem)

Let us minimize the compliance

J(u) = Bu
where
Au = B.
Since VJ(u) = B, the adjoint is given by Ap = —B. Then
p = —u.

Recall that j(Q\B(z,¢) — j(2) = f(e)u.p+ - --

Finally we have
JHQ\B(2,€)) — () = —f()ul? + - -



From differential calculus
to 0-1 optimization



From differential calculus to 0-1
optimization

Under some hypotheses classical gradient could provide a topo-
logical asymptotic expansion.

In other cases the classical gradient provides a "topological de-
scent direction” .



Let us consider the problem
(A 4+ BHu=F.

o and 3 are two fonctions defined in €2.

If @« goes to O in w < €2 = a hole is created with null normal
derivative of u on oJw.

If 3 goes to oc INn w C €2 = a hole is created with u« = 0 on Jdw.
Well known penalization method in finite element method.



General Frame

et us consider a differentiable function

f: LP(Q2) — R
C —  f(e). (1)

with 1 < p < 2. There exists v1 > 0 independent of dc such that

|f(c+de) — f(e) — f(e)de] < |I5C||Ef=(ﬂ) (2)
for every dc in LP(S2).

Assume that

f'(c) 6c = fﬂ g oc dx. (3)

has a regular gradient g.



The perturbation

o 1 in B(xg,e)
0Cs = { 0 elsewhere (4)

is small in LP(2) for small = :

8¢zl Loy = meas(B(zo,e)) /7.
Let us denote p(c) = meas(B(xg.2)). The rest behaves like
locel|Zp(qy = (p()1/7)2 = p(£)2/7 = 0(p(<)) since p < 2.
The derivative [, g dc dxr behaves like p(=) since g is regular :
[Jq g 0ce dx — g(zo)p(e)| < v2ep(e).

Let us set j(s) = f(c+ dc-). The classical gradient ¢ is the
topological gradient !

7(e) = 3(0) = p(e)g(zo)| = o(p(e)). (5)



The Dirichlet condition

Let us consider Q ¢ RV N < 3, V ¢ HL(Q), the bilinear form
a(u,v) satisfying classical hypotheses and

a(c,u,v) = a(u,v) + f cuv dz.
Q2

We know that H1() c L9 for 1 > % > % — % :



For q > 2, consider p satisfying I—lj =1 % The map

LP — L~(V)
c +— a(c,.,.) =a(lu,v) + [qcuvdx
is continuous.

For N =2 we havep > 1. Then 1 <p < 2.

For N = 3. we have



We consider u., the solution to

a(c,ue,v) =1l(v) Vvel.

and f(¢) = J(ue). Then

f'r({?) de — fﬂ de up dr.

We have g = up. The regularity of g depends on a,l and .J.
Let us denote u: = ug4s5.. and j(g) = J(uz). Then
() = §(0) = p(e) sup + o(p()). 7 9

(Connection with the Dirichlet Problem).




2 : Application to a simple example.

Let us consider the problem

—u”"+cu = 0 in ]0,1]
u(0) = 0 (6)
u'(1) = 1

and the cost function J(u.) = u-.(1) where u. is the solution to
(6) for a given c.



The Lagrange operator is

1
L(c,u,p) =u(l) + / (u'p’ + cup) dv — p(1).
40

We have to minimize

c — fle) = J(ue)

In this simple case, the adjoint is p. = —u, and

1
'()ée = 0.L(c,ue, po).dc = — /O ug de dux.




We recall that f/(¢)dc = — [3 u2 dc da and

dce = { 1 [0, 70 +- €] :

0 otherwise

7(e) = 7(0) = (—uc(xg)?)e| = o(p(e)).




3 : Check

The exact solution for ¢ = 0 is ug = « then

5(e) — §(0) — (=x02)e| = o(p(e)). (8)

By calculating explicitly the solution we have

e“(rog+1)+e “(zg—1)
e“(rg+1) —e“(xg—1)
Then j(¢) — j(0) = —;r{%:; + .- we obtain the same result as in

(8).

ue (1) = +1—(xg+¢2). (9)



When the differentiability of f is limited to L~ (or more generally
to LP, p > 2) this result is not still valid.



Example

Let us consider the problem

(cu") = 0 in ]O,1]
1(0) = 0 (10)
c(Du'(1) = 1

and the cost function J(u:) = u-(1) where u. is the solution to
(10)



The Lagrange operator is

1
Lic,u,p) =u(l) + / (cu'p) de — p(1).
J0O
We have to minimize
i L®0.,1) — %
c —  f(c) = J(ue).
In this simple case, the adjoint is p. = —u. and

1
1 (e)6e = 0.L(c,ue, pe).dc = — / (u')? ¢ dax.
Jo & ¢




We consider

Sce = { o 1IN |zg, z0 + ¢]

0 elsewhere.

The exact solution if ¢ = ¢g + 0z where ¢g is a constant is given
by

=
—

1 — £
( ) o + co—+ 0o

(12)

then j() — §(0) = e(Fs — =)-

Co




Recall that
1 1

co+90 co

j(e) —j(0) =« ).

If we consider the gradient f/(¢)dc we obtain

)

—e(u,)?6 = —e—. (14)
' cH

The result obtained (14) is not correct if we compare it to (13).

If & is small these expressions are close. It isn't the case if 0 is
large.

But the two expressions have the same sign.




