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Abstract

We consider a problem of elliptic optimal design in two space dimen-
sions. The control is the shape of the domain on which the Dirichlet
problem for the Laplace equation is posed. In dimension n = 2, S̆veràk
[36] proved that there exists an optimal domain in the class of all open
subsets of a given bounded open set, whose complementary sets have
a uniformly bounded number of connected components. The proof in
[36] is based on the compactness of this class of domains with respect
to the complementary-Hausdorff topology Hc and the continuous de-
pendence of the solutions of the Dirichlet laplacian in H1 with respect
to it. In this article we introduce a finite-element discrete version of
this problem in which the domains under consideration are polygons

∗This author has been partially supported by the Grant BFM2002-03345 of the Spanish
MCYT, and the EU TMR Project “Smart Systems”.
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defined on the numerical mesh. The discrete optimal design problem
admits at least one solution since it is a finite optimization problem.
We prove that any limit in Hc of discrete optimal shapes, when the
mesh-size tends to zero, is an optimal domain for the continuous op-
timal design problem. The proof relies on the following two key facts:
a) any open bounded set of R2 can be approximated in Hc by a se-
quence of triangulated domains, b) finite-element approximations of
the Dirichlet laplacian in the triangulated domains converge in H1 to
the solutions of the continuous Dirichlet problem whenever the trian-
gulated domains converge in Hc.

Key words: Elliptic equation, Dirichlet problem, two space dimensions,
shape optimization, optimal control, finite elements, complementary-Hausdorff
topology, γ-convergence.

Mathematics Subject Classification: 35J05, 49Q10, 49M25, 65M60.

1 Introduction

We consider a problem of optimal control in which the control variable Ω
is the domain on which a partial differential equation (PDE) is posed. The
function we want to minimize depends on Ω through the solution of the
PDE.

This subject has been widely studied in the last decades and there is an
extensive literature.

We focus on the Dirichlet laplacian in 2D and, more precisely, on the
problem of the numerical approximation of optimal shapes. We work in
the functional and geometric setting introduced by S̆veràk [36]. We then
build a finite element approximation of the optimal design problem and
prove that, in the complementary-Hausdorff topology Hc, every limit of
discrete optimal shapes is an optimal shape for the Dirichlet problem for
the continuous laplacian.

The geometric and functional setting in S̆verák [36] seems to be the
appropriate one to address this issue of numerical approximation of optimal
shapes. Indeed, in dimension d = 2, according to [36], the solution of a
Laplace-Dirichlet problem depends continuously on the domain on which it
is posed provided one works in the set ON of all open subsets of a given
open bounded set D, which have at most N holes (N is a given number).
This result is the key ingredient to prove the existence of optimal shapes for
a number of optimal design problems. For the discrete/numerical optimal
design problem, we shall work in the same geometric setting, by imposing
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the complement of the discrete shapes to have a finite, a priori fixed, number
of connected components.

As we shall see, roughly speaking, this suffices to prove the convergence
in Hc of the finite-element discrete optimal shapes to the continuous ones
as the mesh-size tends to zero.

Let us describe more precisely the problem under consideration.

• D is a non-empty bounded lipschitz open set in R2.

• O is the set of all open subsets of D.

• For all Ω ∈ O, we consider a partial differential equation posed on Ω

yΩ : AΩ yΩ = fΩ. (1)

For the sake of simplicity we shall focus on the Dirichlet problem for
the Laplace operator. Any second order symmetric operator could
be addressed with the same techniques. But considering the Dirich-
let boundary conditions is essential to apply the arguments we shall
develop in this article.

• For all Ω ∈ O, we define j(Ω) = JΩ(yΩ), where JΩ is a given func-
tional.

The continuous optimal design problem we consider is as follows:

to find Ω∗ such that j(Ω∗) = min
Ω

j(Ω). (2)

As we have mentioned above, the results by S̆veràk [36] guarantee that
the problem above achieves the minimum in an optimal shape Ω∗ for a wide
class of functionals, under the additional constraint that the domains un-
der consideration have complementary sets with at most a finite prescribed
number of connected components.

The problem we address is that of the numerical approximation of the
optimal shapes solving (2). In particular we address the issue of whether the
discrete optimal shapes for a suitable discretization of the problem above
converge in Hc to an optimal shape for the continuous problem. As we shall
see, the answer to this question is positive if the discrete optimization prob-
lem is conveniently built in the context of finite-element approximations.

We now introduce a discretization of this problem as follows.
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• For any mesh size h > 0, we consider a triangulation Th of the domain
D. The triangulations are assumed to satisfy the classical requirements
for finite elements.

• Oh is a set of open subsets of D constituted by unions of triangles T
of the triangulation Th.

• For all Ωh ∈ Oh, we consider the P1 finite element approximation
of the PDE posed on Ωh. Thus, its solution yh solves a Galerkin
variational approximation of the equation (1).

• We approximate JΩ by a well-chosen functional JΩh
h , and we define

jh(Ωh) = JΩh
h (yh).

A classical family of functionals comes from one, say J , defined on
H1

0 (D). Extending any function of H1
0 (Ω) by 0, one can view it as a function

of H1
0 (D). Also the finite element solution in Ωh belongs to H1

0 (Ωh). In this
case, we can take J for JΩ and JΩh

h .
The discrete problem we consider is:

to find Ω∗
h such that jh(Ω∗

h) = min
Ωh

jh(Ωh). (3)

The triangulation Th being fixed, the number of triangular domains un-
der consideration for the discrete optimal design problem is finite. Thus,
the existence of discrete optimal shapes is obvious.

The goal of this article is to describe a setting in which the following two
properties are true:

• convergence of the minima:

min
Ωh

jh(Ωh) −→ min
Ω

j(Ω) when h −→ 0,

• convergence of the optimal shapes: the limit in the topology Hc of
discrete optimal shapes Ω∗

h solving (3) is an optimal shape for the
continuous problem (2).

