Benasque 2005

The topological gradient and its applications

Mohamed Masmoudi,
MIP
Toulouse
France

- Introduction
- The topological gradient
- From differential calculus to 0-1 optimization
- A Fixed point method (J. Céa 1973)
- Some applications.

Introduction

Optimal shape design: $\min_{\Omega} j(\Omega) := J(\Omega, u_{\Omega})$

Introduction

To find an optimal domain is equivalent to find its characteristic function (0-1 optimization problem).

Three ways to make this problem differentiable:

- The relaxation method: the material density function $0 \le \theta \le 1$ (G. Allaire, M. Bendsoe, N. Kikuchi),
- The level set method: the gradient with respect to domain variations (G. Allaire, S. Osher, F. Santosa),
- The topological asymptotic expansion: it is possible to derive the variation of a cost function if we switch from 0 to 1 or from 1 to 0 in a small area.

Level Set Approaches

In topological optimization, the unknown domain is represented by a level set function

- The relaxation method: the material density function (G. Allaire, M. Bendsoe, N. Kikuchi)
- The level set method: the built-in level set function (G. Allaire, S. Osher, F. Santosa)
- The topological asymptotic expansion: the topological gradient.
 - The positivity of the topological gradient is a necessary (and even a sufficient) optimality condition.

Generic form of the topological expansion

$$\begin{split} \Omega \mapsto u_\Omega \mapsto j(\Omega) &:= J(u_\Omega) \\ j(\Omega \backslash B(x,\varepsilon)) - j(\Omega) &= f(\varepsilon) \boxed{g(x)} + o(f(\varepsilon)) \\ f(\varepsilon) &> 0 \text{ and } \lim_{\varepsilon \to 0} f(\varepsilon) = 0. \end{split}$$

g is the topological gradient

Schumacher, J. Sokolowski, G. Allaire, Ph. Guillaume, MM

Example: the Laplace equation

Schumacher Sokolowski

	$f(\varepsilon)$	g(x)
Neumann 2D	$\pi \varepsilon^2$	$-2\nabla u.\nabla p$
Neumann 3D	$\frac{4}{3}\pi\varepsilon^3$	$\frac{-3}{2}\nabla u.\nabla p$
Dirichlet 2D	$\frac{-2\pi}{\log(\varepsilon)}$	up
Dirichlet 3D	$4\pi\varepsilon$	up

$$Au = B$$
 and $A^*p = -\nabla J(u)$.

The expression g = u.p is still valid for:

- Linear elasticity (P. Guillaume, S. Garreau, MM)
- Stokes equations (P. Guillaume, K. Sid Idriss),
- Helmholtz equation (B. Samet, S. Amstutz, MM),
- Navier-Stokes (S. Amstutz),

with a Dirichlet condition type on the boundary of the hole.

See our server: http://mip.ups-tlse.fr for preprints

An Example (the linear elasticity problem)

Let us minimize the compliance

$$J(u) = B.u$$

where

$$Au = B$$
.

Since $\nabla J(u) = B$, the adjoint is given by Ap = -B. Then p = -u.

Recall that $j(\Omega \setminus B(x, \varepsilon) - j(\Omega)) = f(\varepsilon)u.p + \cdots$

Finally we have

$$j(\Omega \backslash B(x,\varepsilon)) - j(\Omega) = -f(\varepsilon)|u|^2 + \cdots$$

From differential calculus to 0-1 optimization

From differential calculus to 0-1 optimization

Under some hypotheses classical gradient could provide a topological asymptotic expansion.

In other cases the classical gradient provides a "topological descent direction".

Let us consider the problem

$$(\alpha A + \beta I)u = F.$$

 α and β are two fonctions defined in Ω .

If α goes to 0 in $\omega \subset \Omega \Rightarrow$ a hole is created with null normal derivative of u on $\partial \omega$.

If β goes to ∞ in $\omega \subset \Omega \Rightarrow$ a hole is created with u=0 on $\partial \omega$. Well known penalization method in finite element method.

General Frame

Let us consider a differentiable function

$$\begin{array}{ccc}
f: & L^p(\Omega) & \to & \Re \\
c & \mapsto & f(c).
\end{array} \tag{1}$$

with $1 \le p <$ 2. There exists $\gamma_1 >$ 0 independent of δc such that

$$|f(c+\delta c) - f(c) - f'(c)\delta c| \le \gamma_1 ||\delta c||_{L^p(\Omega)}^2$$
 (2)

for every δc in $L^p(\Omega)$.

Assume that

$$f'(c) \delta c = \int_{\Omega} g \, \delta c \, dx. \tag{3}$$

has a regular gradient g.