The Fixed point method of J. CEA (1973)

initialization 25 C D is given

repeat for k=0, 1, ...

1. compute u;,p;, the direct and the adjoint solutions in
the domain £2;,

2. compute the topological gradient g,

3. compute g, a regular extension of g; to the domain
D,

4. the new domain is given by ;1 = {z € D; g > pi}-
The step size p; is such that j(2541) < 7(2).

This alogorithm recalls the gradient method.



SHELL ECO-MARATHON
To drive as far as possible using a
given quantity of oll.

Sophie JAN: co-author and Pilote
MIP - Toulouse



Energy control and environmental protection =-

SHELL eco-marathon

“To drive as far as possible using the less amount of energy”

Principle of the competition on the Nogaro motor circuit
e seven laps (D = 3.636 km per lap)
e in less than T = 50’34” (30 km /hour)



The Nogaro motor circuit




min ((TD - w(T))+) + /DT consumption(z(t), v(t), u(t))dt

u

= Dynamic of the vehicle

v' = Bv® + C(z,v) + D(v)u (explicit Euler scheme)

z(0) =0 . L
Initial conditions
v(0) =0
x : distance covered by the vehicle
v : speed of the vehicle

u : state of the engine (1 = on/off = 0)

.



For only one lap

Before optimization First iteration Second iteration
=
10—| H g 1u—| |_| H 1 10—‘ ‘—| ‘—‘
| | 1 i

2720.38m < 3636.0m  4010.68m » 3636.0m  3671.64m ~ 3636.0m
Attempt is lost !
J = 4345.3 J = 11634.9 J = 9019.9

blue : state of the engine
pink : position on the circuit (via the altitude)

red : speed of the vehicle



For seven laps

Before optimization After optimization
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Application to Wave guides
Design
Alcatel Space



Some applications to CFD
problems



To maximize the flow for a given

Inlet pressure (Stokes)
with H. Maatoug (Enit)

11l

We consider 3 cases



To maximize the flow, for a given inlet pressure (Stokes)

Champs de vitesse: initiale et iteration 1,2 et 3

The first test case



Gradient topologique: iteration 1,2, 3 et 4

3

The topological gradient



To maximize the flow, for a given inlet pressure (Stokes)

Champs de vitesse: initiale et iteration 1,2 et 3

4

The second test case



inlet pressure (Stokes)

1ven

the flow, fora g

imize

To max

Champs de vitesse: initiale et iteration 1,2 et 3

10

The third test case




Application to a transient
nonlinear problem



Application to history matching in petrophysics
P.E. Edoa MIP — D. Rahon IFP - MM

Transient Multiphase Darcy Equations

42



Inverse problem example

Well test data : P
pressure and derivative ~ Pobs andW

(Find a domain® suchas

Inverse problem : < sim bs
—proang o =&
\ a a

Objective function : j(_(g):_;TM‘Bjm_pobﬂﬂ#pm OPObS‘
0

Objective : find the domain  Q which minimizes

the objective function | 43



Calculation of the topological gradient

e Single phase flow

Ao,

G(x) = I[ Br(xe) ~ %) /]Qg ‘lll(KQgDpQg)-D/‘QEJ(X,t)dt

pg : directstate A, : adjointstate

e Two-phase flow

T
G(X) :j(F(QE) -F(B(x,€)) +(Kg, 0P, .(l;:—w Hug, +(krW + kro)Dvgg ))j(x, t)dt

W W 0]

with F(r) = (Adir +B oR Sr))ur + B%vr

Py, S, : directstate,u,, Vg : adjointstate

44



Example 1 : 2D geostatistical case

e Objective : to find images satisfying dynamic
data

— 2 facies : K: 300mD (facies 1) ,1mD (facies 2)
— Synthetics well tests

 Simulation data Prod3

Prodl

— H=10m, F=0.25

— L =1000m, I =500m
— 2500 grid blocks

— Well tests : 1 day Prod2
— 3 wells, rate : 10m3/d

45



Optimization results

Reference permeability map Evolution of the permeability map
100
Pin 100,

5 0 et 10 ,
T o - ~~
g tdP/dt solution =" tdP/dt initipl B ;
= ou" Objective function
o ---F-

14 1

tdP/dt reference

0.1

0.1

10 100 . 1000 10000 100000 1 2 3 4 . 5 6 7 8
Time () Iteration




Synthetic 3D case: two-phase flow

 Production data
— 4 production wells, rate: 300m3/d (WO)

— 4 water injection wells, rate: 100m3/d
— Production history: 3 years

— Vertical production wells perforated in each
layers

— Injection wells perforated in the bottom layer

Injection Injection

Production

47



Second example: 3D, two-phase flow

e Objective : determine
the reservoir volume by history
matching production data
(water rate and pressure)

e Simulation model

— 2 facies :
Reservoir Kn = 300mD, Kv = 10mD
Non reservoir Kn=1mD, Kv=0.1mD

— 3 layers, 256 grid blocks per layer
— L =800m, | =800m, H=15m
— Two-phase flow : water and oll




Optimization results

1ieanility meap of the

)

D

Evolution of ine permeability rmezu9



Structural Engineering Application

e .- i i . A A e i i T B N, i .-
e XAnim: anim.movie.0 30 P




Some open guestions

» The topological asymptotic expansion for
* Transient problems
« Steady compressible N.S.E.

 What happens if & goes to infinity ?