For this to be true, obviously, the mesh-size h of the triangulation Th

has to tend to zero.

The interest of this kind of convergence result is that it provides a rigor-
ous justification to the most common engineering approach for computing
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optimal shapes that consists in solving a discrete finite-element version of
the optimal design problem in order to compute an approximation of the
continuous one.

In this article we discuss this problem in the context of the Dirichlet
laplacian and describe the geometric, functional and finite element setting
in which these convergence results hold.

Our results apply to a variety of functionals to be minimized. In par-
ticular, they apply to the most common example of minimizing the work of
external loads, which is nothing but the internal energy of the system. They
also apply to classical shape identification problems.

The proof we shall develop fits in the frame of Γ-convergence. Conse-
quently, it relies essentially on the following two related but independent
facts.

1. The first one is that any open subset Ω of D can be approximated
in the complementary Hausdorff topology (Hc-topology) by domains
Ωh which are unions of triangles in the triangulation Th as h tends to
zero.

2. The second one is that P1 finite-element approximations in Ωh con-
verge to the solution of the Dirichlet problem in Ω, provided the tri-
angulated domains Ωh converge in Hc to Ω.

The second property may be viewed as a discrete version of the main
result by Sveràk [36] guaranteeing the convergence of the solutions of the
Dirichlet problem when the domains converge in the sense of Hc, under
the additional assumption that their complementary set have an a priori
bounded number of connected components.

To our knowledge the results in this paper are the very first ones in what
concerns the convergence of discrete optimal shapes to continuous ones in
the present geometric and functional setting, where optimal shapes may
be very singular. For an introduction to this topic the interested reader is
referred to the monographs [26] and [31].

Most of the ideas developed in this article may be of use for many other
optimal design problems related with PDE’s. But a complete developement
at the level of convergence of numerical discretizations will certainly require
the use of fine properties of the underlying continuous problem. In this
article we fully rely on the results in [36] and therefore our results are re-
stricted to the Dirichlet problem in 2D. Note however that, although we
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work with the Laplace opertor, similar results could be obtained with the
same techniques to many other Dirichlet problems: elliptic Stokes system,
the wave and the heat equation, etc. The restriction to 2 dimensional space
also refers to the use we do of the result of S̆verák [36].

This paper is divided in five sections after this introduction. In Section
2, we recall some definitions and properties concerning Hausdorff topology,
γ-convergence, Mosco-convergence, and how they are related. In Section 3,
we present in detail a class of optimal design problems and their numeri-
cal approximations in which the techniques developed in this paper apply.
Convergence is rigorously proved under some minimal requirements on the
classes of admissible domains. In Section 4, we show that the general results
of the previous section apply to the Dirichlet problem for the laplacian in 2D
in the class of domains ON in which the number of holes is a priori bounded
by a finite number N . Section 5 is devoted to summarize the main results of
the paper and to comment on some open problems and directions of future
research. Section 6 is an Appendix, in which we give some examples showing
that some of the most “intuitive” properties of Hausdorff convergence may
fail.

As we mentioned above, there is an extensive literature on optimal design
for PDE’s both in the context of elasticity and fluid flows. The interested
reader is referred to the monographies at the bibliography in the end of the
article. This bibliography is by no means complete. However, we have tried
to collect some representative works that we briefly comment now to close
this introduction.

In the seventies and eighties the work in this field was done mainly in
the context of smooth (Lipschitz) domains (see for instance [10, 11]). The
method, originally introduced by Hadamard, consisting on considering only
domains which are homeomorphic to a given reference domain was also
intensively investigated (see [17, 18, 25, 29, 33, 35, 38] for instance). In both
approaches the restrictions on the admissible domains are quite strong.

This method has been extensively used in engineering. Actually, in quite
a lot of situations (building, car, aircraft, aerospace industries...), engineers
know a priori the topology of the piece of material they have to build. They
use shape optimization to improve its strength. This is usually done with
gradient type methods. We can mention that this can be done using a
discrete method: the gradient of the discrete functional is computed. It
can also be done using a continuous point of vue: the differential of the
continuous functional is computed, and then discretized. Quite often, these
two methods give the same result. If not, they are asymptotic when the
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mesh size tends to zero, provided the discrete method is convergent. This
is discussed in [22, 23].

More recently, techniques allowing to handle topological changes of the
shapes have been developed, in a theoretical way as well as in a numerical
one. Most of them are based on relaxation and homogenization ([1, 2, 3, 8,
28, 37]) and other with topological derivatives (see [25]).

For numerical results and experiments, we can refer for instance to [2,
3, 21, 25, 34] for representative engineering techniques.

In the last ten or twenty years new results of existence of continuous
optimal shapes came out, requiring very little regularity on the admissible
domains. We refer to [4, 5, 6, 7, 9, 19, 20, 24, 36] for up to date results in
this direction. The key point in this approach is the use of the Hausdorff
topology on sets of parts of Rd. As we mentioned above the present paper
relies heavily in the setting developed in [36] for the elliptic optimal design
of the Dirichlet problem in 2D.

This article is an extended version of [13] where the main results pre-
sented and fully developed here were announced.

2 Preliminaries

In what follows, we recall well-known results that can be found, in particular,
in [19].

In Section 2.1, we recall properties concerning the Hausdorff topology.
In Section 2.2, we consider the Laplace equation with Dirichlet boundary
conditions, and we recall properties concerning the dependence of the so-
lution with respect to the domain on which it is posed. In particular, we
recall the definitions of γ-convergence, Mosco-convergence, and the relations
between these convergence notions.

In what follows, D denotes an open bounded regular subset of Rd. O
denotes the set of all open subsets of D.