The perturbation

$$\delta c_{\varepsilon} = \begin{cases} 1 & \text{in} & B(x_0, \varepsilon) \\ 0 & \text{elsewhere} \end{cases}$$
 (4)

is small in $L^p(\Omega)$ for small ε :

$$\|\delta c_{\varepsilon}\|_{L^{p}(\Omega)} = meas(B(x_{0}, \varepsilon))^{1/p}.$$

Let us denote $\rho(\varepsilon) = meas(B(x_0, \varepsilon))$. The rest behaves like $\|\delta c_{\varepsilon}\|_{L^p(\Omega)}^2 = (\rho(\varepsilon)^{1/p})^2 = \rho(\varepsilon)^{2/p} = o(\rho(\varepsilon))$ since p < 2.

The derivative $\int_{\Omega} g \, \delta c \, dx$ behaves like $\rho(\varepsilon)$ since g is regular : $|\int_{\Omega} g \, \delta c_{\varepsilon} \, dx - g(x_0) \rho(\varepsilon)| < \gamma_2 \varepsilon \rho(\varepsilon)$.

Let us set $j(\varepsilon) = f(c + \delta c_{\varepsilon})$. The classical gradient g is the topological gradient!

$$|j(\varepsilon) - j(0) - \rho(\varepsilon)g(x_0)| = o(\rho(\varepsilon)). \tag{5}$$

The Dirichlet condition

Let us consider $\Omega \subset \Re^N, N \leq 3$, $V \subset H^1(\Omega)$, the bilinear form a(u,v) satisfying classical hypotheses and

$$a(c, u, v) = a(u, v) + \int_{\Omega} cuv \, dx.$$

We know that $H^1(\Omega) \subset L^q$ for $1 \geq \frac{1}{q} > \frac{1}{2} - \frac{1}{N}$:

$$N=2$$
 : $1 \leq q < \infty$

$$N = 3$$
: $1 \le q < 6$

For q > 2, consider p satisfying $\frac{1}{p} = 1 - \frac{2}{q}$. The map

$$L^p \rightarrow \mathcal{L}_2(\mathcal{V})$$

 $c \mapsto a(c,.,.) = a(u,v) + \int_{\Omega} cuv \, dx$

is continuous.

For N = 2 we have p > 1. Then 1 .

For N = 3, we have

$$q < 6 \Rightarrow \frac{2}{q} > \frac{1}{3} \Rightarrow 1 - \frac{2}{q} < 1 - \frac{1}{3} = \frac{2}{3} \Rightarrow p > \frac{3}{2}.$$

Then $\frac{3}{2} .$

We consider u_c , the solution to

$$a(c, u_c, v) = l(v) \quad \forall v \in \mathcal{V}.$$

and $f(c) = J(u_c)$. Then

$$f'(c)\delta c = \int_{\Omega} \delta c \, up \, dx.$$

We have g = up. The regularity of g depends on a, l and J.

Let us denote $u_{\varepsilon} = u_{0+\delta c_{\varepsilon}}$ and $j(\varepsilon) = J(u_{\varepsilon})$. Then

$$j(\varepsilon) - j(0) = \rho(\varepsilon) \delta up + o(\rho(\varepsilon)).$$

(Connection with the Dirichlet Problem).

δ

2 : Application to a simple example.

Let us consider the problem

$$\begin{cases}
-u'' + cu &= 0 & \text{in }]0,1[\\ u(0) &= 0 \\ u'(1) &= 1
\end{cases}$$
(6)

and the cost function $J(u_c) = u_c(1)$ where u_c is the solution to (6) for a given c.

The Lagrange operator is

$$L(c, u, p) = u(1) + \int_0^1 (u'p' + cup) dx - p(1).$$

We have to minimize

$$f: L^{1}(0,1) \to \Re$$

$$c \mapsto f(c) = J(u_{c}) . \tag{7}$$

In this simple case, the adjoint is $p_c = -u_c$ and

$$f'(c)\delta c = \partial_c L(c, u_c, p_c).\delta c = -\int_0^1 u_c^2 \, \delta c \, dx.$$

We recall that $f'(c)\delta c = -\int_0^1 u_c^2 \, \delta c \, dx$ and

$$\delta c_{\varepsilon} = \begin{cases} 1 & \text{in} & [x_0, x_0 + \varepsilon] \\ 0 & \text{otherwise} \end{cases}.$$

Then

$$|j(\varepsilon) - j(0) - (-u_c(x_0)^2)\varepsilon| = o(\rho(\varepsilon)).$$

3: Check

The exact solution for c = 0 is $u_0 = x$ then

$$|j(\varepsilon) - j(0) - (-x_0^2)\varepsilon| = o(\rho(\varepsilon)). \tag{8}$$

By calculating explicitly the solution we have

$$u_{c_{\varepsilon}}(1) = \frac{e^{\varepsilon}(x_0 + 1) + e^{-\varepsilon}(x_0 - 1)}{e^{\varepsilon}(x_0 + 1) - e^{-\varepsilon}(x_0 - 1)} + 1 - (x_0 + \varepsilon). \tag{9}$$

Then $j(\varepsilon) - j(0) = -x_0^2 \varepsilon + \cdots$ we obtain the same result as in (8).

