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Introduction: Notation

• u : [0, 1]× [0, 1] → IR is the undistorted image

• f is the observed image

• K is a convolution operator with kernel k. The kernel k takes into account

several effects: the optical system, the sensors, motion blur, etc.

• n is an additive (Gaussian) white noise with zero mean and variance σ2.

Image Acquisition Model: The equation relating u to f can be written as

f = Ku + n (IM)
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Denoising Problem

If K = I, the (IM) is

f = u + n (IM)K=I .

Denoising Problem: We know f and the statistics of the noise. We want to

recover u.
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Restoration Problem

Problem: Recover u from f and the knowledge about the kernel K and the

statistics of the noise.

This is an ill-posed problem

• K need not be invertible

• Even if K−1 exists, applying it to both sides of (IM) we obtain

K−1f = u + K−1n

Writing K−1n in the Fourier domain, we have

K−1n =
(

n̂

k̂

)∨
.

We see that the noise may blow up at the frequencies for which k̂ vanishes or

it becomes small.
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Figure 1: Some level lines in [−1/2, 1/2]2 of MTF (the FT of K)
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Regularization methods

First: interpret (IM) in an integral sense∫
[0,1]2

(Ku− f)2 dx ≤ σ2 (IM*)

• H1 regularization: choose between the possible solutions of (IM*) the one

which minimizes ∫
[0,1]2

|∇u|2 dx

Not satisfactory: unable to resolve discontinuities (edges) and oscillatory

patterns. Functions in W 1,2 are not good models for images.

• Total Variation Regularization: from all functions satisfying (IM*) choose

the one which minimizes ∫
[0,1]2

|Du|

Model proposed by Osher-Rudin-Fatemi (1992). The underlying functional

model for images are BV functions: contain geometric image sketches.
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From constrained to Unconstrained Formulation

Typical approach: solve the unconstrained minimization problem

Minimize
∫

[0,1]2
|∇u|+ λ

2

∫
[0,1]2

(Ku− f)2, dx

The constraint has been introduced with a Lagrange multiplier. Formally. the

Euler-Lagrange equations are :

−div
(

Du

|Du|

)
+ λK∗(Ku− f) = 0

with Neumann boundary conditions.
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Restoration Experiments

Figure 2: Left: Reference image. Right: Data
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Figure 3: Left: Restored image. Right: Error
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Figure 4: Left: Reference. Rigt: Data
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Figure 5: Restored image
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Figure 6: Restored and zoomed
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Denoising, u + v decompositions

• If K = I : TV denoising model

Minimize
∫

[0,1]2
|∇u|+ λ

2

∫
[0,1]2

(u− f)2dx (DP)

The Euler Lagrange equations are:

f = u− 1
λ

div
(

Du

|Du|

)
+ NBC

Not a good denoising model: residuals have structure.

• Second Life after a different interpretation given by Y. Meyer:

Write v = − 1
λdiv

(
Du
|Du|

)
and write f = u + v where u and v solve:

Minimize
∫

[0,1]2
|∇u|+ λ

2
‖v‖22 whith f = u + v.

u is the geometric sketch of the image

v is the textured part
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u + v decompositions

Write

v = − 1
λ

div z with z ·Du = |Du|, |z|∞ ≤ 1

The u + v decomposition is obtained by minimizing:

Minimize
∫

[0,1]2
|∇u|+ λ

2
‖v‖22 whith f = u + v.

Criticism: Not a good model. Reasons: experimental and theoretical.

Our purpose: Give examples which show its defects.

• New Meyer’s proposal; Better Model :

Minimize
∫

[0,1]2
|∇u|+ λ‖v‖∗ whith f = u + v.

Notations: ‖‖∗ denotes de norm in BV ∗ (the dual of BV ).
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Experiments (images courtesy of A. Chambolle)

Figure 7: Left: Noisy image. Rigt: Result
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Figure 8: Denoising for different values of λ
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Figure 9: Left: Reference. Rigt: Noisy Data
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Figure 10: Left: Result ROF model. Rigt: Result Meyer’s model
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Figure 11: Differences Original with Result
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Our purpose

• Find data f for which we can compute explicitly its u + v decomposition to

show some defects of the model.