2.1 Hausdorff and complementary-Hausdorff topology

We first recall the definition of the Hausdorff and complementary-Hausdorff
topologies. One has

Definition 2.1 [5, 16, 19, 31]
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1. The Hausdorff distance between two compact sets K1 and K2 of R2 is
defined by

dH(K1, K2) = max{ max
x1∈K1

d(x1,K2), max
x2∈K2

d(x2,K1)},

where d(x,K) = miny∈K || x− y ||, and || . || is the euclidian distance
in R2.

2. The complementary-Hausdorff distance between two open subsets Ω1

and Ω2 of D is defined by

dHc(Ω1,Ω2) = dH( D \ Ω1, D \ Ω2)

Each of these distances defines a metric topology on the set of compact
subsets of R2 and open subsets of D respectively . We denote

Kn
H−→ K ⇐⇒ dH(Kn,K) −→ 0,

Ωn
Hc

−→ Ω ⇐⇒ dHc(Ωn,Ω) −→ 0.

Remark 2.1 (see [5, 19, 20, 31]) The following results hold:

1. The set of compact subsets K of D is H-compact, so O is Hc-compact.

2. Let (Kn)n be a sequence of compact subsets of D, H-converging to K.
Then

K = {x ∈ D; ∃ xn ∈ Kn s.t. xn −→ x}.

3. Let (Ωn)n be a sequence of open subsets of D, Hc-converging to Ω.
Then

∀K compact, K ⊂ Ω, ∃nK s.t. n > nK ⇒ K ⊂ Ωn.

For any Ω ∈ O, we denote by ]cΩ the number of connected components
of D \ Ω.

Definition 2.2 For a given positive integer N and a small regular open
subset ω of D, we define
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1. ON = {Ω ∈ O; ]cΩ ≤ N}.

2. ON
ω = {Ω ∈ ON ; ω ⊂ Ω}.

One has

Lemma 2.1 (see [20, 36]) The sets ON and ON
ω are Hc-compact.

Remark 2.2 Some of the properties related to Hausdorff convergence that
might seem “natural” and/or in agreement with intuition may fail. Here we
present some of them. In Appendix 1 we give examples ([20]) showing that
these properties fail in general:

1. For any K1 and K2 compact sets of R2, there exist x1 ∈ K1 and
x2 ∈ K2 such that dH(K1,K2) =|| x1−x2 || but they are not necessarily
on the boundary of K1 and K2. (see example 6.1)

2. The property that ω ⊂ Ω is not Hc-closed. (see example 6.2)

3. If a sequence of open subsets (Ωn)n of D Hc-converges to Ω, then the
sequence (Ωn)n does not necessarily H-converge to Ω. (see example
6.2)

4. Ωn
Hc

−→ Ω does not imply that µ(Ωn) −→ µ(Ω), where µ(Ω) denotes
the Lebesgue measure of Ω. (see example 6.3)

In general one can only guarantee that

lim inf µ(Ωn) ≥ µ(Ω).

5. The same happens with the perimeter:

lim inf P (Ωn) ≥ P (Ω),

where P (Ω) denotes the perimeter of Ω. (see example 6.3)
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2.2 Dependence of the Dirichlet problem with respect to the
domain

We remind that H1
0 (Ω) is defined as the closure of D(Ω) for the H1

0 topology,
where D(Ω) is the set of C∞ functions with compact support in Ω. Accord-
ingly, D(Ω) is dense in H1

0 (Ω) and any function of H1
0 (Ω) can be extended

by 0 to give a function of H1
0 (Rd). Note that these properties do not hold in

H1(Ω) without further restrictions on the regularity of Ω. This makes the
Dirichlet problem much easier to treat than the Neumann one.

For any function z ∈ H1
0 (Ω), we denote by z̃ its extension by 0 to D.

For any f ∈ H−1(D) and any Ω ∈ O, Ω 6= ∅, one defines yΩ
f ∈ H1

0 (Ω) as
the solution of the Dirichlet problem for the laplacian{

−∆yΩ
f = f in Ω

yΩ
f = 0 on ∂Ω.

(4)

The variational formulation of (4) is as follows:

yΩ
f ∈ H1

0 (Ω),
∫

Ω
∇yΩ

f · ∇zdx =< f, z >H−1,H1
0 (Ω), ∀z ∈ H1

0 (Ω). (5)

Here and in the sequel · denotes the inner product in R2, and∇z the gradient
of z.

When Ω = ∅ we use the notation ỹ∅f := 0.

Given a sequence (Ωn)n ⊂ O and a domain Ω ∈ O, we recall that Ωn

γ-converges to Ω if (see [19, 20])

∀f ∈ H−1(D), ỹΩn
f −→ ỹΩ

f strongly in H1
0 (D).

On the other hand, Ωn Mosco-converges to Ω and we denote it as Ωn
Mosco−→

Ω if (see [19, 27])

1. ∀z ∈ H1
0 (Ω), ∃ zn ∈ H1

0 (Ωn) s.t. z̃n −→ z̃ strongly in H1
0 (D),

2. ∀(Ωnk
)k ⊂ (Ωn)n, ∀znk

∈ H1
0 (Ωnk

), one has

{ z̃nk
⇀ w weakly in H1

0 (D) } =⇒ { ∃ z ∈ H1
0 (Ω) s.t. w = z̃ }.

It is by now well known that these two notions coincide (see [19]), i. e.

Ωn
γ−→ Ω ⇐⇒ Ωn

Mosco−→ Ω.

Now, let us recall some relations between Hc-convergence and γ-convergence.
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Lemma 2.2 (see [5])
If a sequence Hc-converges, then the first point of the definition of the

Mosco convergence is satisfied.
In other words, if Ωn converges to Ω in Hc, then, for all z ∈ H1

0 (Ω) there
exists zn ∈ H1

0 (Ωn) such that z̃n −→ z̃ strongly in H1
0 (D).