When the differentiability of f is limited to L^{∞} (or more generally to $L^p,\ p\geq 2$) this result is not still valid.

Example

Let us consider the problem

$$\begin{cases}
(cu')' &= 0 & \text{in }]0,1[\\ u(0) &= 0 \\ c(1)u'(1) &= 1
\end{cases} (10)$$

and the cost function $J(u_c) = u_c(1)$ where u_c is the solution to (10)

The Lagrange operator is

$$L(c, u, p) = u(1) + \int_0^1 (cu'p') dx - p(1).$$

We have to minimize

$$f: L^{\infty}(0,1) \to \Re$$

$$c \mapsto f(c) = J(u_c). \tag{11}$$

In this simple case, the adjoint is $p_c = -u_c$ and

$$f'(c)\delta c = \partial_c L(c, u_c, p_c).\delta c = -\int_0^1 (u'_c)^2 \,\delta c \, dx.$$

We consider

$$\delta c_{\varepsilon} = \begin{cases} \delta & \text{in} & [x_0, x_0 + \varepsilon] \\ 0 & \text{elsewhere.} \end{cases}$$

The exact solution if $c=c_0+\delta\varepsilon$ where c_0 is a constant is given by

$$u_{c_{\varepsilon}}(1) = \frac{1 - \varepsilon}{c_0} + \frac{\varepsilon}{c_0 + \delta}$$
 (12)

then $j(\varepsilon) - j(0) = \varepsilon(\frac{1}{c_0 + \delta} - \frac{1}{c_0}).$

Recall that

$$j(\varepsilon) - j(0) = \varepsilon \left(\frac{1}{c_0 + \delta} - \frac{1}{c_0}\right). \tag{13}$$

If we consider the gradient $f'(c)\delta c$ we obtain

$$-\varepsilon (u_c')^2 \delta = -\varepsilon \frac{\delta}{c_0^2}.$$
 (14)

The result obtained (14) is not correct if we compare it to (13). If δ is small these expressions are close. It isn't the case if δ is large.

But the two expressions have the same sign.

The Fixed point method of J. CEA (1973)

initialization $\Omega_0 \subset D$ is given

repeat for $k=0, 1, \ldots$

- 1. compute u_k, p_k the direct and the adjoint solutions in the domain Ω_k ,
- 2. compute the topological gradient g_k ,
- 3. compute \widetilde{g}_k a regular extension of g_k to the domain D,
- 4. the new domain is given by $\Omega_{k+1} = \{x \in D; \tilde{g}_k \geq \rho_k\}$. The step size ρ_k is such that $j(\Omega_{k+1}) < j(\Omega_k)$.

This alogorithm recalls the gradient method.

SHELL ECO-MARATHON To drive as far as possible using a given quantity of oil.

Sophie JAN: co-author and Pilote MIP - Toulouse

Energy control and environmental protection \Rightarrow

SHELL eco-marathon

"To drive as far as possible using the less amount of energy"

Principle of the competition on the Nogaro motor circuit

- seven laps (D = 3.636 km per lap)
- in less than T = 50'34'' (30 km/hour)

The Nogaro motor circuit

$$\min_{u} \left(\left(7D - x(T) \right)^{+} \right)^{2} + \int_{0}^{T} \operatorname{consumption}(x(t), v(t), u(t)) dt$$

$$\left\{ \begin{array}{l} x' = v \\ v' = Bv^2 + C(x, v) + D(v)u \end{array} \right\} \quad \mbox{Dynamic of the vehicle}$$
 (explicit Euler scheme)

$$\begin{cases} x(0) = 0 \\ v(0) = 0 \end{cases}$$
 Initial conditions

x: distance covered by the vehicle

v: speed of the vehicle

u: state of the engine (1 = on/off = 0)

For only one lap

Before optimization

 $2720.38 \mathrm{m} < 3636.0 \mathrm{m}$

First iteration

4010.68m » 3636.0m

Second iteration

 $3671.64 \text{m} \approx 3636.0 \text{m}$

Attempt is lost !!!