Some References

• The study of the operator −div
(

Du
|Du|

)
has been done by F. Andreu, V.C.,

and J.M. Mazón in several contexts (Int. Diff. Eq., JFA, Birkhauser ...)

• Explicit u + v decompositions in IR2: G. Bellettini, V.C., M. Novaga

(JDE,SIAM J MA)

• More explicit solutions in IR2 and in IRN : F. Alter, V.C., A. Chambolle (IFB,

Math. Ann)
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A basic result to construct explicit solutions

Proposition (BCN, 2002) Let u be a solution of the Eigenvalue problem

−div
(

Dw

|Dw|

)
= w (EP).

Let λ > 0, b ∈ IR, and a := sign(b)(|b| − λ−1)+.

Let f = bu. The solution of (DP) is u = au.

Sketch of proof : Assume that 0 < λ−1 ≤ b, then a = b− λ−1. Then

f = bu = au + λ−1u = au− λ−1div
(

Du

|Du|

)
= u− λ−1div

(
Du

|Du|

)
.
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A variant of the basic result

Proposition Let ui ∈ BV (IRN ), ui ≥ 0, be functions with disjoint support.

Assume that ui,
∑m

i=1 ui are solutions of (EP).

Let f =
∑m

i=1 biui (bi ∈ IR, λ > 0).

Then u =
∑m

i=1 sign(bi)(|bi| − λ−1)+ui is the solution of (DP).
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Solutions of the Eigenvalue Problem

Theorem (BCN, JDE 2002) Let C ⊆ IR2 be a set of finite perimeter.

Assume that C is connected. Then

(i) v = λχC is a solution of the (EP)

(ii) λ = λC := P (C)
|C| , C is convex, C1,1 and

C = argminP (X)− λC |X| X ⊆ C

(iii) λ = λC, C is convex, C1,1 and

esssupx∈∂C κ∂C(x) ≤ λC
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Solutions of the Eigenvalue Problem

Proof: (i) ⇒ (ii) If λχC is a solution of (EP), there exists a vector field z with

|z| ≤ 1 such that

−div z = λχC and z ·DχC = |DχC |.

Multiplying this PDE by χC and integrating by parts, we have

λ|C| =
∫
|DχC | = P (C) −→ λ =

P (C)
|C|

.

Now, we multiply by χD, D ⊆ IR2 a set of finite perimeter. We obtain:

λC |C ∩D| =
∫

z ·DχD ≤ P (D) −→ λC ≤ P (D)
|C ∩D|

.



26

Proof continued

We have

λC ≤ P (D)
|C ∩D|

∀D

Taking D ⊆ C we have

λC ≤ P (D)
|D|

∀D ⊆ C −→ C = argminP (X)− λC |X|

Taking D ⊇ C we obtain

P (C) ≤ P (D) ∀D ⊇ C −→ P (C) ≤ P (co(C)) −→ C is convex.

(ii) ⇒ (iii) If C = argminP (X)− λC |X|, then κ∂C ≤ λC on ∂C.

(iii) ⇒ (ii) Based on a result of Giusti (N = 2). Other proofs by BCN and

Kawohl-Lachand Robert.

(ii) ⇒ (i) Use the coarea formula.
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Solutions of (EP): non-connected sets

Theorem (BCN, JDE 2002) Let Ω ⊆ IR2 be a set of finite perimeter. Let

Ω = C1 ∪ . . . ∪ Cm, bi > 0. Then

u =
∑m

i=1 biχCi
is a solution of the (EP) if and only if

• bi = P (Ci)
|Ci| ∀i

• Ci are convex sets, C1,1

esssupx∈∂C κ∂Ci
(x) ≤ P (Ci)

|Ci|
∀i

• If E = argminP (X) for X ⊇ ∪iCi, then P (E) =
∑m

i=1 P (Ci).
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Solutions of (EP): non-connected sets

• If P (co(C1 ∪ C2)) < P (C1) + P (C2), there is interaction of the two sets.