It is well-known that, in general, Hc-convergence does not imply γ-
convergence. Indeed, many situations are known where homogenization
phenomena occur at the limit when the sequence of domains is allowed
to develop an increasing number of holes. In those cases the limit of the
solutions of the Dirichlet laplacian may be the solution of a different elliptic
problem (see [15] and [1, 28, 31, 37]). Nevertheless, several situations are
known where this does not happen. In [5], a list of subsets U of O on which
Hc-convergence implies γ-convergence is given. The following one is due to
V. S̆veràk [36]:

Theorem 2.1 ([36])
In two space dimensions, for any finite N , Hc-convergence and γ-convergence

are equivalent properties on ON .

Notice that the properties that the dimension is 2 and that ]cΩ ≤ N for
all sets in ON are fundamental here.

3 Convergence of discrete optimal shapes towards
continuous ones

In this section, we study the optimization problem described in the Intro-
duction in a quite general setting.

For a matter a simplicity, we work here in dimension 2. Though, we
emphasize the fact that it will become necessary only when we will use the
result of S̆verák.

3.1 Notations and definitions

As before, D ⊂ R2 is an open bounded regular set, and O the set of all open
subsets of D. To fix ideas one can assume that D is for instance a rectangle
in R2.
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For any h, we consider a discretization or triangulation Th of D made of
finite elements T . Any finite element T is a closed triangle (see [32]) so that

D =

◦︷ ︸︸ ︷⋃
T∈Th

T

where

◦︷︸︸︷
A denotes the interior of A ⊂ R2.

We assume that the mesh-size is h > 0. More precisely, any T ∈ Th has
a diameter at most equal to h.

Moreover, as usual in finite elements theory, we suppose that the trian-
gulations are uniformly regular, that is

∃σ > 0 s.t. ∀ h > 0, ∀ T ∈ Th, 0 <
h

ρ(T )
≤ σ,

where ρ(T ) is the radius of the biggest ball which is contained in T .
We define Oh as the class of subdomains of D constituted by triangles

T of the triangulation Th. More precisely, we say that Ωh ∈ Oh if and only
if there exists Th(Ωh) ⊂ Th such that

Ωh =

◦︷ ︸︸ ︷⋃
T∈Th(Ωh)

T .

Obviously, the set Oh is finite.
We consider a functional

J̃ : O ×H1
0 (D) −→ R : (Ω, z̃) 7→ J̃(Ω, z̃)

which is supposed to be continuous, O being equipped with the Hc-topology
and H1

0 (D) with its strong topology.
We consider the solution of the Laplace equation with Dirichlet boundary

conditions.

Let f ∈ H−1(D) be given and for any Ω ∈ O, Ω 6= ∅ consider the
Dirichlet problem (4) or its weak version (5) in Ω. The right hand side
term f being fixed in the sequel, the solution is denoted by yΩ. We also set
ỹ∅ := 0.

For any h > 0 and any Ωh ∈ Oh, we consider the P1 finite element space
Vh(Ωh). Obviously, Vh(Ωh) ⊂ H1

0 (Ωh). We denote by yh the finite element
Galerkin approximation in Ωh, namely

yh ∈ Vh(Ωh),
∫

Ωh

∇yh ·∇zhdx =< f, zh >H−1,H1
0 (Ωh), ∀z ∈ Vh(Ωh). (6)
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Remark 3.1 It is important to distinguish yh, which is the discrete finite-
element solution in Ωh, and yΩh which is the solution of the continuous
Dirichlet problem in Ωh.

We define the continuous and discrete functional to be optimized as
follows:

j : O −→ R : Ω 7→ J̃(Ω, ỹΩ),

jh : Oh −→ R : Ωh 7→ J̃(Ωh, ỹh),

and for given subclasses of domains Uad ⊂ O and Uad,h ⊂ Oh, we consider
the optimization problems:

Ω∗ ∈ Uad : j(Ω∗) = min
Ω∈Uad

j(Ω), (7)

Ω∗
h ∈ Uad,h : jh(Ω∗

h) = min
Ωh∈Uad,h

jh(Ωh). (8)

As we mentioned in the introduction, the goal of this paper is to give
sufficient conditions on Uad and Uad,h insuring that the discrete minimization
problems are good approximations of the continuous one.

Remark 3.2 Note that, since Oh is a finite set, for any choice of Uad,h the
discrete minimization problem has at least one solution, say Ω?

h. Obviously,
this does not mean that efficiently computing that discrete optimal shape is
an easy task at all. As we mentioned in the Introduction, this is a whole
field of research in engineering (see [2, 3, 25, 34]).

As we shall see, the existence of optimal shapes for the continuous opti-
mization problems is quite subtle.

Let us give some examples of functionals J̃ which often arise in applica-
tions. The theory we shall develop in this article applies to all of them.

1. The first one is very standard and concerns the compliance of the
system. It is defined by

J̃(Ω, z̃) =< f, z̃ >H−1,H1
0 (D),

which gives
j(Ω) =< f, yΩ >H−1,H1

0 (Ω) .

Remark that, in this case, j(Ω) =
∫
Ω | ∇yΩ |2, which coincides with

the energy of solutions, and, in particular, is non-negative. Without
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any further constraint, the optimum is reached for the empty set Ω =
∅, and the trivial solution ỹΩ = 0. But this is often an irrelevant
solution in applications. It is much more natural to impose some
condition avoiding the possibility that the optimal shape degenerates
to the empty set. This is done, for instance, imposing to Ω to contain
a given non-empty set ω.

2. A second important example concerns shape identification problems.

Let us consider a subdomain ω ∈ O, ω 6= ∅. We suppose that a
function yg has been measured or observed on ω, which is a known or
accesible part of the set Ω which is unknown and has to be identified.