$$J = 4345.3$$

$$J = 11634.9$$

$$J = 9019.9$$

blue : state of the engine

pink : position on the circuit (via the altitude)

red : speed of the vehicle

For seven laps

Application to Wave guides Design Alcatel Space

Some applications to CFD problems

To maximize the flow for a given inlet pressure (Stokes)

with H. Maatoug (Enit)

We consider 3 cases

To maximize the flow, for a given inlet pressure (Stokes)

Champs de vitesse: initiale et iteration 1, 2 et 3

The first test case

Gradient topologique: iteration 1, 2, 3 et 4

2

The topological gradient

To maximize the flow, for a given inlet pressure (Stokes)

Champs de vitesse: initiale et iteration 1, 2 et 3

The second test case

To maximize the flow, for a given inlet pressure (Stokes)

Champs de vitesse: initiale et iteration $1,\,2$ et 3

Application to a transient nonlinear problem

Application to history matching in petrophysics P.E. Edoa MIP – D. Rahon IFP - MM

Transient Multiphase Darcy Equations

Inverse problem example

Well test data: pressure and derivative P_{obs} and $\frac{OP_{obs}}{Ot}$

$$P_{obs}$$
 and $\frac{\partial P_{obs}}{\partial t}$

• Inverse problem :
$$\begin{cases} Find\ a\ domain\ \Omega\ such\ as \\ P_{\Omega}^{sim} = P^{obs}\ and\ \frac{\partial P_{\Omega}^{sim}}{\partial t} = \frac{\partial P^{obs}}{\partial t} \end{cases}$$

• Objective function: $j(\Omega) = \frac{1}{2} \int_{\Omega} \alpha |P_{\Omega}^{sim} - P^{obs}|^2 + \beta \left\| \frac{\partial P_{\Omega}^{sim}}{\partial t} - \frac{\partial P^{obs}}{\partial t} \right\|^2 dt$

Objective : find the domain Ω which minimizes the objective function j

Calculation of the topological gradient

Single phase flow

$$G(x) = \int_{0}^{T} \left(c \left(\phi_{B(x,\varepsilon)} - \phi_{\Omega_{\varepsilon}} \right) \frac{\partial p_{\Omega_{\varepsilon}}}{\partial t} \lambda_{\Omega_{\varepsilon}} - \frac{1}{\mu} \left(K_{\Omega_{\varepsilon}} \nabla p_{\Omega_{\varepsilon}} \right) \nabla \lambda_{\Omega_{\varepsilon}} \right) (x,t) dt$$

 p_{Ω} : direct state, λ_{Ω} : adjoint state

Two-phase flow

$$G(x) = \int_{0}^{T} \left(F(\Omega_{\varepsilon}) - F(B(x, \varepsilon)) + (K_{\Omega_{\varepsilon}} \nabla P_{\Omega_{\varepsilon}} . (\frac{kr_{w}}{\mu_{w}} \nabla u_{\Omega_{\varepsilon}} + (\frac{kr_{w}}{\mu_{w}} + \frac{kr_{o}}{\mu_{o}}) \nabla v_{\Omega_{\varepsilon}})) \right) (x, t) dt$$

with
$$F(r) = (A \frac{\partial S_r}{\partial t} + B \frac{\partial (P_r S_r)}{\partial t})u_r + B \frac{\partial P_r}{\partial t}v_r$$

 P_{Ω}, S_{Ω} : direct state, u_{Ω}, v_{Ω} : adjoint state

Example 1 : 2D geostatistical case

- Objective: to find images satisfying dynamic data
 - 2 facies : K : 300mD (facies 1) ,1mD (facies 2)
 - Synthetics well tests

Simulation data

- H = 10m, F = 0.25
- -L = 1000m, I = 500m
- 2500 grid blocks
- Well tests: 1 day
- 3 wells, rate: 10m3/d

Reference permeability map

Optimization results

Reference permeability map

Evolution of the permeability map

Synthetic 3D case: two-phase flow

Production data

- 4 production wells, rate: 300m3/d (WO)
- 4 water injection wells, rate: 100m3/d
- Production history: 3 years
- Vertical production wells perforated in each layers
- Injection wells perforated in the bottom layer

Second example: 3D, two-phase flow

 Objective: determine the reservoir volume by history matching production data (water rate and pressure)

Simulation model

- 2 facies:
 Reservoir Kh = 300mD, Kv = 10mD
 Non reservoir Kh = 1mD, Kv = 0.1mD
- − 3 layers, 256 grid blocks per laye
- -L = 800m, I = 800m, H = 15m
- Two-phase flow : water and oil

Optimization results

Reference permeability map of the 3 layers

Evolution of the permeability map

Structural Engineering Application

Some open questions

- The topological asymptotic expansion for
 - Transient problems
 - Steady compressible N.S.E.
- What happens if δ goes to infinity ?