• If P (co(C1 ∪ C2)) ≥ P (C1) + P (C2), both sets evolve independently without

interaction.

Figure 12: Two balls
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Solutions of (EP) which are Towers of convex sets

Theorem (BCN, 2002) Let K0,K1 ⊆ IR2 be two convex sets with K1 ⊆ K0.

Let

J :=
P (K0)− P (K1)

|K0 \K1|
.

If

esssupx∈∂K0
κ∂K0(x) ≤ J

essinfx∈∂K1κ∂K1(x) ≥ J, esssupx∈∂K1
κ∂K1(x) ≤ λK1

then v = λK1χK1 + JχK0\K1 is a solution of (EP).
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Solutions of (EP) in W 1,1
loc (IRN) ∩ L∞(IRN)

Theorem (BCN, 2002) Classification of solutions u of (EP) such that

Tk(u) ∈ W 1,1
loc (IRN ) ∀k > 0, and are in L∞loc(IR

N ) near any level set.

Solutions are such that: the connected components of [u > t] are circles of

radius 1
t .
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Solutions of (EP) in IRN

Theorem (ACCh, 2003) Let C ⊆ IRN be a convex set of class C1,1. The

following conditions are equivalent:

• u = λCχC is a solution of (EP).

• C = argminX⊆CP (X)− λC |X|

• (N − 1)HC ≤ λC.
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A Technical Tool

An important tool to prove last Theorem is :

Proposition (ACCh, 2003) Let C ⊆ IRN be a convex set. If

u ∈ BV (IRN ) ∩ L2(IRN ) is a solution of

Minimize
∫

IRN

|∇u|+ λ

2

∫
IRN

(u− χC)2dx (DPC)

then the level set [u ≥ s], 0 < s ≤ 1, is a solution of

MinX⊆CP (X)− λ(1− s)|X|
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Solutions of (EP) in IRN

Some explanation: If (N − 1)HC ≤ λC and C is not a minimizer of

argminX⊆CP (X)− λC |X|

then it would be a minimizer of

argminX⊆CP (X)− µ|X| (P )µ

for some µ > λC and would be approximated by minimizers Cn of (P )µn with

µn ↑ µ. Since

• The sets Cn are convex (consequence of previous result and Korevaar’s

concavity results)

• Since Cn 6= C, ∂Cn has points with (N − 1)HCn
= µn > λC.

=⇒ ∂C contains points where (N − 1)HC > λC, a contradiction.
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Connections with an Isoperimetric problem

Thus, level sets of (DPC) are related to the solutions of

MinX⊆CP (X)− µ|X| µ > 0.

which, in turn, is related to

MinX⊆C,|X|=V P (X) (IsoPV )

where V is a fixed volume.

Theorem (ACCh, 2003) Let C ⊆ IRN be a convex set of class C1,1. Then

for any value of V ∈ [|K|, |C|] there is a unique convex solution of the

isoperimetric problem (IsoPV).

K is the “maximal Cheeger” set (“maximal calibrable” set) contained in C.
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General convex sets

(ACCh, IFB 2005) Assume that C is a bounded convex set in IR2:

• There is a calibrable set CR ⊆ C such that ∂C \ ∂CR is formed by arcs of

circle of radius R such that 1
R = P (CR)

|CR|

• For each x ∈ C \ CR it passes an arc of circle of radius r(x) and those circles

fiber C \ CR.

Then u(x) = (1− λ−1

r(x) )
+χC is the solution of (DPC)

Minimize
∫

IRN

|∇u|+ λ

2

∫
IRN

(u− χC)2dx (DPC)

This result can be extended to IRN with suitable adaptations.
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Open Questions

• Restoration of textures: modeling based on functional norms ?

• Restoration when the kernel vanishes at the interior of the frequency domain.

• Solutions of the eigenvalue problem (in IRN):

−div
(

Dw

|Dw|

)
= w (EP).

• Is the solution of the isoperimetric problem

MinX⊆C,|X|=V P (X) (IsoPV )

a convex set (C being convex) ?

• Assume that C is convex, is the Cheeger set contained in C unique ?
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