One then wants to minimize || yΩ−yg ||V , where V is a suitable space,
well-adapted to the problem under consideration. We can choose for
instance V = L2(ω) or H1(ω). In this case, the functionals to be
minimized are, for example, of the form

J̃(Ω, z̃) =
1
2
|| z̃|ω − yg ||2V ,

which gives

j(Ω) =
1
2
|| yΩ

|ω − yg ||2V .

We refer to [12] for a discrete formulation of this problem in the spirit
of the theory of controllability of PDE’s.

3.2 The main result

The aim of this section is to prove the following

Theorem 3.1 Suppose that we are given a set U ⊂ O on which Hc-
convergence implies γ-convergence. Suppose further that

Uad ⊂ U , Uad,h ⊂ U .

Morever, suppose that

1. ∀Ω ∈ Uad, ∃ Ωh ∈ Uad,h s.t. Ωh
Hc

−→ Ω,

2. if a sequence Ωh ∈ Uad,h Hc-converges to some Ω ∈ O, then Ω ∈ Uad.
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Then the discrete optimal design problems converge to the continuous
one in the sense that

1. j reaches its minimum on Uad,

2. any accumulation point of any sequence (Ω?
h)h of discrete minimizers

(which is Hc-compact) is a continuous minimizer,

3. the whole sequence (jh(Ω?
h))h converges to minΩ∈Uad

j(Ω).

The proof of this theorem is a direct consequence of the following tech-
nical results.

Proposition 3.1 Suppose that Uad and Uad,h are such that

1. (a) ∀Ω ∈ Uad, ∃ Ωh ∈ Uad,h s.t. Ωh
Hc

−→ Ω,

(b) if a sequence Ωh ∈ Uad,h Hc-converges to some Ω ∈ O, then
Ω ∈ Uad,

2. if Ωh ∈ Uad,h and Ω ∈ O are such that Ωh
Hc

−→ Ω, then ỹh −→ ỹΩ

strongly in H1
0 (D).

Then

1. j reaches its minimum on Uad,

2. any accumulation point of any sequence (Ω?
h)h of discrete minimizers

(which is Hc-compact) is a continuous minimizer,

3. the whole sequence (jh(Ω?
h))h converges to minΩ∈Uad

j(Ω).

Remark 3.3 Hypothesis # 2 is a discrete finite-element version of the γ-
convergence property.

Remark 3.4 In this proposition, the existence of continuous minimizers is
obtained as limit of the discrete ones. No a priori assumptions on Uad are
made, other than Hypothesis # 1.
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Proof of Proposition 3.1
Let (Ω?

h)h be a sequence of discrete minimizers. Any Ω?
h belongs to O

which is Hc-compact. Let U be an accumulation point of this sequence.
From Hypothesis # 1.(b), we know that U ∈ Uad.
In view of Hypothesis # 2, we have

ỹh −→ ỹU strongly in H1
0 (D),

and because of the continuity of J̃ , we obtain

jh(Ω?
h) −→ j(U).

Let us now check that U is a minimizer for j.
Let Ω ∈ Uad be given. From Hypothesis # 1.(a), we know that there

exists Ωh ∈ Uad,h such that Ωh
Hc

−→ Ω, which implies, as before, that

jh(Ωh) −→ j(Ω).

Now, for each h, we have

jh(Ω?
h) ≤ jh(Ωh).

Passing to the limit, we obtain

j(U) ≤ j(Ω), ∀Ω ∈ Uad.

This proves points 1 and 2 of the proposition.
Also, we have seen that the only accumulation point of the sequence

(jh(Ω?
h))h is nothing but minΩ∈Uad

j(Ω).
This ends the proof of the Proposition.

Let us now discuss hypothesis # 2 of Proposition 3.1.As we mentionned
before, it is a discrete version of the property

Ωh
Hc

−→ Ω ⇒ Ωh
γ−→Ω,

which allows passing to the limit on the solutions of the Dirichlet problem.
But, hypothesis # 2 concerns the convergence of the finite-element ap-

proximations. Obviously, this is related with the way Vh(Ωh) approximates
H1

0 (Ω) when Ωh −→ Ω. We are going to give sufficient conditions for it to
hold.

First, we prove the following lemma, which concerns test functions.
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Lemma 3.1 Let Ω ∈ Uad be given. Let Ωh ∈ Uad,h be such that Ωh
Hc

−→ Ω.
Then

∀ϕ ∈ D(Ω), ∃ϕh ∈ Vh(Ωh) s.t.

ϕ̃h −→ ϕ̃ strongly in H1
0 (D) when h → 0.

Proof
Let ϕ ∈ D(Ω) be given. We know that ϕ̃ ∈ H1

0 (D). Moreover
supp ϕ̃ = supp ϕ = K ⊂ Ω, K being compact.
As ϕ is regular, we can use a standard finite element error bound (see

[14, 32]).
Let us consider the interpolation operator πh : H1

0 (D) −→ Vh(D). As D
is regular, one has

|| ϕ̃− πhϕ̃ ||H1
0 (D)≤ C(σ,D)h || ϕ̃ ||H2(D)= C(σ,D)h || ϕ ||H2(Ω) .

Moreover, as we have Ωh
Hc

−→ Ω, we know that

∃ ho s.t. h < ho ⇒ K ⊂ Ωh.

Therefore, the Lemma is proved if we choose ϕh as the restriction to Ωh

of πhϕ̃.

Now, we can prove the following precise result.

Proposition 3.2 Let Ω ∈ Uad be given, and Ωh ∈ Uad,h be a sequence such
that

Ωh
γ−→ Ω and Ωh

Hc

−→ Ω.

Then
ỹh −→ ỹΩ strongly in H1

0 (D).

Proof
Let us denote by Ṽh(Ωh) the vector space of all functions of Vh(Ωh)

extended by 0 to D.
Equation (6) can be rewritten

ỹh ∈ Ṽh(Ωh),
∫

D
∇ỹh · ∇z̃hdx =< f, z̃h >H−1,H1

0 (D) ∀z̃h ∈ Ṽh(Ωh).

For any h we have
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|| ỹh ||H1
0 (D) ≤ || f ||H−1(D) .

We first prove that ỹΩ is the only weak −H1
0 (D) accumulation point of

(ỹh)h. Then we prove the strong convergence.

Let w be a weak−H1
0 (D) accumulation point of (ỹh)h. It is a weak limit

in H1
0 (D) of a subsequence (ỹhn)hn of (ỹh)h.

Let us denote ỹn for ỹhn , Ωn for Ωhn , Vn for Vhn(Ωhn), and Ṽn for
˜Vhn(Ωhn).

First, as Ωn
γ−→ Ω, we know that Ωn

Mosco−→ Ω. So, from point # 2 of the
definition of the Mosco convergence, we know that there exists u ∈ H1

0 (Ω)
such that w = ũ.

Let us prove that u = yΩ and that the convergence holds in the strong
topology.

1. u = yΩ

The function yΩ is caracterized by yΩ ∈ H1
0 (Ω) and∫

Ω
∇yΩ · ∇ϕdx =< f, ϕ >H−1,H1

0 (Ω), ∀ϕ ∈ D(Ω).

So, we have to prove that∫
Ω
∇u · ∇ϕdx =< f, ϕ >H−1,H1

0 (Ω), ∀ϕ ∈ D(Ω).

Let ϕ ∈ D(Ω) be given. We know that Ωn
Hc

−→ Ω and we can apply
Lemma 3.1. Then, there exists ϕn ∈ Vn such that

ϕ̃n −→ ϕ̃ strongly in H1
0 (D) when n −→∞.

We have ∫
Ωn

∇yn · ∇ϕndx =< f, ϕn >H−1,H1
0 (Ω),

or equivalently∫
D
∇ỹn · ∇ϕ̃ndx =< f, ϕ̃n >H−1,H1

0 (D) .
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As ỹn ⇀ ũ weakly in H1
0 (D) and ϕ̃n −→ ϕ̃ strongly in H1

0 (D), we can
pass to the limit and get∫

D
∇ũ · ∇ϕ̃dx =< f, ϕ̃ >H−1,H1

0 (D),

or ∫
Ω
∇u · ∇ϕdx =< f, ϕ >H−1,H1

0 (Ω), ∀ϕ ∈ D(Ω).

So u = yΩ.

2. Strong convergence in H1
0 (D)

One has∫
D
| ∇ỹh−∇ỹΩ |2 dx =

∫
D
| ∇ỹh |2 dx−2

∫
D
∇ỹh·∇ỹΩdx+

∫
D
| ∇ỹΩ |2 dx

=< f, ỹh >H−1,H1
0 (D) −2

∫
D
∇ỹh · ∇ỹΩdx +

∫
D
| ∇ỹΩ |2 dx

h→ 0−→ 0.

Indeed, the limit of the first term < f, ỹh >H−1,H1
0 (D) is

< f, ỹΩ >H−1,H1
0 (D)=

∫
D
| ∇ỹΩ |2 dx,

because of the weak convergence in H1
0 (D) of ỹh to ỹΩ. The limit of∫

D ∇ỹh · ∇ỹΩdx is
∫
D | ∇ỹΩ |2 dx for the same reason.

This concludes the proof of Proposition 3.2.

Now we can give the proof of Theorem 3.1.

Proof of Theorem 3.1.

This theorem is just a corollary of Propositions 3.1 and 3.2.
First, if a sequence Ωh ∈ Uad,h Hc-converges to some Ω, we know that

Ω ∈ Uad. Then, as Uad,h ⊂ U and Uad ⊂ U , by assumption on U , it also
γ-converges. So, we can apply Proposition 3.2 to get Hypothesis #2 of
Proposition 3.1. Then the conclusion of Proposition 3.1 holds.

Remark 3.5 The results of this section apply in any space dimension. As
we shall see in the next section, the assumption that the dimension d is
equal to 2 will arise naturally because we will apply this result to the setting
of S̆verárk [36] which is restricted to d = 2.
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4 Application to optimal design in the 2-dimensional
case

In this section, we check that in the 2-dimensional setting developed by
S̆verák [36] the conditions of the previous section are fulfilled.

4.1 The geometric setting

Recall that

ON = {Ω ∈ O; ]cΩ ≤ N}, ON
ω = {Ω ∈ ON ; ω ⊂ Ω},

where N is a given integer and ω is a small regular subset of D. Note that
both are Hc-compact.

In the sequel we choose ON
ω as the set Uad.

Remark 4.1 The restriction ω ⊂ Ω is imposed to avoid the optimal design
to be the empty set. Often, one imposes a lower bound to the measure or
perimeter of the domain. But, as indicated in Remark 2.2 points 4 and 5, the
two later constraints do not suffice to work in the Hc topology.More precisely,
it may happen that a converging sequence of domains with constant non-zero
measure, has an empty limit (see Example 6.3 in Appendix 1) and therefore
the class of domains {Ω ⊂ D;µ(Ω) ≥ m} is not Hc-closed. The same
happens with the perimeter. So, it is better to impose the constraint that
all admissible domains contain a given subdomain ω. This is meaningful in
applications in which a part of the structure to be designed is given a priori
(its foundations, for instance), or in identification problems.

Now, we define the set of discrete admissible domains.

Definition 4.1 For each h > 0, we consider the set Oh of subdomains of
D constituted by elements of the triangulation Th, as it has been defined in
Section 3.1.

Then we set

1. ON
h = { Ωh ∈ Oh; ]cΩh ≤ N },

2. ωh =

◦︷ ︸︸ ︷⋃
T∈Th, T⊂ω

T , and

ON
ω,h = { Ωh ∈ ON

h ; ωh ⊂ Ωh}.
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The set ON
ω,h is taken as Uad,h, the set of all discrete admissible domains.

Remark 4.2 Of course, one has

ON
ω ⊂ ON ⊂ O,

but, as ωh is smaller than ω

ON
ω,h is not a subset of ON

ω .

We only have
ON

ω,h ⊂ ON .

Now, we show that the hypothesis of Theorem 3.1 are satisfied so that
the discrete problems do approach the continuous one.

4.2 Application of Theorem 3.1

We take ON as U . As we saw in Theorem 2.1, Hc-convergence and γ-
convergence are equivalent on ON . Moreover ON

ω and ON
ω,h are subsets of

ON .
We now check that ON

ω and ON
ω,h satisfy Hypothesis #1 and #2 of The-

orem 3.1.

4.2.1 Hypothesis # 1.

The aim of this section is to prove that any Ω ∈ ON
ω is the Hc-limit of a

sequence (Ωh)h where each Ωh ∈ ON
ω,h.

Let us first consider any Ω ∈ O. We set F = D \ Ω and then

D =
◦
F ∪ ∂F ∪ Ω = F ∪ Ω.

For any T ∈ Th, one of the following properties holds:

T ⊂ Ω, or T ∩ ∂F 6= ∅, or T ⊂
◦
F .

Now, we define

Ωh =

◦︷ ︸︸ ︷⋃
T∈Th, T⊂Ω

T .
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Note that Ωh has been built from Ω just as ωh from ω.
We are going to show that this sequence (Ωh)h Hc-converges to Ω, and

that if Ω ∈ ON
ω then Ωh ∈ ON

ω,h.
We also set

Fh =
⋃

T∈Th, T
T

F 6=∅

T.

Then Fh is closed, Ωh is open, Fh ∩ Ωh = ∅, and clearly we have

Ωh ⊂ Ω, Fh ∪ Ωh = D.

Remark 4.3 Suppose that Ω has a hole H with empty interior (for instance
a crack). Then any triangle T which meets H intersects F . Thus we cannot
have T ⊂ Ωh. So, Hh =

⋃
T∩H 6=∅ T is a hole in Ωh and it has a non-empty

interior. Nevertheless, Hh is not necessarily a neighbourhood of H. For
example, if

H = { (x, y); x ∈ [0, 1], y = x},

and h = 1
p , p being an integer, and considering the standard regular mesh of

size h, one has

Hh =
i=p⋃

i=−1

[i h, (i + 1) h]2.

Now, let us check that the Hypothesis # 1 of Theorem 3.1 is satisfied.

Proposition 4.1 We have

1. Ωh
Hc

−→ Ω when h −→ 0,

2. for all h, ]cΩh ≤ ]cΩ, so if Ω ∈ ON , then for any h, Ωh ∈ ON
h .

3. if Ω ∈ ON
ω , then Ωh ∈ ON

ω,h for all h.

Proof

1. By definition, we have to prove that Fh = D \ Ωh
H−→F = D \ Ω.

We have F ⊂ Fh, so that

dH(Fh, F ) = max
xh∈Fh

d(xh, F ).
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Let xh be in Fh =
⋃

{T∈Th, T
T

F 6=∅}T .

If xh ∈ F , we have d(xh, F ) = 0.

If not, there exists T ∈ Th such that xh ∈ T and ∂F ∩T 6= ∅. So there
exists y ∈ F such that

d(xh, F ) ≤|| xh − y ||≤ h.

Therefore dH(Fh, F ) −→ 0.

2. Recall that if A and B are connected parts of R2, and A∩B 6= ∅, then
A ∪B is a connected set.

Let Fi be one connected component of F . We consider

F i
h =

⋃
T∩F i 6=∅

T = F i ∪ (
⋃

T∩∂F i 6=∅

T ).

Any T is of course a closed and connected set. If it intersects ∂F i,
then T ∪ F i is also a connected set. This says that F i

h is a connected
set.

Now, we have Fh =
⋃

i F
i
h. So,

]Fh ≤ ]F,

or
]cΩh ≤ ]cΩ.

Observe that it may happen that ]Fh < ]F, since for two connected
components F i and F j of F , the associated F i

h and F j
h may have a

non empty intersection.

3. We have to prove that

ω ⊂ Ω ⇒ ωh ⊂ Ωh.

This is clear because

ω ⊂ Ω, ωh =

◦︷ ︸︸ ︷⋃
T⊂ω

T ⊂

◦︷ ︸︸ ︷⋃
T⊂Ω

T = Ωh.

Remark 4.4 Notice that we have proved that any open subset Ω of D can
be approximated in the sense of the Hc-topology by a sequence (Ωh)h, where
each Ωh is a union of triangles. In particular Ωh is lipschitz regular, even
if Ω is very singular. For instance, it may happen that Ω has a boundary
which has a non-zero measure.
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4.2.2 Hypothesis # 2

It suffices to prove the following result:

Proposition 4.2 If a sequence Ωh ∈ ON
ω,h Hc-converges to some Ω, then

Ω ∈ ON
ω .

Proof
First, note that ON

ω,h ⊂ ON , ON
ω ⊂ ON , and ON is Hc-closed. So, it is

clear that Ω ∈ ON . All we need to prove is that

ωh ⊂ Ωh =⇒ ω ⊂ Ω.

Let us consider
Fh = D \ Ωh, F = D \ Ω,

Gh = D \ ωh, G = D \ ω.

By definition of ωh, from Proposition 4.1 we know that ωh
Hc

−→ ω, which is
equivalent to the fact that Gh

H−→ G.
We know that Fh ∩ ωh = ∅ and we want to check that F ∩ ω = ∅.
Let x ∈ F be given. We know (Remark 2.1) that

∃ xh ∈ Fh s.t. x = lim
h−→0

xh.

As Fh ⊂ Gh, we know that xh ∈ Gh. As Gh
H−→ G, also from Remark 2.1,

we deduce that x ∈ G = D \ ω.

Remark 4.5 Observe that the results of this section 4.2.2 and those of sec-
tion 4.2.1 apply in any finite dimension d. Also, the triangle shape of the
finite elements does not matter. The result holds because the mesh size tends
to 0, which is the case for any family of finite elements.

4.2.3 The optimal design problem

In this section we apply Theorem 3.1 in the 2-dimensional case correponding
to the framework of S̆verák. We address the optimal design problems (7)
and (8) of Section 3.1.

Note that the continuous optimal design problem (7) has a minimizer.
This is so because ON

ω = Uad is Hc-closed and within this class, Hc conver-
gence and γ-convergence are equivalent properties.
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Taking ON as U , ON
ω as Uad, and ON

ω,h as Uad,h, all the hypotheses of
Theorem 3.1 are satisfied.

So, we have proved that the discrete optimal design problems converge to
the continuous ones. This means that the minima of the discrete functionals
(8) converge to the minimum of the continuous one (7). Also, any accumula-
tion point of sequences of discrete optimal shapes Ω∗

h is a continuous optimal
one.

These results apply in particular to the two functionals introduced in
section 3.1: the one related to the compliance and that corresponding to the
identification of a partially known shape.

5 Conclusion and open problems

We have considered the problem of numerically approximating optimal shapes.
More precisely, we have addressed the issue of whether discrete optimal
shapes for a suitable discretization of the original continuous optimal design
problem provide an approximation of the continuous optimal shapes.

The problem has been addressed in the context of minimizing functionals
which depend continuously on the solution to the Dirichlet problem for the
laplacian.

We have developed a P1 finite-element approximation for which this
convergence result holds in the 2-dimensional case, working in the geomet-
ric setting introduced by V. S̆veràk [36], namely domains with an a priori
bounded number of holes. According to our results convergence holds in the
complementary-Hausdorff topology.

This legitimates the usual engineering approach for computing numeri-
cally optimal shapes.

This article has been fully devoted to the Dirichlet problem for the lapla-
cian. But the techniques we have developed could be used to solve similar
optimal design problems for Dirichlet problems in 2D to many other equa-
tions including the elliptic Stokes system, the Lamé system in elasticity, the
wave and heat equation, etc.

Our results have come out from a more general framework guarantee-
ing the convergence of discrete optimal shapes for a class of optimal design
problems. The main properties required in this general framework are the
continuous dependance of the solution of the PDE with respect to the do-
main on which it is posed, and the Hc-closedness of the set of admissible
continuous domains. From these continuous properties, we have derived
associated discrete ones from which we have deduced the results.
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Changing the type of discretization is certainly just a technical issue,
provided the approximation is conforming.

If the framework of S̆verák could be generalized to higher dimension, and
other families of admissible continuous shapes, it is likely that our result
could follow. Though, such generalizations do not seem easy to obtain, and
this has to be investigated.

It is clear that our technique only holds for the Dirichlet problem. How
to deal with the Neumann problem is, to our knowledge, completely open.

The obtention of convergence rates would be of first interest. As far as
we know, this subject is also completely open. Very likely, it will require
some further information on the continuous optimal shapes. The regularity
results obtained in [9] could be of some help for doing that. But this issue
also remains to be investigated.

Finally, we have mentioned that the computation of discrete optimal
shapes is not easy. A lot of work is being done in engineering research.
Considering the experiments which can be seen by now, one can expect that
this is not too far from reach.

6 Appendix 1

In this section we give some examples related to the properties mentioned in
Section 2.1 that fail to hold under the assumption of Hc-convergence. They
can be found in [20].

6.1 Example 1

This refers to the property we have mentionned in Remark 2.2, point 1.
Consider

K1 = B(0, 1), K2 = B(0, 2) \B(0,
3
2
).

Then, dH(K1, K2) =|| 0 − x2 || where x2 is any point of norm 3
2 . The

point 0 is not on the boundary of K1.

6.2 Example 2

This refers to the properties we have mentionned in Remark 2.2, points 2
and 3.

Consider in one space dimension
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Ωn =]− 1
n

,
1
n

[ ⊂ ]− 1,+1[.

One has

Fn = [−1,− 1
n

] ∪ [
1
n

, 1] H−→ [−1,+1],

so that Ωn
Hc

−→ Ω with Ω = ∅. Though, Ωn
H−→ {0}.

Moreover, one has {0} ⊂ Ωn for all n, though {0} is not a subset of Ω.

6.3 Example 3

This refers to the property we have mentionned in Remark 2.2, points 4 and
5.

Assume we are in dimension 2.
We consider the function φ :]0, 1[−→ R defined by

φ(x) =
{

2x ∀x ∈]0, 1
2 [

2− 2x ∀x ∈]12 , 1[,

and for any n ∈ N, n 6= 0{
φn(x) = φ(2nx) ∀x ∈]0, 1

2n ]
φn(x) is 1

2n periodic.

Consider D =]0, 1[×]− 1, 2[ and

Ωn = { (x, y); 0 < x < 1, −1 < y < φn(x) }.

The sequence Fn = D \ Ωn H-converges to [0, 1] × [0, 2], so that

Ωn
Hc

−→ Ω =]0, 1[ × ]− 1, 0[.

Though, denoting by µ the Lebesgue measure in R2, and P the perime-
ter, we have

∀n, µ(Ωn) = 1 +
1
2
, µ(Ω) = 1,

P (Ωn) −→∞, P (Ω) = 4.

So µ and P are not continuous with respect to the Hc-topology.
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